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Abstract: Magnetorheological fluids (MRFs) are composite materials made of ferromagnetic particles,
medium oils, and several types of additives. We have developed an actuation system for the fine
haptic control of leader-follower robots. In this study, we developed a haptic interface with two
link-type twin-driven MR fluid actuators and two MR fluid brakes for a teleoperation endoscopic
surgery system and conducted evaluation tests for a remote operational task with a leader-follower
robot system. For evaluations, we adopted the NASA-TLX questionnaire as a subjective assessment
method. According to the experimental results, the total success rates were 0.462, 0.333, and 0.591, for
the first haptic, middle no-haptic, and second haptic phases, respectively. The force information of
the haptic forceps helped users to perceive grasping sensation on their fingers. Statistical analyses on
the answers to the questionnaire indicate no significant differences. However, a decreasing tendency
in the mental stress in the complicated manipulation tasks for fragile objects is observed.

Keywords: magnetorheological fluid; haptic device; teleoperation; endoscopic surgery; MRF actuator

1. Introduction

Many types of remote-controlled systems [1] have been proposed for various envi-
ronments (e.g., handling of radioactive material and underwater robots) [2]. Recently
robot-aided surgical systems with remote-controlled robots [3] are the most successful in
their applications. The control method for the conventional surgical robot is categorized in
a direct control method [1]. In this method, the remote site system follows the motion of
the user interface manipulated by an operator. In this method, the local and remote sites
are called the leader and follower systems, respectively.

The simplest way to accomplish the leader-follower control is via a unilateral control,
in which the reference signals recorded at the leader system are unilaterally sent to the
follower system, without haptic feedback to the leader system. In this method, the total
control system is substantially simple and stable. However, the performance of each task
significantly depends on the skill of the operator. Conversely, bilateral controllers [4,5]
have been utilized to perform force feedback functions in remote-controlled systems. By
adding a force/position feedback loop, the machine can support human skills with gravity
compensation, friction compensation, and better haptic perception while performing a
remote operation task. These functions are very useful in enhancing operational accuracy
and reducing psychological stress from the human operator in very sensitive operations.

Regarding the remote-controlled surgical robot, the unilateral controller has been
used in the most popular surgical robot, da Vinci Surgical System®, with less haptic
feedback for surgeons [6]. For example, evidence of increasing tendencies for concomitant
medical problems in laparoscopic surgeries has been reported [7], and robot-aided surgery
is a solution for safe operations [8]. However, concomitant medical problems have been
reported in such robot-aided surgeries due to unexpected pressure of robotic tools for
target/non target organs [9,10]. In addition, the learning curve of robotic surgery tends to be
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longer than that of other methods [11]. Hence, the haptic feedback function has been heavily
demanded by surgeons to enhance operational functions and reduce psychological stresses.

To address the aforementioned requirements for the haptic feedback, part of recent
surgical robots (e.g., Senhance® Telerobotic System [12]) have been released with the haptic
feedback function on their interfaces. Nevertheless, this haptic information was utilized
to understand situations, such as conflictions of the forceps. However, the fine haptic
feedback for elucidating the existence of organs has not been achieved for the surgical
system. Such functions are beneficial in reducing unexpected pressure on the organs and
avoiding concomitant medical problems. Therefore, establishing a high-performance force
feedback system for remote-controllable robot systems is necessary to enhance operational
accuracy and reduce the psychological stress on operators.

Conventional haptic devices generally use low inertia motors, e.g., coreless motors.
Coreless motors have a high torque-to-inertia ratio, as a suitable characteristic for haptic
devices. However, their directly controllable torque is generally small. To improve the
quality of haptic information in the robotic surgery system, we developed a twin-driven
magnetorheological fluid (MRF) actuator (TD-MRA) [13] as a key component of the haptic
interface. In this actuator, two high-performance MRF clutches [14] are utilized for torque
transmission. MRFs are suspensions of ferromagnetic particles, medium oils, and several
types of additives, and their rheological properties change rapidly, stably, and repeatedly
when magnetic fields are applied [15]. Their dynamic force properties are suitable for their
applications on the fine haptic devices [16].

Fauteux et al. [17] developed a twin-driven MRF actuator using planetary gears,
and Song et al. [18] adopted the same mechanism as a haptic master. The twin-driven
mechanism has been used to reduce the basic friction of actuators, and its low friction
characteristics are suitable for haptic devices. However, it is difficult to balance the frictional
(and viscous) torque of the normal and reverse rotations of the planetary-gear-based
mechanism with the MRF device, owing to the difference in rotational velocity between
the normal and reverse rotations. Hence, our TD-MRA adopted two H-MRCs to reduce
the inertia and friction, as well as a flat gear mechanism to reduce unbalanced torques.
In a previous study [13], we developed two types of TD-MRAs, using belt transmission
(Belt-type TD-MRA) and parallel linkage (Link-type TD-MRA). Although both types have
pros and cons, their torque/inertia ratio was up to 10,000 Nm/kgm2, which is at the
same level as coreless motors. In addition, the maximum direct torque is from several
tenfold to several hundredfolds. In this study, we developed a haptic interface with link-
type TD-MRAs for teleoperation endoscopic surgery systems, including a leader-follower
system. Furthermore, we conducted an evaluation test for a remote operational task with
the developed system. For evaluations, we applied the NASA-TLX [19,20] as a subjective
assessment method, as well as quantitative evaluation on the success rate.

2. Haptic Interface for Tele-Operational Endoscopic Surgery and Leader-Follower Systems

To investigate the effect of the haptic information in teleoperational endoscopic surg-
eries, we developed a haptic interface using the linkage type TD-MRA [13] and specific
structure for the motion of endoscopic operations. In this section, this system is described.

2.1. Basic Structure of the Haptic Interface

Figures 1 and 2 show the haptic interface with the link-type TD-MRAs for the tele-
operation endoscopic surgery systems (H-MRD for ES). The right-hand side of Figure 1
presents the originally developed haptic device. The left-hand side illustrates a commer-
cially available endoscopic simulator. The H-MRD for ES comprises two TD-MRAs, two
additional H-MRCs, a gimbal structure for the roll-pitch-yaw rotation, a linear slider for
insertion, and haptic forceps. The gimbal core is the center of this structure, and it gen-
erates a roll-pitch-yaw motion on a pivot center. One of the TD-MRAs is connected to
the roll axis, while the other TD-MRA is connected to the pitch axis. The yaw axis is a
passive axis connected with a rotational encoder. The linear slider is attached to the yaw
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axis and connected with a H-MRC via a belt-pulley mechanism. This MRC generates a
passive resistant force on the insertion motion. The haptic forceps attached to the linear
slider comprise a potentiometer and another H-MRC for sensing the gripping motion and
generating gripping resistance. The specifications of the H-MRD for ES are listed in Table 1.
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Figure 2. Components of the gimbal and insertion structure of the H-MRD for ES.

Table 1. Specifications of the H-MRD for ES.

Item Value

ROM for roll −30◦–60◦

ROM for pitch −45◦–45◦

ROM for yaw −45◦–45◦

Maximum reaction force on the handgrip 3 N (min)

ROM of gripper −15◦–15◦

Maximum reaction torque for griping 0.64 Nm

2.2. Kinematics and Statics of the Haptic Interface

The transformation from the controlled angle of the actuators to the position of the end-
effector is performed with the kinematics of the mechanism. The left-hand side of Figure 3
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presents the input variables and ground coordinate system (ΣG(OG − xG − yG − zG)) of the
mechanism. The figure on the right-hand side of Figure 3 shows the relationship between
the ground coordinate system and that of the end-effector (ΣE(OE − xE − yE − zE)). The
origin of the ground coordination system (OG) is defined as the center of the gimbal
mechanism, xG in its left-hand direction, and yG as its forward. We also defined the
gimbal fore coordinate system (Σ1(O1 − x1 − y1 − z1)) and the yaw part coordinate system
(Σ2(O2 − x2 − y2 − z2)) as middle coordinate systems. The origins, O1 and O2, are defined
as the same position of OG. The rotational matrix from ΣG to Σ1 is defined as:

GR1(α, β)

=


cos (β)

0

− sin (β)

tan (α) sin (β)
k

tan (β) sin (β)+cos (β)
k

tan (α) cos (β)
k

tan (β)
k

− tan (α)
k

1
k

 (1a)

k =
√

tan2(α) + tan2(β) + 1 (1b)

where, α and β denote the pitch and roll angles, respectively. In this mechanism, the roll
and pitch motions concurrently influence the motion of the gimbal core. After the roll-pitch
motion, the rotational transformation from Σ1 to Σ2 is defined as:

1R2(γ) =

 cos (γ) − sin (γ) 0
sin (γ) cos (γ) 0

0 0 1

 (2)

where, γ denotes the yaw angle. Next, the sliding motion toward the yaw axis from Σ2 to
ΣE is defined as:

2PE(S) =
[

0 0 S0 + S
]T (3)

where, S0 and S represent the initial bias and sliding motions, respectively. Finally, the
position of the end-effector on the ground (GPE(α, β, γ, S) ) can be acquired as:

GPE(α, β, γ, S) = GR1(α, β)1R2(γ)
2PE(S) =

[ GPEx
GPEy

GPEz
]T (4)
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The relationship between the desired reaction forces on the end-effector of the haptic in-
terface, F =

[
Fx Fy Fz

]T , and the output torques of the actuators, τ =
[

τR τP τY
]T ,

is defined as:  τR
τP
τY

 =

 GPExFz − GPEzFx
GPEzFy − GPEyFz

0

 (5)

where, τR and τP represent the output torque of TD-MRA for the roll and pitch, respectively.
The H-MRD for ES has no actuator in the yaw direction because τY is consistently zero.
This is triggered by the assumption that the radius of the virtual forceps is zero.

2.3. Basic Structure of the Follower System

The structure of the robot forceps is shown in Figure 4. The robot forceps was devel-
oped, comprising a liner actuator (DR20T1B02-AZAKR, ORIENTAL MOTOR CO., LTD.,
Tokyo Japan), load cell (LUX-B-50N-ID, KYOWA ELECTRONIC INSTRUMENTS CO.,
LTD., Tokyo Japan), and part of the training forceps (KOTOBUKI Medical). The open-close
force on the tip of the forceps can be measured with the loadcell and fed back to the
haptic gripper.
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Figure 4. Robotic forceps for a single arm surgical robot.

As shown in Figure 5, the robot forceps were installed at the end-effector of a 7 DOF
robot arm (xArm7, UFACTORY, Shenzhen, China) with a six-axis force-moment sensor
(PFS055YA251U6, Leptrino INC., Komoro, Japan). This robot, a single-arm robot for
endoscopic surgery (SAR for ES), was adopted as a follower of the remote-controlled
system. The robot arm is controlled to rotate the robot forceps on a defined pivot point
using the H-MRD for ES. The SAR for ES completely follows the range of motion of the
H-MRD for ES (Table 1).
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2.4. Controller for the Leader-Follower System

Figure 6 illustrates the control system for the H-MRD in which a real-time controller
(NI, PXIe-8821) was used as the main controller with a 1-ms sampling time. The information
from encoders and a potentiometer are measured with a counter board (NI, PXIe-6612)
and an A/D board (NI, PXIe-6355), respectively. The reference signals to the TD-MRAs are
output to the current amplifiers with a D/A board (NI, PXIe-6738). A personal computer
was used as the user interface to input/output information from or to users. The real-time
controller and UI are connected to the TCP/IP communication.

Figure 7 shows the control systems of the SAR. The 7-DOF robot arm was controlled
with a special control box, and the reference signal on the target position/orientation of
the end-effector was sent to the UI via TCP/IP communication. The signals from the
force-moment sensor to the linear actuator on the robot forceps communicate with the UI
computer via serial communications. The analog signals from the loadcell on the robot
forceps were obtained via the A/D converter to the real-time controller and TCP / IP
communication to the UI.

The H-MRD and the SAR were connected in the same LAN environment with the
TCP/IP protocol and the UI computer and constructed as a bilateral control system
(Figure 8). The force reverse type bilateral controller [5] was constructed, in which the
positional signals of the leader system are transformed by Equation (4) and sent to the
follower system. In contrast, the force signals of the follower system are transformed by
Equation (5) and sent to the leader system.
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3. Methods

The effect of the haptic information on the remote-controlled task was assessed by
five healthy young subjects (four males and one female, 20–30 years old) in a picking
task with the leader-follower system (Figure 8). The subjects operated the SAR using the
H-MRD with a vision of a remote-site web camera on a monitor in front of them (Figure 9)
and picked a maximum of five small fragile snacks with an average size of 15 mm, and a
permissible gripping force of 2.6 N. They were asked to pick the objects and manipulate
them from one tray to another tray, with a distance of 150 mm between them (Figure 10).

In the experimental protocol, they were first trained in the operation until they could
pick and place five objects within three minutes using the haptic information. After the
training phases, three measurements were conducted in the following order: H1 (2 min.
with haptics), N (2 min. without haptics), and H2 (2 min. with haptics). To control for
mental/physical stress in the subjects, a time limitation of 2 min. was applied. After every
test, we asked the subjects to answer their subjective assessment with the NASA-TLX
questionnaire [19]. The NASA-TLX divides the workload demands into six components:
(a) mental demand, (b) physical demand, (c) temporal demand, (d) performance, (e) effort,
and (f) frustration [20]. The participants put check marks on scaled bars with 20 scales
from “very low (0)” on the left side to “very high (1)” on the right side. The lengths from
the left side to the checked marks were normalized and evaluated.
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4. Results
4.1. Success Rate

The number of objects that the subjects picked, manipulated (trial number), and
successfully achieved (success number) are presented in Table 2. In this table, the trial
number does not include dropping cases. Failure consisted of breaking the objects. The
total success rates for all subjects were 0.462, 0.333, and 0.591, for H1, N, and H2 conditions,
respectively.

Table 2. Score for the picking task (Success number/Trial number).

Subject (H1) Haptics 1 (N) No Haptics (H2) Haptics 2

A 1/1 3/4 3/5

B 2/4 2/6 3/6

C 1/3 0/3 1/3

D 1/2 1/3 4/4

E 1/3 0/2 2/4

4.2. Subjective Analysis

Table 3 summarizes the answers to the NASA-TLA questionnaire for each item. Aver-
ages and standard deviations of the experimental results for all subjects are also listed in
the table.

Table 3. Scores for the NASA TLX questionnaire (Ave. ± STD.).

Item (H1) Haptics 1 (N) No Haptics (H2) Haptics 2

(a) Mental demand 0.491 ± 0.272 0.710 ± 0.260 0.532 ± 0.348

(b) Physical demand 0.464 ± 0.287 0.643 ± 0.172 0.548 ± 0.251

(c) Temporal demand 0.594 ± 0.324 0.709 ± 0.258 0.499 ± 0.248

(d) Performance 0.492 ± 0.319 0.708 ± 0.179 0.412 ± 0.248

(e) Effort 0.580 ± 0.220 0.749 ± 0.242 0.412 ± 0.140

(f) Frustration 0.416 ± 0.348 0.560 ± 0.277 0.470 ± 0.300
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5. Discussion

The target object used in this experiment was a fragile object, and it was hard to pick
and place this object with the remote-control system without haptics. As presented in
Table 2 and the results of the total success rates, the success rate drops once in the “no
haptic” phase and increases in the second haptic phase. This indicates that the haptic
information successfully assisted the operation skill of the subjects. Many objects (the
difference between “success” and “trial”) were broken because of overload grasping in the
N-phases. The force information of the haptic forceps enabled the subjects to perceive the
grasping sensation on their fingers.

For the subjective assessments, the results of the questionnaire (Table 3) were statis-
tically analyzed between the scores of N- and H2-phases. The results of the paired t-test
present p = 0.390 (mental demand), 0.391 (physical demand), 0.256 (temporal demand),
0.069 (performance), 0.109 (effort), and 0.175 (frustration). Although there are no significant
differences (p < 0.05), the subjective measures exhibit better tendencies in the haptic phase
for all evaluation items. Table 4 presents the average values between N and H1 (N-H1), and
between H2 and H1 (H2-H1) for each item of the questionnaire. The negative values in the
H2-H1 indicate the reduction of mental stress, even after the trials in the no-haptic phase.

Table 4. Scores for the NASA TLX questionnaire (Average for (N-H1) and (H2-H1)).

Item (N-H1) (H2-H1)

(a) Mental demand 0.220 0.041

(b) Physical demand 0.179 0.084

(c) Temporal demand 0.115 −0.095

(d) Performance 0.216 −0.080

(e) Effort 0.172 −0.109

(f) Frustration 0.145 −0.047

6. Conclusions

In this paper, we described the development of a leader-follower type remote-control
system with twin-driven MR fluid actuators. We developed both leader (the H-MRD
for ES) and follower (the SAR for ES) systems to elucidate the teleoperation endoscopic
surgery system. The force-reverse type bilateral controller was constructed between the
leader and follower systems. To assess the effect of the haptic information on the remote
operation task in which users manipulate fragile objects with/without haptic information,
we utilized the NASA-TLX questionnaire as a subjective assessment method. According to
the experimental results, total success rates were improved with the haptic information.
The force information of the haptic forceps enabled users to perceive the grasping sensation
on their fingers. Statistical analyses on the answers of the questionnaire indicate that
no significant differences, except a reducing tendency in the mental stress during the
complicated manipulation tasks with fragile objects.
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