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Abstract: Classical swine fever (CSF) is a highly contagious viral disease of pigs, including wild
boar. It is regarded as one of the major problems in the pig industry as it is still endemic in many
regions of the world and has the potential to cause devastating epidemics, particularly in countries
free of the disease. Rapid and reliable diagnosis is of utmost importance in the control of CSF. Since
clinical presentations of CSF are highly variable and may be confused with other viral diseases in
pigs, laboratory diagnosis is indispensable for an unambiguous diagnosis. On an international level,
well-established diagnostic tests of CSF such as virus isolation, fluorescent antibody test (FAT), antigen
capture antibody enzyme-linked immunosorbent assay (ELISA), reverse-transcription polymerase
chain reaction (RT-PCR), virus neutralization test (VNT), and antibody ELISA have been described in
detail in the OIE Terrestrial Manual. However, improved CSF diagnostic methods or alternatives
based on modern technologies have been developed in recent years. This review thus presents recent
advances in the diagnosis of CSF and future perspectives.
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1. Introduction

Classical swine fever (CSF), a list-A disease classified by the World Organization for Animal Health
(OIE), is considered as a transboundary animal disease by the Food and Agriculture Organization of the
United Nations (FAO) [1]. The disease causes high morbidity and mortality in both feral and domestic
pigs and can result in significant economic losses to the swine industry worldwide [2]. Currently,
it is present in many countries in Asia, the Caribbean islands, Africa, and South and Central America
(Figure 1). It is most likely to be introduced to CSF-free countries through inadvertent or deliberate
importation of classical swine fever virus (CSFV) infected animals, animal products, and animal
feed [2,3].

Classical swine fever virus (CSFV) is the etiologic agent of CSF and belongs to the genus Pestivirus
in the Flaviviridae family [4]. The genome of CSFV is a positive single-strand RNA of about 12.3 kb.
It contains untranslated regions at 5′ and 3′ ends and a single large open reading frame (ORF). The ORF
codes four structural (C, Erns, E1, and E2) and eight nonstructural viral proteins (Npro, p7, NS2,
NS3, NS4A, NS4B, NS5A, and NS5B) [5,6]. Based on the nucleotide sequences of 5′-non-translated
region (5′-NTR) and glycoprotein E2, CSFVs are divided into three genotypes and 11 sub-genotypes
(1.1–1.4, 2.1–2.3, and 3.1–3.4) [7–9]. As reported, CSFV genotype 2.1 and genotype 2.3 caused the more
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recent outbreaks in Europe [10]. Sub-genotypes 1.1, 2.1, 2.2, and 2.3 are prevalent in Asia [11], while
sub-genotypes 3.1-3.4 are distributed in other separated geographic regions [1,12–14].
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Figure 1. Global distribution of classical swine fever (CSF) epidemics, 2020. Map based on data from 
CABI Invasive Species Compendium. Wallingford, UK: CAB International. Available online: 
www.cabi.org/isc (accessed on 05292020). In addition, we also incorporated the most current CSF 
epidemic information (disease present in Japan and Romania) from OIE, 2020. 
https://www.oie.int/animal-health-in-the-world/official-disease-status/classical-swine-fever/map-of-
csf-official-status/ Names of countries with CSF are given in the map. 
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Figure 1. Global distribution of classical swine fever (CSF) epidemics, 2020. Map based on data from
CABI Invasive Species Compendium. Wallingford, UK: CAB International. Available online: www.
cabi.org/isc (accessed on 05292020). In addition, we also incorporated the most current CSF epidemic
information (disease present in Japan and Romania) from OIE, 2020. https://www.oie.int/animal-
health-in-the-world/official-disease-status/classical-swine-fever/map-of-csf-official-status/ Names of
countries with CSF are given in the map.

Traditional diagnostics for CSF include clinical signs, pathological findings, and antigen and
antibody detection [15]. Although unique clinical and pathological observations such as “button”
ulcers in the cecum and large intestine mucosa may be found exclusively in CSF, other clinical signs and
pathological findings in pigs infected with CSFV are highly variable and are often similar to that of other
viral diseases of pigs, such as African swine fever, pseudorabies, porcine dermatitis, and nephropathy
syndrome (PDNS), post-weaning multisystemic wasting syndrome (PMWS), thrombocytopenic
purpura, and various septicemic conditions [16]. Thus, laboratory diagnosis of CSF for detection of the
specific CSFV antigen and antibody is indispensable [15,16]. The well-established diagnostic methods
of CSF such as virus isolation, fluorescent antibody test (FAT), antigen capture antibody enzyme-linked
immunosorbent assay (ELISA), reverse-transcription polymerase chain reaction (RT-PCR), virus
neutralization test (VNT), and antibody ELISA (Table 1) have been widely used and well described in
the OIE Terrestrial Manual [17]. Recently developed techniques and alternatives have made significant
improvements in several key components of CSF diagnosis, including less sample and reagents
required, less effort and time needed, increased detection efficiency (multiplexing), ease of performing
and disposal, automation, and point of care (POC). This review provides an updated overview on
laboratory diagnosis of CSF and future perspectives.

www.cabi.org/isc
www.cabi.org/isc
https://www.oie.int/animal-health-in-the-world/official-disease-status/classical-swine-fever/map-of-csf-official-status/
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Table 1. Well-established CSF diagnostic methods and their application.

Method Application Advantages Disadvantages

Virus Isolation

Confirmation of clinical cases; Making
virus collections; May be used for
individual animal freedom from

infection prior to movement

“reference standard"; Very
sensitive; Indicates active

infection

Work intensive and
time consuming;

Requires specialized
microscope and

expertise

FAT 1 Confirmation of clinical cases
Quick and direct

visualization of antigens in
tissue

Requires specialized
equipment, expertise,
and confirmatory test

Antigen-capture
ELISA 2

Population infection-free status; May be
used for confirmation of clinical cases

Fast, does not require
specialized equipment and
suitable for herd screening

Low sensitivity;
Cross-reactivity with

other Pestiviruses

RT-PCR 3

Confirmation of clinical cases;
Prevalence of infection surveillance;

May be used for population or
individual animal freedom from

infection prior to movement

Fast, sensitive, and specific

Specialized equipment;
Possibility for false

negative results due to
sample degradation

VNT 4

Individual animal infection-free status
prior to movement; Prevalence of

infection-surveillance; Immune status in
individual animals or populations
post-vaccination; Confirmation of

clinical cases; May be used for
population freedom from infection

Gold standard for
sensitivity and specificity

Work intensive and
time consuming;

Requires specialized
microscope and

expertise

Antibody
ELISA

Population freedom from infection;
Individual animal freedom from

infection prior to movement; Prevalence
of infection-surveillance; Immune status

in individual animals or populations
post-vaccination

Fast, does not require
specialized equipment and
suitable for herd screening

Cross-reactivity with
other Pestiviruses

Note: Table adapted from Table 1 in 2019 OIE Terrestrial Manual [17]; 1 Fluorescent antibody test; 2 Enzyme-linked
immunosorbent assay; 3 Reverse-transcription polymerase chain reaction; 4 Virus neutralization test.

2. Antigen Detection

2.1. Virus Isolation

Virus isolation in cell culture is the oldest laboratory technique for detecting CSFV. Porcine
kidney cell lines (PK-15 and SK-6) are often used for isolation of CSFV [17]. However, the use of
other porcine cells including swine primary cells (pulmonary alveolar macrophages and peripheral
blood mononuclear cells) may enhance the chances of obtaining different CSFVs with different growth
characteristics. Since CSFV does not cause a cytopathic effect (CPE), the growth of CSFV in the cells is
usually visualized by using immunological technologies with fluorescent or horseradish peroxidase
(HRF)-conjugated antibodies [17–19].

The cell culture, virus propagation, and staining are labor intensive and time-consuming (weeks).
In addition, skilled and experienced personnel and adequate facilities are needed for cell culture,
handling CSFVs and accurate interpretation of the CPE. These disadvantages make virus isolation less
attractive for mass surveillance or rapid diagnosis. However, virus isolation is still considered the
“gold standard” for confirming CSF clinical cases and the only method for making virus collections
(Table 1).

2.2. Fluorescence Antibody Test (FAT)

FAT is the commonly used staining method for CSFV detection. It utilizes fluorescein isothiocyanate
(FITC) labeled antibodies to detect CSFV proteins in the slices of cryostat (frozen) tissues or fixed cells.
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Anti-CSFV gamma-globulins prepared from specific pathogen-free pigs are recommended to be used.
These globulins can ensure that most variant CSFVs will be captured. The differentiation of CSFV from
other pestiviruses in FAT positive samples, especially bovine viral diarrhea virus (BVDV) and border
disease virus (BDV), can be done using RT-PCR with genetic typing or virus isolation in cell culture
with specific monoclonal antibody (mAb) typing [17,19].

The main advantages of FAT are that it is relatively easy and rapid to perform and allows direct
visualization of the CSFVs in stained tissues. Therefore, it is useful for a first laboratory investigation
in suspected clinical cases (Table 1). Several FITC conjugated anti-CSFV antibodies (polyclonal or
monoclonal) for FAT are commercially available for research purposes, such as those from Creative
Diagnostics, Bioss Inc., Biorbyt LLC, and so on. However, FAT requires highly specialized equipment
(i.e., fluorescent microscope) and immunohistochemical staining expertise. It is only recommended to
be used in laboratories that have the expertise of performing this technique. The novel ViewRNA in
situ hybridization method can detect CSFV RNA directly in infected cells [20]. Using RNA in an in situ
hybridization method and specific probes of CSFV RNA, the relative location of CSFV RNA can be
visualized in PK15 cells. The sensitivity of this method was three to four orders of magnitude higher
than that of FAT. The specificity experiment showed that it was highly specific for CSFV (sub-genotypes
1.1, 2.1, 2.2, and 2.3) and without cross-reaction with other pestiviruses including BVDV, porcine
parvovirus (PPV), porcine pseudorabies virus (PRV), and porcine circovirus II (PCV-2). This assay has
the potential to be used for testing for CSFV in cells. However, it remains to be determined whether
this method can be used to detect CSFV in swine tissues and it is still expensive and is not commercially
available yet.

2.3. Antigen-Capture ELISA

Antigen-capture ELISA uses anti-CSFV antibodies on an ELISA plate to capture the CSFV
proteins [21]. It has been developed for the rapid screening of large numbers of pigs with clinical
suspicion of CSFV infection [15,17,21–23]. Commercial antigen-capture ELISA kits are available
from several commercial vendors including IDEXX Laboratories, Thermo Fisher Scientific, MEDIAN
Diagnostics, and so on. These kits are double-antibody-sandwich (DAS)-based ELISA for detecting
CSFV E2 or Erns protein in serum, blood, plasma, or tissue extracts (Table 2).

Antigen-capture ELISA is fast (provides results within 4 h), easy to perform, and does not require
specialized equipment. It can be applied at a herd level for confirmation of clinical cases or determining
infection-free population status (Table 1). However, its sensitivity and specificity are lower than most
of the other diagnostics, especially the real-time RT-PCR. It is not recommended for testing individual
animals and has been increasingly discouraged in recent years.
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Table 2. List of representatives of commercially available CSF antigen-capture ELISA kits/reagents.

Name Producer Test Principle Suitable Sample Materials DIVA Potential Web Site

IDEXX CSFV Ag
Serum Plus

IDEXX
Laboratories, Inc.

DAS ELISA test
Erns Serum, plasma, tissue Yes https://www.idexx.com/en/livestock/livestock-tests/swine-tests/

idexx-csfv-ag-serum-plus-test/

PrioCHECK™ CSFV
Antigen ELISA kit

Thermo Fisher
Scientific, Inc. DAS ELISA test E2

Serum, blood, plasma,
leukocyte concentrate, tissue

extract
No https://www.thermofisher.com/order/catalog/product/7610047?

SID=srch-srp-7610047#/7610047?SID=srch-srp-7610047

VDPro®CSFV AG
ELISA

MEDIAN
Diagnostics Inc. DAS ELISA test E2 Cell cultures, leukocyte

concentrate, tissue extract No http://www.mediandiagnostics.com/eng/es-csf-02.php

Note: DAS, Double-antibody-sandwich; ELISA, enzyme-linked immunosorbent assay; DIVA, differentiate infected from vaccinated animals.

https://www.idexx.com/en/livestock/livestock-tests/swine-tests/idexx-csfv-ag-serum-plus-test/
https://www.idexx.com/en/livestock/livestock-tests/swine-tests/idexx-csfv-ag-serum-plus-test/
https://www.thermofisher.com/order/catalog/product/7610047?SID=srch-srp-7610047#/7610047?SID=srch-srp-7610047
https://www.thermofisher.com/order/catalog/product/7610047?SID=srch-srp-7610047#/7610047?SID=srch-srp-7610047
http://www.mediandiagnostics.com/eng/es-csf-02.php
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2.4. Real-Time Reverse Transcription Polymerase Chain Reaction (Real-Time RT-PCR)

Real-time RT-PCR has now replaced the traditional RT-PCR and has become an essential tool
in the routine diagnosis of CSFV [24–26]. It is a suitable approach for confirmation of clinical cases
and prevalence of infection surveillance for CSF (Table 1). Several commercial real-time RT-PCR kits
are available for rapid and specific detection of CSFV RNA, including IDEXX RealPCR CSFV RNA
Mix, virotype® CSFV RT-PCR Kit, CSFV dtec-RT-qPCR Test, ADIAVET™ CSF REAL TIME, CSFV
genesig® Advanced and standard kits, and so on (Table 3). These kits use either SYBR green or TaqMan
probe to detect the accumulation of amplicon during the exponential phase of the reaction, which can
specifically and sensitively test the CSFV in serum, blood, plasma, viral culture, tissue, or swabs.

The disadvantages of real-time RT-PCR are its high cost and complexity due to simultaneous
thermal cycling and fluorescence detection, false positives caused by laboratory contamination from
polluted specimens or equipment, and false negatives caused by PCR inhibitors in the sample or
degraded RNA [27]. The improved real-time RT-PCRs and advanced alternatives have been designed to
help resolve these issues. One-step and automated RT-PCRs can reduce the risk of contamination [27–29].
The primer-probe energy transfer RT-PCR assay provides a higher specificity by analyzing the melting
curve following PCR amplification [30,31]. The loop-mediated isothermal amplification (LAMP) assay
can accumulate the CSFV amplicon under isothermal conditions [32–34]. The functionalized gold
nanoparticles were developed as nanoflare probes for rapid detection of CSFV without nucleic acid
amplification [35].

Multiplex real-time RT-PCR as a powerful technique has expanded exponentially in the diagnosis
of CSF in recent years. It is quite useful and convenient for quick and accurate detection of different
pathogens in mixed infections, which is common in swine production systems. Multiplex RT-PCR
assays for rapid detection and genotyping of CSFVs [36,37], simultaneous detection, and differentiation
of common swine viruses [38–41] have been developed. Additionally, multiplex combined
high-throughput molecular diagnostic platform, user-friendly electronic microarray, magnetoelastic
sensor, and microfluidic detection systems were developed as potential alternatives for detection and
surveillance of CSFV infection [42–46]. These assays can save considerable time and effort without
compromising robustness and sensitivity and can reduce the sample and reagent requirement as well.
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Table 3. List of representatives of commercially available CSF Real-time RT-PCR kits/reagents.

Name Producer Test Principle Suitable Sample Materials Web Site

ADIAVET™ CSF
REAL TIME BioMérieux Real-time RT-PCR

test CSFV RNA
Serum, blood, viral culture,

tissue
https://www.biomerieux-nordic.com/csfv-

classical-swine-fever

CSFV dtec-RT- qPCR
Test Genetic PCR solutions™ Real-time RT-PCR

test CSFV RNA
Serum, plasma, blood, viral

culture, tissue
http://www.geneticpcr.com/index.php/en/

pathogen-r-d-qpcr/classical-swine-fever-virus

CSFV genesig®Kits PrimerdesignTM Ltd
Real-time RT-PCR

test CSFV RNA
Serum, plasma, blood, viral

culture, tissue
https://www.genesig.com/products/9770-classical-

swine-fever-virus

CSFV Real Time
RT-PCR Kit Creative Biogene Real-time RT-PCR

test CSFV RNA Serum, plasma, tissue
https://www.creative-biogene.com/Classical-

Swine-Fever-Virus-CSFV-Real-Time-RT-PCR-Kit-
PDAS-AR002-1290596-88.html

Classical swine fever
virus detection kits Bioingentech Ltd Real-time RT-PCR

test CSFV RNA
Serum, blood, viral culture,

tissue
https://www.kitpcr.com/pcr-kit/classical-swine-

fever-virus-detection-kits/

IDEXX RealPCR CSFV
RNA Mix IDEXX Laboratories, Inc. Real-time RT-PCR

test CSFV RNA
Serum, plasma, blood, viral

culture, tissue
https://www.idexx.com/en/livestock/livestock-

tests/swine-tests/realpcr-csfv/

virotype®CSFV
RT-PCR Kit Indical Bioscience, GMBH Real-time RT-PCR

test CSFV RNA
Serum, plasma, blood, viral

culture, tissue https://www.indical.com/products/assays/

Note: RT-PCR, reverse-transcription polymerase chain reaction.

https://www.biomerieux-nordic.com/csfv-classical-swine-fever
https://www.biomerieux-nordic.com/csfv-classical-swine-fever
http://www.geneticpcr.com/index.php/en/pathogen-r-d-qpcr/classical-swine-fever-virus
http://www.geneticpcr.com/index.php/en/pathogen-r-d-qpcr/classical-swine-fever-virus
https://www.genesig.com/products/9770-classical-swine-fever-virus
https://www.genesig.com/products/9770-classical-swine-fever-virus
https://www.creative-biogene.com/Classical-Swine-Fever-Virus-CSFV-Real-Time-RT-PCR-Kit-PDAS-AR002-1290596-88.html
https://www.creative-biogene.com/Classical-Swine-Fever-Virus-CSFV-Real-Time-RT-PCR-Kit-PDAS-AR002-1290596-88.html
https://www.creative-biogene.com/Classical-Swine-Fever-Virus-CSFV-Real-Time-RT-PCR-Kit-PDAS-AR002-1290596-88.html
https://www.kitpcr.com/pcr-kit/classical-swine-fever-virus-detection-kits/
https://www.kitpcr.com/pcr-kit/classical-swine-fever-virus-detection-kits/
https://www.idexx.com/en/livestock/livestock-tests/swine-tests/realpcr-csfv/
https://www.idexx.com/en/livestock/livestock-tests/swine-tests/realpcr-csfv/
https://www.indical.com/products/assays/
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2.5. Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) is a highly sensitive method for generating sequence data and
exploring the genetic characters of infectious agents. It has been extensively applied to metagenomics
and whole-genome sequencing of infectious viral diseases of livestock [47,48]. By using NGS, researchers
found that there might be a long-term persistence of genotype 2.3 CSFV strains in wild boar in
Germany [49]. By analyzing NGS data of CSFV isolates of varying virulence in infected pigs, higher
quasispecies diversity and more nucleotide variability were found in viral samples from pigs infected
with the highly virulent isolates compared to samples of pigs infected with low and moderately
virulent isolates [50]. Evolutionary changes in virus populations following the challenge of naïve and
vaccinated pigs with the highly virulent CSFV strain were studied using the NGS technology and this
study found that vaccination imposes a strong selective pressure on CSF viruses that subsequently
replicate within the vaccinated animals [51].

The complete genome sequences obtained from NGS can provide detailed genetic information
for construction of reliable phylogenetic relationships of CSFVs for monitoring the evolution and
transmission patterns during field outbreaks or epidemics of CSF. One phylogenetic analysis using
58 CSFV complete genome sequences from different Asian countries indicated that the circulating
Indian CSFV strains belong to different branches of the 1.1 sub-genotype [52]. These data combined
those obtained from other different diagnostic tests can be used for meta-analysis of CSF prevalence,
which is important for the investigation of CSF prevalence in different regions [52].

Currently, most of the NGS platforms are expensive to establish and require highly skilled
molecular biologists and bioinformaticians. The implementation of NGS is still a challenge and cannot
be used as a routine test for disease diagnosis due to cost and the time required [47,48]. However, with
the novel and emerging sequencing technologies, cost-effective, user-friendly, and portable NGS will
be developed and will act as an effective tool for CSF control and prevention.

3. Antibody Detection

3.1. Virus Neutralization Test (VNT)

VNT is the gold standard for sensitivity and specificity of antibody detection methods. It can
be used for confirmation of clinical cases, prevalence of infection surveillance, evaluation of the
immune status post-vaccination, and the efficacy of CSF vaccines (Table 1) [53–55]. However, VNT is
a work-intensive and time-consuming procedure that requires cell culture and a high-containment
laboratory that can handle infectious CSF virus. In addition, it cannot be automated, thus it is not
suitable for mass analysis of samples [14,26,53–55].

More recently, alternatives have been developed to overcome the disadvantages of VNT.
A neutralizing mAb-based competitive ELISA (cELISA) with emphasis on the replacement of VNT for
C-strain post–vaccination monitoring was developed in our group. The test principle of this cELISA
is that the neutralizing mAb can compete with C-strain vaccine induced neutralizing antibodies in
pig serum to bind the capture antigen C-strain E2 protein. The established cELISA showed 100%
sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval:
100 to 100%) when testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig
sera (n = 70) and showed excellent agreement (Kappa = 0.957) with VNT when testing the pig sera
(n = 139) in parallel. The inhibition rate of serum samples in the cELISA is highly correlated with their
titers in VNT (r2 = 0.903, p < 0.001). The C-strain antibody can be tested in pigs as early as 7 days
post vaccination with the cELISA. This cELISA is a reliable, rapid, simple, safe, and cost-effective
tool for sero-monitoring of C-strain vaccination at a population level [56]. In addition, another group
developed a high-throughput VNT by using the recombinant CSFV possessing a small report tag and
luciferase system. As reported, the VNT titers of the serum can be determined tentatively at 2 days
post-infection (dpi) and are comparable to those obtained by conventional VNTs at 3 or 4 dpi. This
system allows CSF virus growth to be easily and rapidly monitored and enabled the rapid and easy
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determination of the VNT titer using a luminometer, which could be a powerful tool to replace the
conventional VNT as a high-throughput antibody test for CSFV infections [57].

3.2. Antibody ELISA

Antibody ELISA is the quickest, easiest, and most widely used technique for serological diagnosis
and epidemiological investigation of CSF. It is suitable for herd or individual animal CSFV infection
screening, prevalence of infection surveillance, and immune status checking in individual animals or
populations post-vaccination (Table 1). The E2 protein is crucial for inducing an immune response
in the host following CSFV infection [58]. Detection of E2 antibodies in the serum of animals is an
easy and reliable method for monitoring CSFV infection during and after outbreaks and for testing
coverage of immunization after vaccination [59–61].

Several commercial CSF antibody ELISA kits are available including those from Biocheck,
Boehringer Ingelheim, Cusabio Technology LLC, IDEXX Laboratories, ID VET, Indical Bioscience,
iNtRON Biotechnology, Median Diagnostics Inc., Thermo Fisher Scientific, and so on. Most of the
commercial kits are indirect, competitive, or blocking ELISAs based on the detection of envelop
glycoprotein E2 specific antibodies (Table 4). Limitations of these antibody ELISAs are lower specificity
(i.e., cross-reactions with BVDV, BDV, and other pestiviruses) and inability to discriminate animals
vaccinated with conventional attenuated vaccines or E2-based subunit vaccines.
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Table 4. List of representatives of commercially available CSF antibody ELISA kits/reagents.

Name Producer Test Principle Suitable Sample
Materials

DIVA
Potential Web Site

BioChek CSFV E2
Antibody ELISA Biocheck Indirect ELISA test E2

antibodies Serum No https://www.biochek.com/swine-elisa/classical-swine-fever-
antibody-test-kit/

Classical Swine Fever Virus
Antibody(IgG) ELISA Kit

Cusabio
Technology LLC

Indirect ELISA test
CSFV antibodies Serum No https://www.cusabio.com/ELISA-Kit/Classical-Swine-Fever-

Virus-AntibodyIgG--ELISA-Kit-114911.html

IDEXX CSFV Ab IDEXX
Laboratories, Inc.

Blocking ELISA test
CSFV antibodies Serum, plasma No https://www.idexx.com/en/livestock/livestock-tests/swine-tests/

idexx-csfv-ab-test/

ID Screen©Classical Swine
Fever E2 Competition ID VET Competitive ELISA

test E2 antibodies Serum, plasma No https://www.id-vet.com/produit/id-screen-classical-swine-
fever-e2-competition/

LiliF™ Classical Swine Fever
virus Ab rapid test kit

iNtRON
Biotechnology, Inc.

Lateral flow
immuno-chromatographic

assay test CSFV
antibodies

Blood No
https://intronbio.com:6001/intronbioen/product/product_view.

php?PRDT_ID=1891&page=1&Scate1=2&Scate2=2&Scate3=4&
Scate4=16&Scate5=1&Scate6=-91-&Sword=

Pigtype CSFV Erns ELISA Indical Bioscience,
GMBH

Double-antigen ELISA
test Erns antibodies Serum, plasma Yes https://www.indical.com/products/assays/

PrioCHECK™ Porcine CSFV
Ab 2.0 strip kit

Thermo Fisher
Scientific, Inc.

Blocking ELISA (E2
antibodies) Serum, plasma No https://www.thermofisher.com/order/catalog/product/7610600?

SID=srch-srp-7610600#/7610600?SID=srch-srp-7610600

PrioCHECK™ CSFV
Antibody ELISA kit

Thermo Fisher
Scientific, Inc.

Blocking ELISA test
E2 antibodies Serum, plasma No https://www.thermofisher.com/order/catalog/product/7610046#

/7610046

PrioCHECK™ CSFV Erns
Antibody ELISA Kit

Thermo Fisher
Scientific, Inc.

Blocking ELISA test
Erns antibodies Serum Yes https://www.thermofisher.com/order/catalog/product/7610370#

/7610370

SVANOVIR®CSFV-Ab Boehringer
Ingelheim

Indirect ELISA test E2
antibodies Serum No https://www.svanova.com/products/porcine/pp031.html

VDPro®CSFV
AB C-ELISA

Median
Diagnostics Inc.

Blocking ELISA test
E2 antibodies Serum No http://www.mediandiagnostics.com/eng/es-csf-02.php

VDPro® CSFV
Erns Ab b-ELISA

Median
Diagnostics Inc.

Blocking ELISA test
Erns antibodies Serum Yes http://www.mediandiagnostics.com/eng/es-csf-02.php

Classical Swine Fever Virus
Antibodies Rapid Test Kit

Antibodies-online
Inc

Sandwich GICA test
CSFV antibodies Blood, serum No https://www.antibodies-online.com/kit/5708730/Classical+

Swine+Fever+Virus+Antibodies+Rapid+Test+Kit/

Note: GICA, Gold Immunochromatography Assay; ELISA, enzyme-linked immunosorbent assay.

https://www.biochek.com/swine-elisa/classical-swine-fever-antibody-test-kit/
https://www.biochek.com/swine-elisa/classical-swine-fever-antibody-test-kit/
https://www.cusabio.com/ELISA-Kit/Classical-Swine-Fever-Virus-AntibodyIgG--ELISA-Kit-114911.html
https://www.cusabio.com/ELISA-Kit/Classical-Swine-Fever-Virus-AntibodyIgG--ELISA-Kit-114911.html
https://www.idexx.com/en/livestock/livestock-tests/swine-tests/idexx-csfv-ab-test/
https://www.idexx.com/en/livestock/livestock-tests/swine-tests/idexx-csfv-ab-test/
https://www.id-vet.com/produit/id-screen-classical-swine-fever-e2-competition/
https://www.id-vet.com/produit/id-screen-classical-swine-fever-e2-competition/
https://intronbio.com:6001/intronbioen/product/product_view.php?PRDT_ID=1891&page=1&Scate1=2&Scate2=2&Scate3=4&Scate4=16&Scate5=1&Scate6=-91-&Sword=
https://intronbio.com:6001/intronbioen/product/product_view.php?PRDT_ID=1891&page=1&Scate1=2&Scate2=2&Scate3=4&Scate4=16&Scate5=1&Scate6=-91-&Sword=
https://intronbio.com:6001/intronbioen/product/product_view.php?PRDT_ID=1891&page=1&Scate1=2&Scate2=2&Scate3=4&Scate4=16&Scate5=1&Scate6=-91-&Sword=
https://www.indical.com/products/assays/
https://www.thermofisher.com/order/catalog/product/7610600?SID=srch-srp-7610600#/7610600?SID=srch-srp-7610600
https://www.thermofisher.com/order/catalog/product/7610600?SID=srch-srp-7610600#/7610600?SID=srch-srp-7610600
https://www.thermofisher.com/order/catalog/product/7610046#/7610046
https://www.thermofisher.com/order/catalog/product/7610046#/7610046
https://www.thermofisher.com/order/catalog/product/7610370#/7610370
https://www.thermofisher.com/order/catalog/product/7610370#/7610370
https://www.svanova.com/products/porcine/pp031.html
http://www.mediandiagnostics.com/eng/es-csf-02.php
http://www.mediandiagnostics.com/eng/es-csf-02.php
https://www.antibodies-online.com/kit/5708730/Classical+Swine+Fever+Virus+Antibodies+Rapid+Test+Kit/
https://www.antibodies-online.com/kit/5708730/Classical+Swine+Fever+Virus+Antibodies+Rapid+Test+Kit/
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4. Differentiation of Infected from Vaccinated Animals (DIVA) Diagnostic Methods

4.1. Genetic DIVA

The rationale of genetic DIVA (differentiation of infected from vaccinated animals) is the
identification of genetic differences between vaccine strains and wild-type CSFVs. Both traditional
RT-PCR and real-time RT-PCR (single-plex or multiplex)-based CSF genetic DIVA systems have been
developed and evaluated [62–69]. Multiplex nested RT-PCR and real-time RT-PCR assays have been
developed for differential detection of wild-type virus from C-strain vaccine [62–68]. A one-step
RT-PCR using TaqMan minor-groove-binding (MGB) probes was developed to distinguish between
attenuated Korean LOM and wild-type strains of CSFV in Korea [69]. A simple RT-PCR based on
the T-rich insertions in CSFV genome was developed for rapid differentiation of wild-type and at
least three attenuated lapinized vaccine strains [70]. The modified genotype 1.1 (including C-strain)
real-time RT-PCR assay with a real-time RT-PCR assay that detects all known CSFV strains has been
successfully used to distinguish C-strain vaccine from the circulating field strains that do not belong to
genotype 1 [71].

The genetic DIVA approach facilitates a rapid and reliable differentiation of field virus infected
from live attenuated virus vaccinated domestic pigs and wild boars. It is especially useful for detection
of the infected animals that are incompletely protected by vaccination and will play a critical role for
making decisions prior to and during cessation of a control strategy that employs vaccination with
CSF live vaccines.

4.2. Serological DIVA

The ideal serological DIVA test has the ability to discriminate antibodies induced by CSFV infection
from the vaccine-derived antibodies, so it can rule out CSFV infected pigs from vaccinated pigs [72].
This can be obtained by detection of specific antibodies against antigens or epitopes that are modified
or lacking in a subunit or marker vaccine. It has been shown that antibodies to Erns can be used as an
indicator of CSFV infection in pigs and the Erns-based ELISA can be used as a companion diagnostic
test to identify CSFV-infected pigs vaccinated with the E2-based subunit or marker vaccines [73–76].
Currently, two Erns ELISAs are commercially available and have been evaluated as accompanying DIVA
diagnostic tools for E2 subunit vaccines, CP7_E2alf, or similar chimeric vaccines. One is prioCHECK
CSFV Erns (Thermo Fisher Scientific, Waltham, MA, USA); the other is pigtype CSFV Erns Ab (Indical
Bioscience, GMBH, Leipzig, Germany) (Table 4). Published data on their evaluations showed that
prioCHECK CSFV Erns has a sensitivity of 90–98% with sera from CSFV infected domestic pigs and a
specificity of 89–96% with sera from vaccinated domestic pigs [77]. In combination with the marker
vaccine “CP7_E2alf”, pigtype CSFV Erns Ab has a sensitivity of 90.2% and a specificity of 93.8% [78].
However, cross-reactivity with antibodies against other pestiviruses was observed for these two Erns

ELISAs [77,78]. Depending on the represented data, these two Erns ELISAs are recommended to be
used on a herd basis and not for diagnostic analysis on samples of single animals.

Additional approaches or alternatives are undergoing development or further optimization.
These include the multiplex microsphere immunoassay [79], which is capable of discrimination
within epitope-specific antibody populations [80] and the indirect Erns antibody ELISA with Pichia
pastoris-expressed Erns [81]. Recently, our research group successfully generated a mAb against Erns,
which can specifically recognize C-strain, but not react with wild-type CSFVs or other viruses in the
genus Pestivirus. A cELISA was developed in our group based on the strategy that the C-strain-specific
mAb will compete with the C-strain vaccine-induced antibodies in pig serum to bind the capture
antigen (C-strain Erns) [unpublished data]. Different from the CSFV neutralizing monoclonal anti-E2
antibody based cELISA for sero-monitoring of C-strain vaccination at a population level [56], this novel
anti-Erns mAb-based cELISA is a valuable tool for measuring and differentiating immune responses
to C-strain vaccination and/or infection in pigs. The data about the establishment and validation of
this C-strain specific cELISA will be published separately at a later date. In brief, suitable tools for
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serological DIVA are available. However, there is room for improvement, especially with respect to
cross-reactivity issues.

5. Point-of-Care (POC) Diagnostics

User-friendly, cost-effective, rapid, and reliable POC diagnostics (i.e., diagnosis of diseases directly
on-site) are indispensable tools for immediate decisions of effective and evidence-based disease control
strategies [82]. For example, dipstick tests are designed to use thin paper/plastic strips coated with
specific antiviral antibodies to detect viral antigens in serum and other body fluids. Lateral flow
assays (LFA) and microfluidic devices are two different and yet more complex technologies that
are also based on the biochemical interaction of antigen–antibody. The principles for these three
immunochromatographic assays are the same as sandwich ELISA and the major difference between
them is that the immunological reaction is carried out on different platforms for different assays. POC
studies in animal health management are rare compared to human and companion animal medicine.
The immunochromatographic assay-based kits including Antigen Rapid Test Kit (Ring Biotechnology
Co., Ltd., Beijing, China), LiliF™ CSFV antibody rapid test kit (iNtRON Biotechnology, Inc., Gyeonggi,
South Korea), and CSFV Antibodies Rapid Test Kit (Antibodies-online Inc., Limerick, PA, USA) are
commercially available for rapid testing of CSFV antigen or antibodies in the field. Laboratory-based
assays, including the loop-mediated isothermal amplification, combined with a lateral flow dipstick
assay [83], the immunochromatographic strip [84], and duplex lateral flow assay [85] have been
investigated as potential CSF POC tools as well.

POC diagnostics showed advantages in rapidity and portability, which are the most important
parameters considered by farmers and veterinarians [86]. It is foreseeable that as interests and
needs of stakeholders increase and new portable POC technologies emerge, novel and applicable
POC diagnostics will be developed for detection, control, and prevention of CSF in the field in the
near future.

6. Future Perspectives

Although commercial and in-house diagnostics (antigen detection and antibody detection) of
CSF are available, there is still room for improvement. The authors suggest that the following aspects
should be considered: (i) Continuously improving the sensitivity, specificity, costs, speed, automation,
and POC is necessary; (ii) Reference materials (serum bank, virus bank, and non-infectious molecular
standards) should be produced and be accessible for validation of the developed CSF diagnostics;
(iii) The development of DIVA diagnostics without cross-reaction with antibodies induced by other
pestiviruses is critical.

The other emerging infectious diseases, such as the spreading of African swine fever in Asia
and the ongoing pandemic of Coronavirus disease 2019 (COVID-19), may shift focus away from the
CSF [87,88]. However, as long as CSF exists, it will remain a continuous threat to the pig industry
worldwide. Therefore, international cooperation on surveillance and control of CSF becomes even
more crucial, both currently and in the future. Researchers should continue to work on developing
novel rapid and reliable diagnostics to facilitate the surveillance and control of CSF.
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