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Abstract: Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent
causing sudden death, septic shock and meningitis. These pathologies are the consequence of an
exacerbated inflammatory response composed of various mediators including interleukin (IL)-1β.
Elevated levels of the toxin suilysin (SLY) were demonstrated to play a key role in S. suis-induced
IL-1β production. However, 95% of serotype 2 strains isolated from diseased pigs in North America,
many of which are virulent, do not produce SLY. In this study, we demonstrated that SLY-negative
S. suis induces elevated levels of IL-1β in systemic organs, with dendritic cells contributing to this
production. SLY-negative S. suis-induced IL-1β production requires MyD88 and TLR2 following
recognition of lipoproteins. However, the higher internalization rate of the SLY-negative strain results
in intracellularly located DNA being recognized by the AIM2 inflammasome, which promotes IL-1β
production. Finally, the role of IL-1 in host survival during the S. suis systemic infection is beneficial
and conserved, regardless of SLY production, via modulation of the inflammation required to control
bacterial burden. In conclusion, this study demonstrates that SLY is not required for S. suis-induced
IL-1β production.

Keywords: Streptococcus suis; interleukin-1; dendritic cell; suilysin-negative; Toll-like receptor 2;
lipoprotein; AIM2 inflammasome; inflammation; septic shock

1. Introduction

Streptococcus suis is an important porcine bacterial pathogen associated with meningitis, sepsis,
arthritis, and endocarditis, among other pathologies [1]. Additionally, S. suis is a zoonotic agent,
responsible for hundreds of human cases annually, particularly in Southeast Asia [2,3]. Of the described
serotypes based on the capsular polysaccharide (CPS) antigens, serotype 2 is the most frequently
isolated from diseased pigs and humans worldwide [4]. However, serotype 2 strains are highly
heterogeneous and belong to numerous sequence types (STs), as determined using multilocus sequence
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typing, with the highly virulent ST1 predominating in Eurasia, the epidemic virulent ST7 in China and
the virulent ST25 in North America [5]. Low virulence ST28 strains are also frequently isolated in the
United States [6]. Furthermore, isolates with variable virulence belonging to the latter two STs have
also been reported in Asia [4,7–9]. While generally considered less virulent than ST1 strains (which
only represent 5% of serotype 2 strains in North America), ST25 strains are frequently isolated from
diseased pigs in Canada [10].

The S. suis pathogenesis and subsequent host response have been partially characterized, with a
variety of virulence factors described [11]. The CPS confers anti-phagocytic properties important for
systemic persistence and dissemination, while certain strains produce a hemolysin, termed suilysin
(SLY), involved in modulating the interactions with host cells and their inflammatory response [11].
Finally, bacterial components such as lipoproteins (LPs) and lipoteichoic acid (LTA) have also been
suggested to be involved in the S. suis pathogenesis [12,13].

Initial recognition of S. suis by innate immune cells involves specialized membrane-associated
or cytoplasmic receptors (pattern recognition receptors (PRRs)), which include Toll-like receptor
(TLR) 2, TLR4, TLR7, and TLR9, as well as the adaptor protein myeloid differentiation primary
response 88 (MyD88) [14,15]. Their activation leads to the synthesis of diverse pro-inflammatory
mediators via recruitment of the nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinases
(MAPKs) [16,17]. Of the different innate cells involved, dendritic cells (DCs) are required for the
control and elimination of S. suis via its phagocytosis and participate in the induced inflammatory
response [18,19]. Indeed, DCs are important sources of various pro-inflammatory mediators including
interleukin (IL)-1 following S. suis infection [13,14,19].

IL-1, one of the most potent and earliest pro-inflammatory mediators produced, is involved
in the recruitment of inflammatory cells, their activation and induction of other inflammatory
factors [20–23]. Its two forms, IL-1α and IL-1β bind the shared IL-1 receptor (IL-1R), which is
ubiquitously expressed, resulting in the synthesis of inflammatory mediators, adhesion molecules
and acute phase proteins [24]. IL-1β is synthesized as a precursor peptide (pro-IL-1β) requiring
a two-step processing mechanism for production [22,25]. Firstly, activation of PRRs leads to the
transcription and translation of pro-IL-1β, which is then cleaved to become active, mainly via
caspase-1-dependent mechanisms [26]. Similarly to pro-IL-1β, caspase-1 itself requires proteolytic
processing, which is mediated by inflammasomes, with the nucleotide-binding oligomerization domain
(NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), the NLRP1, the NLR family
CARD domain-containing protein 4 (NLRC4), and the absent in melanoma 2 (AIM2) being the best
characterized [27,28].

Although IL-1 signaling is essential for immunity by participating in the initiation of the
inflammatory response, an uncontrolled production of IL-1 can lead to tissue damage and disease.
Indeed, IL-1 plays a protective role during both pneumococcal and Group B Streptococcus infections,
during which a lack of IL-1 signaling dampens the inflammatory response, resulting in increased
bacterial burden [23,29–31]. Conversely, a lack of IL-1β production is lethal in a mouse model of
Group A Streptococcus infection [32,33]. Moreover, IL-1 signaling was recently demonstrated to play a
beneficial role during the systemic infection caused by a highly virulent S. suis serotype 2 ST1 strain via
initiation of the inflammatory cascade and promotion of bacterial clearance [13]. However, this effect
was not observed following infection with the epidemic ST7 strain responsible for the 2005 human
outbreak due to the exacerbated inflammation being too elevated for counterbalancing by IL-1 [13,34].
The mechanism presently described for S. suis-induced IL-1β production involves SLY (both ST1 and
ST7 strains are SLY-positive), which promotes its processing [13,34]. However, a large proportion of
virulent S. suis serotype 2 strains recovered from diseased animals do not produce SLY, including the
virulent ST25 strains present in Canada and Thailand [10,35], and their capacity to produce IL-1β,
including the mechanisms involved, have been little studied. Consequently, IL-1 production induced
by a virulent SLY-negative S. suis serotype 2 ST25 strain was further characterized in vitro and the role
of IL-1 signaling induced by this strain determined during the systemic infection in vivo.
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2. Results

2.1. Suilysin-Negative S. suis Induces Elevated Levels of IL-1β in Spleen and Liver But Not in Plasma

S. suis infection and dissemination can lead to the production of inflammatory mediators, including
IL-1β [13,36], which is a key cytokine initiating the inflammatory cascade. Consequently, its production
in plasma, spleen and liver was evaluated at different incubation times following infection with
the virulent SLY-negative ST25 strain 89-1591. Since IL-1β levels in plasma, spleen and liver of
mock-infected mice were barely detectable and remained constant from 6 h to 48 h, 0 h represents
results for non-infected mice (Figure 1). Infection with strain 89-1591 failed to induce a robust IL-1β
response in plasma, regardless of time, with values lower than 25 pg/mL (Figure 1A). However, IL-1β
production in liver and spleen was elevated, with the highest levels at 6 h and 12 h post-infection (p.i.)
(Figure 1B,C). These results demonstrate that though unable to produce SLY, S. suis strain 89-1591
(ST25) induces an elevated IL-1β response in systemic organs but not in plasma.

Figure 1. Suilysin (SLY)-negative S. suis strain 89-1591 induces elevated levels of IL-1β production
in spleen and liver but not in plasma. C57BL/6 mice were intraperitoneally inoculated with 1 × 107

CFU, plasma (A), spleen (B) and liver (C) were collected at indicated times post-infection and IL-1β
levels were quantified by ELISA. Values for mock-infected controls remained constant from 6 h to 48 h.
As such, 0 h represents results for mock-infected mice. Data are expressed as mean ± SEM (n = 3).

2.2. Suilysin-Negative S. suis Induces Elevated IL-1β Production From Bone-Marrow Dendritic Cells in a
Time-Dependent Manner

The elevated IL-1β response induced by S. suis strain 89-1591 in spleen and liver suggests a
role of resident innate immune cells, of which DCs are involved during S. suis infection and are
an important source of IL-1β [13,14,19]. Consequently, the capacity of these cells to produce IL-1β
following infection with the SLY-negative strain 89-1591 was evaluated using bone marrow-derived
dendritic cells (bmDCs), which are a well-characterized model of conventional DCs [13,14,18,19,37].
Strain 89-1591 induced IL-1β production in a time-dependent manner (Figure 2A). Though incapable
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of producing SLY, strain 89-1591 nonetheless induced significantly higher levels of IL-1β from bmDCs
than those induced by the highly virulent SLY-positive ST1 strain P1/7 (p < 0.05) (Figure 2B).

Figure 2. Kinetics of IL-1β production from bone marrow-derived dendritic cells (bmDCs) infected
with SLY-negative S. suis strain 89-1591 and comparison to SLY-positive strain P1/7. (A) Strain
89-1591-induced IL-1β production kinetic from bmDCs as measured by ELISA. Non-stimulated cells
served as negative control (C-). (B) bmDCs were infected with 1 × 106 CFU of strain 89-1591 or P1/7 for
16 h and IL-1β release was measured by ELISA. Data are expressed as mean ± SEM (n = 3). * (p < 0.05)
indicates a significant difference between strains.

2.3. Role of Toll-Like Receptors and Associated Signaling Pathways in Suilysin-Negative S. suis-Induced
IL-1β Production

Different cellular pathways are involved in bacterial recognition, with the TLR pathway crucial
for S. suis [14,19]. Production of IL-1β induced by the SLY-negative strain 89-1591 was almost
completely abrogated in the absence of the adaptor protein MyD88 (p < 0.01) but was unaffected by
the absence of TIR-domain-containing adapter-inducing IFN-β (TRIF) (Figure 3A). Since S. suis is
mostly an extracellular pathogen, its recognition by surface-associated receptors is crucial. While IL-1β
production was significantly reduced in TLR2-/- bmDCs (p < 0.01), no difference was observed with
TLR4-/- DCs (Figure 3A).

Figure 3. Role of TLRs and associated signaling in SLY-negative S. suis strain 89-1591-induced IL-1β
production by bmDCs. (A) Percentage of IL-1β production induced 16 h following infection of bmDCs
deficient for MyD88, TRIF, TLR2 or TLR4, with regards to wild-type counterparts (normalized to 100%).
(B) Percentage of IL-1β production from bmDCs following pretreatment with inhibitors of NF-kB, p38,
MEK or JNK and infection with 1 × 106 CFU of strain 89-1591 with regards to vehicle-treated bmDCs
(DMSO; normalized to 100%). Data are expressed as mean ± SEM (n = 3). * (p < 0.05) indicates a
significant difference with wild-type or vehicle-treated bmDCs.

The NF-κB and MAPK pathways are implicated in the transcriptional control of IL-1β [38,39].
Consequently, bmDCs were pre-treated with different inhibitors (NF-κB inhibitor [i] JSH-23, p38i
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SB203580, MEK1/2i U0126 or JNKi SP600125) or the vehicle (dimethylsulfoxide; DMSO). While inhibition
of NF-κB, MEK1/2 and JNK significantly and equally reduced IL-1β production (p < 0.01), p38 inhibition
had no effect (Figure 3B). These data indicate that SLY-negative S. suis strain 89-1591-induced IL-1β is
MyD88-dependent, requiring TLR2, and signals via NF-κB, MEK1/2 and JNK.

2.4. Suilysin-Negative S. suis Lipoproteins and Nucleic Acids Are Potent Inducers of IL-1β Production

Though a multitude of S. suis components have been described to induce pro-inflammatory
mediator production from innate immune cells, the presence of CPS is usually associated with partial
masking of these components [11,12]. However, this was previously reported not to be the case for
strain 89-1591 [40]. In accordance, no difference was observed in IL-1β production between strain
89-1591 and its non-encapsulated isogenic mutant, 89-1591∆cpsF (Figure 4A).

Figure 4. Role of SLY-negative S. suis strain 89-1591 components in bmDC-produced IL-1β. (A) IL-1β
production by bmDCs following 16 h of infection with 1 × 106 CFU of strain 89-1591 or its capsular
polysaccharide-deficient mutant (89-1591∆cpsF). (B) IL-1β production 24 h following activation of
wild-type (WT) or TLR2-/- bmDCs with 30 µg/mL of lipoteichoic acid (LTA) extracts from strain 89-1591
or its lgt-deficient mutant (89-1591∆lgt). Non-stimulated cells served as negative control (C-). (C) IL-1β
production by bmDCs following phagosomal delivery of 1 µg of S. suis RNA or DNA. Cells stimulated
with elution buffer served as negative control (C-). Data are expressed as mean± SEM (n = 3). * (p < 0.05)
indicates a significant difference with 89-1591-derived LTA and # (p < 0.05) with the negative control.

Given the implication of TLR2 in strain 89-1591-induced IL-1β production, potential activators
were investigated. LTA and LPs have been suggested to activate TLR2 in Gram-positive bacteria [41–43].
Consequently, LTA was extracted and bmDCs stimulated, inducing high levels of IL-1β production
(Figure 4B). As previously described, however, current methods are unable to eliminate co-purified LPs
from LTA preparations [42]. As such, LTA was also extracted from lgt-deficient mutants (∆lgt), in which
absence of the lipoprotein diacylglyceryl transferase, a key enzyme in LP synthesis, renders LPs
biological inactive and unrecognizable by TLR2 [44,45]. In accordance, not only did LTA preparations
from lgt-deficient mutants induce significantly less IL-1β than those from the wild-type strain (p < 0.01),
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but levels were undetectable (Figure 4B). In addition, IL-1β production was completely abolished
in TLR2-/- bmDCs following activation with LTA preparations from the wild-type strain (p < 0.01)
(Figure 4B). Taken together, these results indicate that strain 89-1591 LPs are important inducers and
mainly responsible for IL-1β production by bmDCs via recognition by TLR2.

Dependence of S. suis-induced IL-1β production on MyD88, but only partially on TLR2 and not at
all on TLR4, suggested a co-participation of endosomal TLRs. In fact, it was previously demonstrated
that when internalized, S. suis nucleic acids can induce bmDC activation [19]. As such, DNA and RNA
were extracted from strain 89-1591 and complexed or not with DOTAP liposomal transfection reagent,
which allows phagosomal delivery. DNA and RNA induced IL-1β production from bmDCs only
when complexed with DOTAP (p < 0.05), though DNA was significantly more stimulating than RNA
(p < 0.01) (Figure 4C). Consequently, this recognition of RNA and DNA might suggest the involvement
of TLR7 and TLR9, respectively.

2.5. Suilysin-Negative S. suis-Induced IL-1β Production Depends on Caspase-1 and the NLRP3
and AIM2 Inflammasomes

Processing of IL-1β requires cleavage by proteolytic enzymes, the most important of which
is caspase-1 [24,25]. To investigate whether strain 89-1591-induced IL-1β requires this enzyme,
caspase-1-deficient bmDCs were used. As shown in Figure 5, IL-1β production was reduced by more
than 75% in caspase-1-/- bmDCs (p < 0.01). To determine the mechanisms by which strain 89-1591
might activate caspase-1, the role of the NLRP1, NLRP3, AIM2, and NLRC4 inflammasomes, which are
the best characterized [27], was evaluated. While NLRP3- and AIM2-deficiency resulted in a significant
decrease of strain 89-1591-induced IL-1β production (p < 0.05), NLRP1 and NLRC4 were not involved
(Figure 5).

Figure 5. SLY-negative S. suis strain 89-1591-induced bmDC IL-1β production is caspase-1, NLRP3
and AIM2 dependent. Percentage of IL-1β secretion by caspase-1- (CASP-1), NLRP3-, AIM2-, NLRP1-
or NLRC4-deficient bmDCs after 16 h of infection with 1 × 106 CFU of strain 89-1591 by ELISA,
in comparison to wild-type counterparts (normalized to 100%). Data represent the mean ± SEM (n = 3);
* (p < 0.05) indicates a significant difference obtained with wild-type bmDCs.

2.6. S. suis Strain 89-1591-Induced IL-1β Production Requires Internalization and Intracellular DNA Sensing
by the AIM2 Inflammasome

The greater IL-1β production by the SLY-negative strain 89-1591 from bmDCs than the SLY-positive
strain P1/7 suggested differential processing mechanisms. A notable difference between the interactions
of these strains with bmDCs is the significantly greater internalization of strain 89-1591, regardless
of its high encapsulation [19]. Consequently, bmDC internalization was blocked by pretreatment
with cytochalasin D, which inhibits actin polymerization, or its vehicle (DMSO), as previously
described [19]. Inhibiting internalization significantly reduced 89-1591-induced IL-1β production
by bmDCs (p < 0.05) (Figure 6A). By contrast, no difference in P1/7-induced IL-1β production was
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observed following inhibition of internalization (Figure 6A). Moreover, the involvement of the NLRP3
and AIM2 inflammasomes described above is greater for strain 89-1591 than that previously published
for strain P1/7 [13], which was confirmed herein (data not shown). While the bacterial components
responsible for NLRP3 activation other than secreted toxins remain little studied [46], double-stranded
DNA has been described to be sensed by the AIM2 inflammasome [47,48]. Consequently, AIM2-/-

bmDCs were used to better understand the underlying mechanisms. Activation of AIM2-/- bmDCs
with whole heat-killed 89-1591 resulted in a similar IL-1β production as with live bacteria (Figure 6B),
suggesting that the motif recognized by the AIM2 inflammasome is not secreted. Subsequently, strain
89-1591 was lysed using sonication and lysates were complexed or not with DOTAP. In the absence of
the AIM2 inflammasome, production of IL-1β using lysates was significantly lower than with live or
heat-killed bacteria (p < 0.05) (Figure 6B), but only when complexed with DOTAP. Finally, activation of
AIM2-/- bmDCs with strain 89-1591 DOTAP-complexed DNA resulted in a near complete abolishment
of IL-1β production (p < 0.05), similar to the bacterial lysate (Figure 6B), while no difference was
observed using RNA (data not shown). Taken together, these results demonstrate that intracellularly
located S. suis DNA is recognized by the AIM2 inflammasome and that the higher internalization rate
of strain 89-1591 by bmDCs results in a more efficient processing of the induced IL-1β.

Figure 6. SLY-negative S. suis strain 89-1591-induced bmDC IL-1β production involves internalization
and recognition of bacterial DNA by AIM2 inflammasome. (A) IL-1β production from bmDCs following
pretreatment with vehicle (DMSO) or cytochalasin D (Cyto D) and infection with 1 × 106 CFU of strain
89-1591 or strain P1/7 for 16 h. (B) Percentage of IL-1β production in AIM2-/- bmDCs stimulated with
live (1 × 106 CFU) or whole heat-killed strain 89-1591 (1 × 109 CFU), 5 µg of strain 89-1591 lysate or 1 µg
of strain 89-1591 DNA, in comparison to wild-type counterparts (normalized to 100%), as measured by
ELISA after 16 h. Data represent the mean ± SEM (n = 3). * (p < 0.05) indicates a significant difference
with vehicle-treated or wild-type bmDCs.

2.7. IL-1 Signaling Plays a Beneficial Role in Host Survival During the Systemic Infection Induced
by Suilysin-Negative S. suis

Due the importance of IL-1 in the balance of systemic inflammation [13,34], host survival following
SLY-negative S. suis strain 89-1591 infection was evaluated in wild-type and IL-1R-/- mice. Survival of
IL-1R-/- mice was significantly reduced in comparison to wild-type counterparts (p < 0.01) (Figure 7),
suggesting a beneficial role of IL-1 signaling during SLY-negative strain 89-1591 infection.
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Figure 7. Survival of wild-type and IL-1R-/- mice after intraperitoneal infection with SLY-negative
S. suis strain 89-1591. Six-week-old mice were intraperitoneally inoculated with 1 × 107 CFU of strain
89-1591 and survival was monitored for 10 days post-infection. Data represent survival curves (n = 15).
* (p < 0.05) indicates a significant difference between survival of wild-type and IL-1R-/- mice.

Since IL-1 signaling is involved in initiation of the inflammatory cascade, the production of other
pro-inflammatory mediators (IL-6, IFN-γ, C-C motif chemokine ligand (CCL) 3, and C-X-C motif
chemokine ligand (CXCL) 9) in plasma, liver and spleen was evaluated 12 h, 48 h, and 72 h p.i. While
no differences were observed at 12 h, significantly lower levels of IL-6, IFN-γ, CCL3, and CXCL9
were observed 48 h and 72 h p.i. in the plasma, liver and spleen of IL-1R-/- mice than in wild-type
counterparts (p < 0.05) (Figures 8 and 9).

Figure 8. IL-1 is required for SLY-negative S. suis strain 89-1591-induced IL-6 and CCL3 production in
blood, liver and spleen. Plasma, liver and spleen levels of IL-6 (A) and CCL3 (B) in wild-type (WT) and
IL-1R-/- mice 12 h, 48 h and 72 h following infection with 1 × 107 CFU. Data represent the mean ± SEM
(n = 3). * (p < 0.05) indicates a significant difference between WT and IL-1R-/- mice.
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Figure 9. IL-1 is required for SLY-negative S. suis strain 89-1591-induced IFN-γ and CXCL9 production
in blood, liver and spleen. Plasma, liver and spleen levels of IFN-γ (A) and CXCL9 (B) in wild-type
(WT) and IL-1R-/- mice 12 h, 48 h and 72 h following infection with 1 × 107 CFU. Data represent the
mean ± SEM (n = 3). * (p < 0.05) indicates a significant difference between WT and IL-1R-/- mice.

Since inflammation is required for initiation of bacterial clearance, bacterial burden was evaluated
in the plasma, liver and spleen of wild-type and IL-1R-/- mice infected with strain 89-1591. While
no differences were observed in bacterial burden of wild-type and IL-1R-/- mice 12 h and 48 h p.i.,
regardless of the organ, bacterial burden was significantly higher in the plasma, liver and spleen of
IL-1R-/- mice 72 h p.i. (p < 0.05) (Figure 10). Taken together, these data demonstrate that IL-1 signaling
induced by a SLY-negative S. suis strain also contributes to pro-inflammatory mediator production and
bacterial burden modulation involved in host survival.
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Figure 10. IL-1 is required for control of bacterial burden in blood, liver and spleen following
SLY-negative S. suis strain 89-1591 infection. Bacterial burden in blood (A), liver (B), and spleen (C)
of wild-type (WT) and IL-1R-/- mice infected with strain 89-1591 (1 × 107 CFU) 12 h, 48 h and 72 h
post-infection. A blood bacterial burden of 2 × 109 CFU/mL, corresponding to the average burden
upon euthanasia, was attributed to euthanized mice. Data represent the geometric mean (n = 5). *
(p < 0.05) indicates a significant difference between WT and IL-1R-/- mice.

3. Discussion

As an important porcine pathogen and zoonotic agent, S. suis possesses various components
and virulence factors responsible for host cell activation and induction of an exacerbated
inflammation [11,12,49]. This inflammatory response is composed of various mediators, including
IL-1β, whose production was described to be promoted by elevated levels of secreted S. suis SLY [13,34].
However, ST25 strains, which are virulent and SLY-negative, account for nearly 50% of serotype
2 strains isolated from diseased pigs in Canada [5,10], yet their capacity to produce IL-1β and the
mechanisms involved have been little studied.
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Though somewhat less virulent in experimental infections than the highly virulent ST1 strains
and the epidemic ST7 strain responsible for the 2005 human outbreak in China, strain 89-1591 causes
significant disease and induced elevated IL-1β levels in liver and spleen that were of the same
magnitude as those induced by the ST1 and ST7 strains [5,13]. Moreover, induced levels of IL-1β in
plasma were similarly low between strains [13], which appears to be a characteristic of S. suis infection.
Consequently, activation of splenic and liver immune cells might be responsible for its local production.
In accordance, bmDCs, a commonly used model of conventional DCs [13,14,18,19,37], are an important
source of S. suis ST1 and ST7-induced IL-1β (which both produce SLY under the conditions tested) [13].
This is also the case for the virulent SLY-negative ST25 strain, indicating that SLY alone is not the major
component responsible for S. suis-induced IL-1β production.

Strain 89-1591-induced IL-1β production from bmDCs involves a dual mechanism, depending
on surface and intracellular recognition, similar to that described for S. suis-induced IFN-β [19].
By contrast to IFN-β production [19], however, recognition of surface bacterial LPs by TLR2 is
important for IL-1β production. This immunostimulatory property of S. suis LPs and its recognition by
TLR2 were previously described for other cytokines and chemokines [50,51]. Moreover, the lack of
immunostimulatory properties of the S. suis LTA, including a lack of recognition by TLR2, confirms
results published for other pro-inflammatory mediators [51]. Induction of IL-1β production by
strain 89-1591 was also MyD88-dependent, TRIF-independent and TLR4-independent. However,
the MyD88-dependancy of IL-1β and partial implication of TLR2, but lack of implication of TLR4,
suggest the implication of other MyD88-dependent TLRs, of which there are at least half a dozen
others [52]. Interestingly, MyD88 and TLR2, following recognition of LPs, are also required for
induction of IL-1β by ST1 and ST7 strains, suggesting an evolutionary mechanism developed by the
host to sense this pathogen and initiate an inflammatory response [13].

Alongside surface recognition by TLR2, strain 89-1591-induced IL-1β production was
partially internalization-dependent, with residual levels of IL-1β being similar to those induced
by lipopolysaccharide (which does not activate inflammasome assembly) when blocking
internalization [53,54]. A similar internalization-dependent mechanism of IL-1β production was
previously described for Streptococcus pneumoniae [55]. This internalization of S. suis has for consequence
the release of nucleic acids within the cell, which might then be recognized by intracellular receptors,
including endosomal TLRs. Indeed, it was previously demonstrated that the S. suis nucleic acids are
recognized by the MyD88-dependent TLR7 and TLR9 in the case of IFN-βproduction [19]. In accordance,
RNA and DNA from strain 89-1591 induce IL-1β, but only when complexed with a transfection reagent,
herein possibly suggesting a role of TLR7 and TLR9. On the other hand, a TRIF-independent mechanism
was observed, indicating that TLR3 would not be involved. Interestingly, though both nucleic acids
induced IL-1β production, the stimulatory properties of DNA were significantly greater, suggesting a
more important role of DNA-sensing receptors, which include the AIM2 inflammasome [52]. Indeed,
DNA isolated from strain 89-1591 was the bacterial component majorly responsible for implication of
AIM2 in induced IL-1β production, with a similar mechanism previously reported for S. pneumoniae [55].
S. suis nucleic acids are probably associated with various proteins when liberated in vivo. Given the
immunostimulatory properties of most S. suis described proteins [11], this association might enhance
the cell activating properties of nucleic acids, though future studies will be required to confirm the
effect of this association on pro-inflammatory mediator production.

Activation of TLR signaling leads to recruitment of the transcription factors NF-κB and
MAPKs [16,17]. Results demonstrated that strain 89-1591-induced IL-1β production is dependent on
the NF-κB, ERK, and JNK pathways, but is p38-independent. While the NF-κB and ERK pathways
are also involved in IL-1β induced by SLY-positive ST1 and ST7 strains [13], this is the first study to
describe a role of the JNK pathway.

Together, the difference in IL-1β production induced by strains 89-1591 and P1/7 from bmDCs can
be explained by the greater activation and participation of the NLRP3 and AIM2 inflammasomes for
the former. Indeed, while NLRP3 inflammasome activation by SLY is almost solely responsible for
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S. suis-induced IL-1β production by SLY-positive S. suis [13,34], IL-1β production by a SLY-negative
strain is dependent, at least partially, on phagocytosis susceptibility, resulting in intracellular localization
of DNA activating the AIM2 inflammasome. Consequently, there exist at least two distinct mechanisms
responsible for IL-1 production induced by S. suis, depending on capacity to produce SLY and on
phagocytosis susceptibility.

Upon production, IL-1β binds the IL-1R, leading to cell activation, stimulation and secretion of
diverse pro-inflammatory cytokines (positive feedback loop), among other effects [46]. In the case
of SLY-positive S. suis ST1 infections, IL-1 signaling beneficially modulates the host innate immune
response via increased production of other pro-inflammatory mediators required for control of bacterial
burden in blood and organs, which, if unrestricted, causes host death [13]. Similar results were obtained
in this study with the SLY-negative ST25 strain 89-1591, indicating that the role of IL-1 during S. suis
infection is conserved and does not depend on SLY production. Importantly though, the role of IL-1, like
that of type I IFN and possibly other mediators, appears to depend on the host inflammatory threshold
not being exceeded. Indeed, inflammation induced by the highly virulent ST7 strain was reported
to significantly exceed this threshold, which is critical for determining host outcome and survival,
resulting in the role of IL-1 being difficult to discriminate [13]. Moreover, the role of 89-1591-induced
IL-1 signaling on pro-inflammatory mediator production was only observed at later times points (48 h
and 72 h p.i.). This is a consequence of IL-1 first having to be produced and secreted prior to binding
its receptor and activating downstream signaling [46]. Moreover, the lower virulence of strain 89-1591,
in comparison to the epidemic ST7 strain and highly virulent ST1 strains, influences the rapidity of
the host response, impacting the observable effects. Taken together, these results clearly demonstrate
that the inflammatory response induced by S. suis must be precisely balanced and controlled to be
beneficial for host outcome and survival [13,17,19].

4. Material and Methods

4.1. Ethics Statement

This study was carried out in accordance with the recommendations of the guidelines and policies
of the Canadian Council on Animal Care and the principles set forth in the Guide for the Care and
Use of Laboratory Animals. The protocols and procedures were approved by the Animal Welfare
Committee of the University of Montreal (protocol number rech-1570).

4.2. S. suis Strains and Growth Conditions

The strains used in this study are listed in Table 1. The S. suis serotype 2 ST25 strain 89-1591,
isolated from a diseased pig with sepsis in Canada [56], was used throughout this study. This
strain is highly encapsulated, SLY-negative and virulent [9,57]. In selected experiments, the highly
virulent European S. suis serotype 2 ST1 reference strain P1/7 was used for comparison purposes.
Isogenic mutants derived from strain 89-1591 were also included. S. suis was grown in Todd Hewitt
broth (THB; Becton Dickinson, Mississauga, ON, Canada) as previously described [58], diluted in
culture medium before experiments with cells and the final concentration (colony-forming units
(CFU)/mL) determined by plating on THB agar (THA). For experimental mouse infections, bacteria
were resuspended in THB.

Table 1. S. suis serotype 2 strains used in this study.

Strain General Characteristics Reference

89-1591 Virulent North American ST25 strain isolated from a case of pig sepsis in Canada [56]
89-1591∆cpsF Non-encapsulated isogenic mutant derived from 89-1591; in frame deletion of cpsF gene [40]
89-1591∆lgt Isogenic mutant strain derived from 89-1591; in frame deletion of lgt gene [51]

P1/7 Classical highly virulent ST1 strain isolated from a pig with meningitis in the United
Kingdom, used for comparison [59]
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4.3. Lipoteichoic Acid Preparation

Extraction and purification of LTA from strains 89-1591 and 89-1591∆lgt was previously
described [51,60].

4.4. Mice

MyD88-/- (B6.129P2(SJL)-MyD88tm1.Defr/J), TRIF-/- (C57BL/6J-Ticam1Lps2/J), TLR2-/-

(B6.129-Tlr2tmKir/J), TLR4-/- (B6.B10ScN-Tlr4lps-del/JthJ), caspase-1-/- (B6N.129S2-Casp1tm1Flv/J), NLRP3-/-

(B6.129S6-Nlrp3tm1Bhk/J), NLRP1-/- (B6.129S6-Nlrp1btm1Bhk/J), AIM2-/- (B6.129P2-Aim2Gt(CSG445)Byg/J),
NLRC4-/- [61], and IL-1R-/- (B6.129S7-Il1r1tm1Imx/J) mice on C57BL/6 background were housed under
specific pathogen-free conditions alongside their wild-type counterparts. Mice were purchased from
Jackson Research Laboratories (Bar Harbor, ME, USA), with the exception of NLRC4-/- mice, which
were originally generated by G. Núñez (University of Michigan, USA) [62].

4.5. Generation of Bone Marrow-Derived Dendritic Cells

The femur and tibia of wild-type and knock-out mice were used to generate bmDCs as previously
described [14,63] in complete culture medium (RPMI-1640 supplemented with 5% heat-inactivated fetal
bovine serum, 10 mM HEPES, 2 mM l-glutamine, and 50 µM 2-mercaptoethanol (Gibco, Burlington,
ON, Canada) and complemented with 10% granulocyte-macrophages colony-stimulating factor).
Cell purity was determined to be at least 85% CD11c+ [14,19,63]. Albeit this culture system cannot
completely rule out the presence of other innate cells such as macrophages, it represents an enriched
source of bmDCs.

4.6. S. suis Infection of Bone Marrow-Derived Dendritic Cells

All experiments were performed in the absence of endotoxin (lipopolysaccharide) contamination
and under nontoxic conditions, the latter being evaluated by the lactate dehydrogenase release with
the CytoTox 96®Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI, USA). Cells were
resuspended at 1 × 106 cells/mL in complete medium and stimulated with the strains listed in Table 1
(1 × 106 CFU/mL; initial multiplicity of infection = 1). Conditions used were based on those previously
published [14,18]. For signaling pathway studies, cells were pretreated for 45 min with 10 µM NF-κB
inhibitor JSH-23, 10 µM p38 inhibitor SB0203580, 25 µM MEK1/2 inhibitor U0126 or 10 µM JNK
inhibitor SP600125 (all from Calbiochem/EMD Millipore, San Diego, CA, USA), or 5 µM cytochalasin
D (Santa Cruz Biotech, Dallas, TX, USA), all in DMSO (Sigma-Aldrich), which served as the vehicle. At
indicated times, supernatants were collected for cytokine measurements. Meanwhile, activation of
cells with LTA was performed using 30 µg/mL and supernatants were collected 24 h later. For mRNA
expression, cells were harvested in TRIzol (Invitrogen) 6 h following infection. Mock-infected cells
served as negative controls.

4.7. S. suis DNA and RNA Preparation and Transfection of Cells

For bacterial DNA and RNA isolation, bacteria were grown to mid-log phase. Total RNA was
extracted using the Aurum Total RNA Mini Kit (Bio-Rad) according to the manufacturer’s instructions,
including treatment with DNase I. For DNA preparation, bacteria were harvested in 10 mM Tris, 1 mM
EDTA, pH 8.0, and treated with 10% SDS and 20 mg/mL proteinase K (Sigma-Aldrich) for 1 h at 37 ◦C.
DNA was isolated using phenol/chloroform/isoamyl alcohol (Sigma-Aldrich) [64]. After isolation,
bacterial DNA was treated with 10 mg/mL RNase A (Roche) for 30 min at 37 ◦C. Cells were transfected
with 1 µg of RNA or DNA complexed with DOTAP liposomal transfection reagent (Sigma-Aldrich) as
previously described [19,64,65].
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4.8. Preparation of Heat-Killed S. suis and Bacterial Lysates

Heat-killed S. suis were prepared as described in [66]. Briefly, a bacterium was grown to mid-log
phase and incubated at 60 ◦C for 45 min. Cultures were subcultured on blood agar plates at 37 ◦C
for 48 h to confirm absence of bacterial viability. Heat-killed S. suis were resuspended in cell culture
medium at a concentration of 2 × 109 CFU/mL prior to bmDC stimulation. Bacterial lysates were
prepared as described [64] and cells transfected with 5 µg of lysates complexed with DOTAP liposomal
transfection reagent.

4.9. IL-1β Quantification in Cell Culture Supernatants

Levels of IL-1β in cell culture supernatants were measured by sandwich enzyme-linked
immunosorbent assay (ELISA) using pair-matched antibodies from R&D Systems (Minneapolis,
MN, USA) according to the manufacturer’s recommendations.

4.10. Determination of Cell mRNA Expression by RT-qPCR

Cell mRNA was extracted according to the manufacturer’s instructions (TRIzol). RNA purity was
assessed by spectrophotometric quantification and integrity verified by electrophoresis on denaturating
agarose gel. cDNA was generated using the Quantitect cDNA Synthesis Kit (Qiagen, Mississauga, ON,
Canada) with 500 ng of RNA pretreated with DNase. Real-time polymerase chain reaction (qPCR) was
performed on the CFX-96 Touch Rapid Thermal Cycler System (Bio-Rad), using 250 nM of primers
(Integrated DNA technologies), the SsoFast Evagreen Supermix Kit (Bio-Rad) and 20 ng of cDNA. No
template controls were included and all samples were run in triplicate. The cycling conditions were
3 min of polymerase activation at 98 ◦C, followed by 40 cycles at 98 ◦C for 2 s and 57 ◦C for 5 s. Melting
curves were generated after each run to confirm the presence of a single PCR product. The sequences of
primers used in this study are shown in Table 2 and were verified to have reaction efficiencies between
90% and 110%. The reference genes Atp5b and Gapdh, determined to be the most stably expressed
using the algorithm geNorm, were used to normalize data. Fold changes in gene expression were
calculated using the quantification cycle threshold (Cq) method using the CFX software manager v.3.0
(Bio-Rad). Samples from mock-infected cells served as calibrators.

Table 2. Primers used in this study.

Primer Name Sequence (5′ – 3′)

Atp5b F: ACC AGC CCA CCC TAG CCA CC
R: TGC AGG GGC AGG GTC AGT CA

Gapdh F: CCC GTA GAC AAA ATG GTG AAG
R: GAC TGT GCC GTT GAA TTT G

Il1b F: AGG TCA AAG GTT TGG AAG CA
R: TGA AGC TAT GGC AAC TG

4.11. S. suis Mouse Model of Infection

Six-week-old male and female wild-type C57BL/6 and IL-1R-/- mice were used. Animals were
acclimatized to standard laboratory conditions with unlimited access to water and rodent chow [36].
These studies were carried out in strict accordance with the recommendations of and approved by
the University of Montreal Animal Welfare Committee guidelines and policies, including euthanasia
to minimize animal suffering, applied throughout this study when animals were seriously affected,
since mortality was not an end point measurement. Strain 89-1591 was administered at a dose of
1 × 107 CFU by intraperitoneal inoculation to groups of 15 mice. Survival was evaluated and mice
were monitored twice daily until 72 h post-infection (p.i.) and twice thereafter until 10 days p.i.
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4.12. Measurement of Plasma, Liver and Spleen Pro-Inflammatory Mediators

For kinetics of IL-1β production, wild-type mice were inoculated with strain 89-1591 or the vehicle
(sterile THB) as described above. At 12 h, 48 h and 72 h p.i., blood was collected by intracardiac puncture
following euthanasia and anti-coagulated with EDTA (Sigma-Aldrich) as previously described [57].
Plasma supernatants were collected following centrifugation at 10,000 × g for 10 min, 4 ◦C. For
liver and spleen, extraction buffer was prepared using complete Mini, EDTA-free, protease inhibitor
cocktail tablets (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s
instructions, and organs homogenized using a POLYTRON PT 1200E system bundle (Kinematica,
Lucerne, Switzerland). Homogenate supernatants were collected following centrifugation at 10,000 ×
g for 10 min, 4 ◦C, and stored at −80 ◦C. Levels of IL-1β were determined by ELISA as described, while
IL-6, IFN-γ, CCL3, and CXCL9 were measured using a custom-made cytokine Bio-Plex Pro™ assay
(Bio-Rad) according to the manufacturer’s instructions. Acquisition was performed on the MAGPIX
platform (Luminex®) and data analyzed using the Bio-Plex Manager 6.1 software (Bio-Rad).

4.13. Measurement of Blood, Spleen, and Liver Bacterial Burden

Wild-type and IL-1R-/- mice were infected with strain 89-1591 as described above and blood
bacterial burden was assessed 12 h, 48 h, and 72 h p.i. by collecting 5 µL of blood from the caudal
tail vein. For liver and spleen, organs were collected and homogenized as described above. Bacterial
burden was determined by plating appropriate dilutions on THA.

4.14. Statistical Analyses

Normality of data was verified using the Shapiro–Wilk test. Accordingly, parametric (unpaired
t-test) or non-parametric tests (Mann–Whitney rank sum test), where appropriate, were performed to
evaluate statistical differences between groups. Log-rank (Mantel–Cox) tests were used to compare
survival between wild-type and IL-1R-/- mice. Each test was repeated in at least three independent
experiments. p < 0.05 was considered as statistically significant.

5. Conclusions

This study demonstrates that an elevated production of IL-1β in internal organs is a characteristic
of S. suis infection caused by virulent strains, regardless of SLY production. More precisely, IL-1β
production by SLY-negative S. suis is a consequence of conserved bacterial components being recognized,
namely LPs via TLR2, and following internalization, nucleic acids, possibly via TLR7 and TLR9.
Interestingly, and different from what was previously reported, IL-1β processing does not solely
depend on SLY: we demonstrate a novel SLY-independent mechanism whereby intracellularly located
S. suis DNA is recognized by the AIM2 inflammasome. Based on these results, a model of the
mechanisms involved in SLY-negative S. suis strain 89-1591-induced IL-1β production by bmDCs is
proposed (Figure 11). Finally, S. suis-induced IL-1 plays a beneficial role during the systemic infection
by initiating the inflammatory cascade involved in bacterial control and clearance, and this regardless
of SLY production. Consequently, this study will help to better understand the underlying mechanisms
involved in S. suis-induced inflammation and disease.
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Figure 11. Proposed model of the mechanisms involved in SLY-negative virulent S. suis
strain 89-1591-induced IL-1β production by bmDCs. Bacterial recognition by bmDCs requires
MyD88-dependent signaling and partial involvement of TLR2 via recognition of lipoproteins (LPs).
Following internalization, bacterial DNA and RNA can also induce IL-1β production. S. suis recognition
then leads to activation of the NF-κB, MEK and JNK pathways. Finally, activation of the NLRP3 and
AIM2 inflammasomes, the latter by bacterial DNA following elevated internalization, is involved in
caspase-1-dependent processing of IL-1β.
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IFN interferon
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IL-1R interleukin-1 receptor
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JNK c-Jun N-terminal kinase
LP lipoprotein
LTA lipoteichoic acid
MAPK mitogen-activated protein kinase
MEK1/2 mitogen-activated protein kinase 1/2
MyD88 myeloid differentiation primary response 88
NF-κB nuclear factor kappa B
NLR NOD-like receptor
NLRC NLR family CARD domain-containing protein
NLRP NLR family pyrin domain-containing
NOD nucleotide oligomerization domain
PCR polymerase chain reaction
p.i. post-infection
PRR pattern recognition receptor
p38 p38 mitogen-activated protein kinase
SLY suilysin
ST sequence type
THA Todd Hewitt broth agar
THB Todd Hewitt broth
TLR Toll-like receptor
TRIF TIR-domain-containing adapter-inducing interferon-β
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