
actuators

Article

Model-Based Observer Design Considering Unequal
Measurement Delays

Yousef Alipouri and Lexuan Zhong *

����������
�������

Citation: Alipouri, Y.; Zhong, L.

Model-Based Observer Design

Considering Unequal Measurement

Delays. Actuators 2021, 10, 281.

https://doi.org/10.3390/act10110281

Academic Editor: Zongli Lin

Received: 8 September 2021

Accepted: 20 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada;
alipouri@ualberta.ca
* Correspondence: lexuan.zhong@ualberta.ca

Abstract: State observers are essential components of a modern control system. It is often designed
based on a mathematical model of the process, thus requiring detailed process knowledge. However,
in the existing state estimation methods, equal delays are commonly assumed for all communication
lines, which is unrealistic and poses problems such as instability and a degraded performance of
observers when unequal time delays exist. In this paper, a design of observers considering the
measurement delays is presented. To deal with this problem, a chain-based observer has been
proposed in which each chain deals with one output delay, performs prediction for the unavailable
output value, and passes it to the next chain. Convergence of each chain observer as well as overall
state estimation were proven. To illustrate the performance of the proposed scheme, simulation
studies were performed on a benchmark continuous stirred tank heater (CSTH) process.

Keywords: model based observer; chain observer; measurement delays; continuous stirred tank
heater; state estimation

1. Introduction

State observers play a key role in process monitoring, control, and automation by
providing estimates of internal state variables using hardware output measurements. Given
a process model, observers can be designed by a large number of available methods such
as high gain [1], Kalman filter [2], sliding mode [3], and so on. Various types of observers
have also been used in the feedback control design in the presence of delays [4,5]. One
of the profound challenges in state estimation is that sensor measurements are often time
delayed from the actual process outputs. The control problem of dynamic systems with
delays has received growing attention in recent years due to novel application areas such
as control over networks [6]. This might also occur due to the slow dynamics of physical
sensors as well as communication delays from measurements transmitted between different
processing units. If these delays are not compensated, they can lead to the performance
degradation of the observers and can have a strong impact on their stability and robustness
properties [7,8]. When designing an observer or controller for a system affected by such
delays, it is often expedient to lump the measurement delay together with any system and
actuation delay, as they are indistinguishable in terms of the ideal closed-loop dynamics of
the system [9]. However, in some cases, it can be advantageous to model the measurement
delays separately from the other delays.

For linear systems, when the system model is available, there exists literature to deal
with equal output delays in state estimation [10–12]. Assuming equal delays for all output
channels is unrealistic due to different communication line lengths or different sensors and
technology types. Hence, the involvement of the delay could be in the communication line,
be multiple, and different for each channel, which, however, has rarely been studied in the
literature. Supposing equal delays will simplify the observer designing step, but can cause
similar problems to ignoring them [13]. Others have assumed the delays on outputs [9,14]
or states [15], which again, is simpler than considering them in the communication line (out
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of the process model). Furthermore, an extension of the available model-based methods to
data-driven methods is not straightforward (if even it is possible). This paper intends to
extend the Luenberger observer design proposed in [16] to account for equal and unequal
measurement delays. Then, the subspace-based approach [17] can similarly be extended to
design a data-driven observer in the presence of equal and unequal communication delays.

In this paper, we assumed that the output variables were measured but with delays.
Furthermore, the delays might be different among the different output variables. Thus,
the receiver node needs to be reconstructed to be compatible with the available data. To
deal with this problem, a chain observer has been proposed in which each chain collects
data, performs prediction, and passes it to the next chain. The chain observer is a common
method to deal with delays in nonlinear systems. The idea of achieving the convergence
of the state estimate by using a cascade of two observers (elementary chain observer)
for a nonlinear system was first proposed in [18], while the idea of using more than two
observers in the chain to deal with large measurement delays was proposed in [19]. In [18],
it was shown that a chain of two observers is sufficient for asymptotic state reconstruction
as long as the measurement delay is below a given threshold, which depends on the
Lipschitz constants of the system. When the time delay exceeds such a threshold, more
links must be added to the chain [19]. Thus, each observer in the chain is in charge of
predicting the system state for a suitable fraction of the total delay. The chain observer
method has also been used for dealing with large measurement delays [7].

In the proposed method, the chain observer was used to deal with the multiple un-
equal measurement delays. It was proven that the proposed chain observer had the desired
stability properties with delay-free measurements, and the design followed a two-step
strategy. First, it obtained the delayed state trajectories using delayed measurements with
the delay-free observer. These delayed state estimates were then used as predictors that
can compensate for the presence of delay. This strategy was shown to converge to true
states. In this paper, the convergence of each chain as well as the overall observer was
proven. This paper shows the development of the chain observer, which holds stability as
well as convergence, along with a new prediction method that is used in each chain.

The main contributions of this paper are as follows:

1. Designing an observer by considering equal measurement delays.
2. Designing a chain observer to deal with unequal measurement delays.
3. Proving the convergence of each chain as well as the overall observer.

The rest of this paper is organized as follows. In Section 2, the preliminaries are
presented. The problem formulation is discussed in Section 3. Section 4 presents the theory
of the proposed Luenberger-based observer for the case of equal and unequal measurement
delays. In Section 5, a simulation through the continuous stirred tank heater (CSTH)
process is used to illustrate the performance of the proposed scheme. The paper ends with
concluding remarks in the final section.

2. Preliminaries of Model-Based (Luenberger) Observer Design

In this section, we present the preliminaries of designing a model-based observer
approach following the work of [17]. Consider a discrete-time LTI (linear time invariant)
system, which is described by

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(1)

where u(k) ∈ Rl, y(k) ∈ Rm, and x(k) ∈ Rn represent process input, output, and state variable
vectors, respectively. Suppose that the pair (C, A) with A ∈ Rn × n, C ∈ Rm × n is observable.
The s (= n)-order observer with the following state and output equations

z(k + 1) = Gz(k) + Hu(k) + Ly(k) ∈ Rs (2)

yˆ(k) = Wz(k) + V y(k) + Qu(k) ∈ Rm (3)
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is asymptotically stable, provided that G is stable (all of its eigenvalues lie within the circle
one) and the observer parameters H, L, Q, W, V satisfy the following Luenberger equations:

T A − GT = LC, H = T B − LD
C = WT + VC, Q = D − VD

G ∈ Rs × s, T ∈ Rs × n, W ∈ Rm × s
(4)

where z(k) is the observer states related to the process states through the transformation
matrix T ∈ Rs × n so that z(k) = Tx̂(k), where x̂(k) is an estimation of true state x(k).

3. Problem Formulation

Sensors and communication networks are an integral part of a data transmission
system. One of the main issues regarding measurements and network transmission is
the presence of delays in each output measurement (say delay τi for output yi). Figure 1
illustrates the communication network and corresponding delays. Due to these delays,
output signals y(k) required for state estimation (2) are not available instantaneously.
Therefore, the objective of this work was to design an observer that utilizes delayed
measurements (i.e., y(k − τ) = [y1(k − τ1) . . . ym(k − τm)]) to estimate z(k). As a special
case, these delays may be equal in all outputs (i.e., τi = d, for i = 1, . . . , m.) First, we
developed an efficient observer scheme in the presence of constant equal measurement
delays. The proposed observer, which deals with equal measurement delays, will have the
form of:

z(k) = Gz(k− d) +
d−1
∑

i=0
Hiu(k− 1− i) + Ly(k− d)

Tx̂(k) = z(k)
(5)

where it utilizes available data until the (k− d)th instant to estimate x(k). The next section
will also propose a novel method to deal with unequal measurement delays using a chain–
observer structure.
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4. The Proposed Observer Design
4.1. Observer Design in the Case of Equal Measurement Delays

In this section, it was assumed that the delays were equal in all outputs (i.e., τi = d,
for i = 1, . . . , m). The following theorem designs an asymptotically stable observer (5) with
the consideration of equal measurement delays when the system model is available. It is
an extension of the Luenberger condition (4) for the case of equal measurement delays.

Theorem 1. Suppose system model (1) is known with equal measurement delay d in all measured
outputs. Furthermore, it is assumed that the pair (C,A) is observable. The observer with the
following state and output equations

z(k) = Gz(k− d) +
d−1
∑

i=0
Hiu(k− 1− i) + Ly(k− d) ∈ Rs

Tx̂(k) = z(k)
(6)

ŷ(k) = Wz(k− d) + Vy(k− d) +
d

∑
i=0

Qiu(k− i) (7)

is asymptotically stable, namely lim
k→∞

(Tx(k)− z(k))→ 0 , and has unbiased estimation for y(k),

that is lim
k→∞

(ŷ(k)− y(k)) = 0, provided the observer parameters defined in Equations (6) and (7)

satisfy the following delayed-Luenberger equations:
State convergence condition:

TAd − GT = LC, Hd−1 = TAd−1B− LD,
Hi = TAiB, i = 0, . . . , d− 2

(8)

Output convergence condition:

CAd = WT + VC, Q0 = D − VD,
Qj = CAj−1B, j = 1,..., d
G ∈ Rs × s, T ∈ Rs × n

(9)

where G should be chosen so that it is stable (i.e., every eigenvalue of G lies within the circle one).
In addition, the closed loop dynamics of estimation error for state and output is reduced to

e(k) = Tx(k)− z(k)
e(k) = Ge(k− d)

y(k)− ŷ(k) = We(k− d).
(10)

Proof. The state equation of Equation (1) can be rewritten as:

x(k) = Ax(k− 1) + Bu(k− 1) (11)

Substituting x(k) from (11) in (1) yields

(k + 1) = A2x(k− 1) + Bu(k) + ABu(k− 1) (12)

Similarly, x(k− 1) can be replaced by Ax(k− 2) + Bu(k− 2), which yields

x(k + 1) = A3x(k− 2) + Bu(k) + ABu(k− 1) + A2Bu(k− 2) (13)

Continuing the above procedure, after d step reaches

(k + 1) = Ad+1x(k− d) +
d

∑
i=0

AiBu(k− 1− i) (14)
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or

x(k) = Adx(k− d) +
d−1

∑
i=0

AiBu(k− 1− i) (15)

The state estimation error is defined as

(k) = Tx(k)− z(k) (16)

Substituting Equations (15) and (6) in Equation (16) gives

e(k) = TAdx(k− d) +
d−1
∑

i=0
TAiBu(k− 1− i)

−Gz(k− d)−
d−1
∑

i=0
Hiu(k− 1− i)− Ly(k− d)

(17)

Now by substitution of TAd − GT = LC, Hd−1 = TAd−1B − LD, Hi = TAiB, and
y(k− d) = Cx(k− d) + Du(k− d), the above equation is reduced to

(k) = Ge(k− d) (18)

The estimation error (18) will converge to zero, provided G is a stable matrix. Perform-
ing similar steps for ŷ(k)− y(k) gives

y(k)− ŷ(k) = We(k− d) (19)

Converging e(k) to zero proves relation (10). Thus, the proof of Theorem 1 is completed. �

Remark 1. The matrix G can be defined as follows:

G =
[

G0 g
]
, g =


g1
...

gs−1
gs

, G0 =


0 0 · · · 0
1 0 · · · 0
...

. . . . . . . . .
0 · · · 1 0
0 · · · 0 1

 (20)

then, the designed observer poles are roots of polynomial function xs−gsxs−1−···−g1 = 0. Therefore,
to have the desired performance, one can select proper poles and determine the corresponding
polynomial function coefficients (gi for i = 1,..., s).

4.2. Observer Design in the Case of Unequal Delays

This section considers the extension of the proposed observers (6) and (7) to deal with
unequal measurement delay. The proposed observer consists of m chain–observers, each
one being in the form of (6) and (7). Without loss of generality, let τ1 ≤ τ2 ≤ · · · ≤ τm
and define d1 = τ1, di = τi − τi−1, i = 2, . . . , m. Before explaining the proposed approach
of designing the observer considering unequal delay, a theorem that provides stability
conditions for a system with multiple delays is presented. This theorem is an extension to
the single delay case, which was presented in [20]. The result of this theorem enables us to
design an observer with the convergence property.

Theorem 2. Suppose the system model with the assumption ‖A0‖2 6= 0, is given by

x(k + 1) = A0x(k) +
N

∑
j=1

Ajx
(
k− dj

)
(21)
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where N is the value of time delays. Then, it is asymptotically stables if there exists a real symmetric
matrix P > 0 so that:

(1 + εm)AT
0 PA0 + N

(
1+εm

εm

) N
∑

j=1
Aj

T PAj − P < 0

εm =

(
N

N
∑

j=1
‖Aj‖2

2

) 1
2

‖A0‖−1
2

(22)

where‖Ψ2‖ =
√

λmax(ΨTΨ)

Proof. See Appendix A. �

Remark 2. When ‖A0‖2 = 0, system model (21) can be rewritten as

x(k + 1) =
N
∑

j=1
Ajx

(
k− dj

)
= A1x(k− d1) +

N
∑

j=2
Ajx

(
k− dj

) (23)

Now, define a new variable as x′(k) = x(k− d1). Then, the augmented model becomes[
x(k + 1)
x́(k + 1)

]
=

[
0 0
0 A1

][
x(k)
x́(k)

]
+

N
∑

j=2

[
Aj 0
0 0

][
x
(
k− dj

)
x́
(
k− dj

) ]
(24)

or

x(k + 1) = A0x(k) +
N

∑
j=2

Ajx
(
k− dj

)
(25)

where x(k) =

[
x(k)
x́(k)

]
, A0 =

[
0 0
0 A1

]
, and Aj =

[
Aj 0
0 0

]
. Then, Theorem 2 can be

applied for stability analysis of (25).

Suppose that due to different sensors or measurement techniques or communication
topologies, each output measurement is received with a delay that may be different from
delays in other output channels. Therefore, in order to estimate the state x(k) at sample
time k, the output yi is only available up to k− τi for i = 1, . . . , m. The observer gains can
be parameterized by the set of the available measurements. In order to handle the unequal
measurement delays, we propose constructing a new observer scheme. The proposed
observer scheme is shown in Figure 2, in which yi(1 : s) is the output i from sample 1 to s.
The proposed observer gains can be calculated in a composition of m chain–observers, each
of which predicts the unavailable output due to measurement delay as well as updates the
values of the estimated states and then passes them to the next chain.
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Theorem 3. Suppose that A, B, C, D, in Equation (1) are known, and τ = [ τ1
. . . τm] represents

unequal measurement delays, and define d1 = τ1, di = τi − τi−1, i = 2, . . . , m. The design
of m-chain–observer is achieved by solving the chain-Luenberger equations for i = 1, . . . , m
chain–observers. The observer i is designed using the estimated output ŷj+1(k− τi) for j = i, . . . ,
m − 1 provided by the previous chain–observers from 1 to i− 1 as

z(k− τi−1) = Giz(k− τi) + Liy(k− τi)

+
di−1
∑

i=0
Hiu(k− 1− i− τi−1)

(26)

where

ŷ(k− τi−1) = [y1(k− τi) · · · yi(k− τi) ŷi+1(k− τi) ŷm(k− τi) ŷm(k− τi)]
Ti x̂(k− τi−1) = z(k− τi−1)

and
ŷ(k− τi−1) = Wiz(k− τi) + Viy(k− τi)

+
di
∑

i=0
Qiu(k− i− τi−1)

(27)

Each chain–observer satisfies the following convergence conditions:

Ti Adi − GjTi = LiC, Hdi−1 = Ti Adi−1B− LiD (28)

where Gi for i = 1, . . . , m should be chosen so that it is stable and should satisfy the stability
condition Theorem 2 as

(1 + εi)GT
i PGi + (m− i)

(
1+εi

εi

) m
∑

j=i+1
Φj

T PΦj − P < 0

εi =

(
(m− i)

m
∑

j=i+1
‖Φj‖2

2

) 1
2

‖Gi‖−1
2

(29)

where P > 0, Φj = −Li
m
∏

p=i+1
VpWj Ij. It follows then, that the constructed observer is asymptoti-

cally convergent, and the observer output equation delivers unbiased estimation for y(k), that is,

lim
k→∞

(ŷ(k)− y(k))→ 0 (30)

Proof. See Appendix B. �
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To design an observer with unequal output delay, Theorem 3 can be utilized to
construct each chain observer provided that gi (i.e., Gi) in each chain must be selected in
such a way that the stability condition (29) is satisfied. Therefore, the chain observer can be
designed using the following algorithm (Algorithm 1):

Algorithm 1. Chain observer design algorithm

Step 1: set i = m
Step 2: Select a proper Gi that satisfies stability conditions (29).
Step 3: Design the chain-observer i using Theorem 1 with d = di.
Step 4: Produce the complementary output y(k− τi−1) using available output and input, then
estimate output data by Equation (27).
Step 5: Go to step 2 and repeat till i = 1.

5. Simulation

In this section, the effectiveness of the proposed approach was demonstrated on a
simulation setup of a continuous stirred tank heater (CSTH). The system is written as a
linear state-space model to generate input–output data with the following parameters [16]:

x =

 VT
HT
Thj

, y =

 hT
TT
Thj

 (31)

A =

 0 0 0
−626.4371 −5.9406× 10−3 36.55

0 0 −1.2019× 10−3



B =

 1 0
0 0
0 3041.5241

 (32)

C =

 31.831 0 0
0 3.8578× 10−5 0
0 0 1


where

.
Vin −

.
Vout ≡ u1, Ph ≡ u2 are two input variables, and the water level hT , the

temperature of the water in the tank TT as well as in the heating jacket Thj are output
variables. The physical meanings of the process variables and parameters used above are
listed in Table 1.

Table 1. The process variables and parameters.

Symbol Description Unit

VT Water volume in the tank L
HT Enthalpy in the tank J
Thj Temperature in the heating jacket ◦C

.
Vin,

.
Vout Water flows in and out of the tank 1/s

Ph Electrical heater power W
hT Water level in the tank m
TT Water temperature in the tank ◦C

The output variables had the delay vector of τ = [2 5 7]. The order of the observer was
s = 3. Set g1 = [10−2, −3 × 10−8, 3 × 10−4] so that all three poles were located in 10−4 at
each chain. Then, we designed a chain–observer using Algorithm 1 when m = 3.

The following is the design procedure:
Chain 1-
Step 1.1: Set d = 7− 5 = 2 and s = 3;
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Step 1.2: Set

g =

 10−12

−3× 10−8

3× 10−4

 (33)

G =

 0 0 10−12

1 0 −3× 10−8

0 1 3× 10−4


which results in three poles at 10−4.

Step 1.3: Calculate L, T, Hi as

L =

 −3× 10−7 −2.3× 10−6 8.3× 10−12

−1.9× 10−4 6.7× 10−2 −5.7× 10−6

0.02 0.0172 −1.2× 10−6

 (34)

H1 =

 1.6× 10−3 −2.1× 10−4

4.1× 10−4 −4.5× 10−5

−1.3× 10−4 2.4× 10−5



T =

 6.2× 10−3 −2.6× 10−6 5.7× 10−6

−0.652 −6.6× 10−7 −1.2× 10−6

−0.732 2.1× 10−7 −6.7× 10−7



H0 =

 6.21.6× 10−3 0.175
−0.652 0.038
−0.7323 −0.02


Step 1.4: Calculate V, W, Qi as

W =

 −0.32 1 −0.89
162.21 −507.3 452.98
246.22 −769.4 687.04

 (35)

V =

 2× 10−12 −1.1× 10−7 2.3× 10−15

4.5× 10−6 3.5× 10−5 0
−1.4× 10−9 8.2× 10−5 1.4× 10−6



V =

 2× 10−12 −1.1× 10−7 2.3× 10−15

4.5× 10−6 3.5× 10−5 0
−1.4× 10−9 8.2× 10−5 1.4× 10−6



Q0 =

 0 0
0 0
0 0



Q1 =

 31.83 0
0 0
0 30411.5



Q2 =

 0 0
−0.0241 0

0 −36.55


Chain 2-
Step 2.1: Set d = 5− 2 = 3 and s = 3;
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Step 2.2: Set

g =

 10−12

−3× 10−8

3× 10−4

 (36)

G =

 0 0 10−12

1 0 −3× 10−8

0 1 3× 10−4


which results in three poles at 10−4.

Step 2.3: Calculate L, T, Hi

L =

 −2.5× 10−8 2× 10−4 −1.4× 10−11

−9.2× 10−4 0.998 8.27× 10−11

−1.6× 10−4 0.0236 −1× 9

 (37)

H2 =

 −1.4× 10−4 −3.1× 10−7

−3× 10−6 −4× 10−7

6.4× 10−7 −3.3× 10−7


T =

 2.9× 10−2 −3.8× 10−5 −8.2× 10−11

5.3× 10−3 −9.1× 10−7 1× 10−9

−4.5× 10−5 8.7× 10−8 1.2× 10−9


H1 =

 0.0241 −3.2× 10−8

5.7× 10−4 −3.8× 10−7

−5.4× 10−5 −4.6× 10−7


H0 =

 0.0295 −2.4× 10−6

5.3× 10−3 3× 10−5

−4.6× 10−5 3.6× 10−5


Step 2.4: Calculate V, W, Qi as

W =

 0.1 −0.53 6.35
0.007 −0.036 0.428
−1.48 7.51 −87.86

 (38)

V =

 −1× 10−11 −3× 10−6 2.3× 10−15

−2.6× 10−8 −2.1× 10−7 5× 10−16

1.5× 10−10 4.3× 10−5 −1.7× 10−9


Q0 =

 0 0
0 0
0 0


Q1 =

 31.83 0
0 0
0 30411.5


Q2 =

 0 0
−0.0241 0

0 −36.55


Q3 =

 0 0
1.4× 10−4 0

0 0.044


Chain 3-Same as Chain 1.
The designed chain–observer (Method 1) was compared with the classic observer

(Method 3), which ignores the measurement delays, and the observer (Method 2) [21],
which supposes (one) equal measurement delay (delay = 2 in this test). The method
proposed in [21] deals with both state and output delays; in this test, state delay is supposed
to be equal to zero. Figures 3–5 show the estimated values for the system states x1, x2, and
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x3 by the above-mentioned observers, respectively. These figures show that the proposed
observer estimation error converges to zero in 10 s. Observer #2 (considered equal delays)
had a bias in estimation and was slow in convergence, and observer #3 (ignored delays)
diverged. The input signal to the system is depicted in Figure 6.
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Remark 3. Based on the results presented above, we can conclude that

• By changing the observer poles, the convergence speed can be tuned.
• Each chain is an observer in the form of (6).
• Increasing the communication delays may increase the convergence time and transient estima-

tion error magnitude, but according to theorem 3, it will not make the observer unstable.
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6. Conclusions

Delays are an inherent part of any system. Ignoring it could cause instability or
degradation in the performances of the control or estimation blocks. Measurement and
communication lines produce some delays, which may be unequal due to different line
distances or sensor types and technologies. Supposing equal measurement/communication
delays causes a similar problem to ignoring them. In this paper, we proposed a new
approach to constructing an observer, consisting of a bank of chain-observers to deal with
equal and unequal measurement delays. Analytical results for the construction of the
observers are provided, and convergence of the chain–observers is shown. Simulations
demonstrate the efficacy of the proposed design scheme through a CSTH system in the
presence of measurement delays. Having a chain-based observer design facilitates the
extension of the proposed approach to a data-driven method. Therefore, the advantage of
the proposed approach is that it can be used for designing data-driven (subspace-based)
observers [17] in the presence of equal and unequal communication delays. Designing
such a data-driven observer is in our future research scope.
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Appendix A. Proof of Theorem 2

Before proving Theorem 2, the following lemma is presented.

Lemma A1. For any two matrices F and G of dimension n × m and for any square matrix
P = PT > 0 of dimension n, the following matrix inequality holds,

(F + G)T P(F + G) ≤ (1 + ε)FT PF +
(

1 + ε−1
)

GT PG (A1)

where ε is a positive constant.

Now, to prove Theorem 2, consider the following Lyapunov function:

V(x(k)) = x(k)T Px(k) +
N
∑

j=1

dj

∑
l=1

xT(k− l)Sjx(k− l)

P = PT > 0
Sj = Sj

T ≥ 0

(A2)
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Taking forward the difference from the above equation gives:

∆V(x(k)) V(x(k + 1))−V(x(k))

=

[
A0x(k) +

N
∑

j=1
Ajx

(
k− dj

)]T

P

[
A0x(k) +

N
∑

j=1
Ajx

(
k− dj

)]

−x(k)T Px(k) +
N
∑

j=1

dj

∑
l=1

xT(k + 1− l)Sjx(k + 1− l)

−
N
∑

j=1

dj

∑
l=1

xT(k− l)Sjx(k− l)

P = PT > 0

Sj = ST
j ≥ 0 (A3)

Applying Lemma A1 on inequality (A3) yields

∆V(xk) ≤ (1 + ε)xT(k)AT
0 PA0x(k)+

+
(
1 + ε−1) N

∑
j=1

xT(k− dj
)

AT
j P

N
∑

j=1
Ajx

(
k− dj

)
−xT(k)Px(k) + xT(k)

N
∑

j=1
Sjx(k)

−
N
∑

j=1
xT(k− dj

)
Sjx
(
k− dj

)
(A4)

Now, based on Cauchy-Schwarz inequality [22], namely for any real vector vi, the

inequality
(

m
∑

i=1
vi

)T( m
∑

i=1
vi

)
≤ m

m
∑

i=1
vi

Tvi holds, and we have

∆V(xk) ≤ xT(k)

[
(1 + ε)AT

0 PA0 +
N
∑

j=1
Sj − P

]
x(k)

+
(
1 + ε−1)N

N
∑

j=1
xT(k− dj

)
AT

j PAjx
(
k− dj

)
−

N
∑

j=1
xT(k− dj

)
Sjx
(
k− dj

)
(A5)

Taking two factors xT(k− dj
)

and x
(
k− dj

)
out of the left- and right-hand side of two

last terms in Equation (A5) yields

∆V(xk) ≤ xT(k)

[
(1 + ε)AT

0 PA0 +
N
∑

j=1
Sj − P

]
x(k)

+
N
∑

j=1
xT(k− dj

)[
N
(
1 + ε−1)AT

j PAj − Sj

]
x
(
k− dj

) (A6)

Now, select Sj = N
(
1 + ε−1)AT

j PAj. We have

∆V(xk) ≤ xT(k)
[
(1 + ε)AT

0 PA0

+N
(
1 + ε−1) N

∑
j=1

AT
j PAj − P

]
x(k)

= ϕ(x, ε)

(A7)
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Since matrices AT
0 PA0 and AT

j PAj are symmetric and positive semi-definite, based
on [23], we have

ϕ(x, ε) ≤ xT(k)
[
(1 + ε)λmax

(
AT

0 PA0
)

+N
(
1 + ε−1) N

∑
j=1

λmax

(
AT

j PAj

)
− P

]
x(k)

= g(ε)λmax(P)‖x(k)‖2
2

(A8)

where

g(ε) = (1 + ε)σ2
max(A0) + N

(
1 + ε−1

) N

∑
j=1

σ2
max
(

Aj
)

(A9)

The minimum of the function g can be found by taking its derivative with respect to
the parameter ε, which yields

dg(ε)
dε

= 0 ⇒ σ2
max(A0)−

N
ε2

N

∑
j=1

σ2
max
(

Aj
)
= 0 (A10)

Therefore, the optimum value for ε is

εm =

(
N

N

∑
j=1

σ2
max
(

Aj
)) 1

2

σ−1
max(A0) (A11)

We can conclude

∆V(xk) ≤ ϕ(εm, xk)
= xT(k)

[
(1 + εm)λmax

(
AT

0 PA0
)

+N
(
1 + εm

−1) N
∑

j=1
λmax

(
AT

j PAj

)
− P

]
x(k)

(A12)

Now, if the condition (1 + εm)AT
0 PA0 + N

(
1+εm

εm

) N
∑

j=1
Aj

T PAj− P < 0 is satisfied, then

considering Equation (A8), we have

∆V(xk) ≤ −β‖x(k)‖2
2 (A13)

The proof is completed.

Appendix B. Proof of Theorem 3

From Equations (1) and (27), we have

y(k) = Cx(k) + Du(k) (A14)

and
ŷ(k) = Wiz(k− d) + Viy(k− d)

+
di
∑

i=0
Qiu(k− i)

(A15)

Substituting x(k) from Equation (A14) in (A15), gives

y(k) = CAdx(k− d) +
d−1

∑
i=0

CAiBu(k− 1− i) + Du(k) (A16)

Now, subtracting (A16) from (A15), gives
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y(k)− ŷ(k) = CAdx(k− d) +
d−1

∑
i=0

CAiBu(k− 1− i) + Du(k)−Wiz(k− d) + Viy(k− d)−
di

∑
i=0

Qiu(k− i) (A17)

or

y(k− τi−1)− ŷ(k− τi−1)

= CAdx(k− d− τi−1) +
d−1
∑

i=0
CAiBu(k− 1− i− τi−1)

+Du(k− τi−1)−Wiz(k− d− τi−1)−Viy(k− d− τi−1)

−
di
∑

i=0
Qiu(k− i− τi−1)

(A18)

Now, recalling that τi = d + τi−1, the above equation can be rewritten as

y(k− τi−1)− ŷ(k− τi−1)

= CAdx(k− τi) +
d−1
∑

i=0
CAiBu(k− 1− i− τi−1)

+Du(k− τi−1)−Wiz(k− τi)−Viy(k− τi)

−
di
∑

i=0
Qiu(k− i− τi−1)

(A19)

Now, according to Equation (10), for chain i, we can write

ŷ(k− τi−1) = y(k− τi−1)−Wie(k− di)
f or i = 1, . . . , m

(A20)

Then, we have

y(k− τi−1) = y(k− τi−1)−Wi Iie(k− di). (A21)

From (A19), for each chain i, we get

y(k− τi−1)− ŷ(k− τi−1) = CAdi x(k− τi)

+
di−1
∑

j=0
CAjBu(k− j− τi−1) + Du(k− τi−1)

−Wi−1z(k− τi)−Vi−1y(k− τi−1)

−
di−1
∑

j=0
Qju(k− j− τi−1)

. (A22)

Substituting Equation (A21) in the above equation yields

y(k− τi−2)− ŷ(k− τi−2) = CAdi−1 x(k− τi−1)

+
di−2−1

∑
j=di−1

CAjBu(k− j− τi−1) + Du(k− τi−2)

−Wi−1z(k− τi−1)−Vi−1y(k− τi−1)

−Vi−1Wi Iie(k− τi)−
di−2−1

∑
j=di−1

Qiu(k− j− τi−2)

(A23)

Now, selecting CAdi−1 = Wi−1Ti−1 + VC, Qdi−1
= D − Vi−1D, Qj = CAjB,

j = di + 1, , . . . , di−1 gives

y(k− τi−2)− ŷ(k− τi−2) = Vi−1Wie(k− τi)
+Wi−1e(k− τi−1)

(A24)
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Then,
y(k− τi−1) = y(k− τi−1)−Vi−1Wi Iie(k− τi)

−Wi−1 Ii−1e(k− τi−1)
(A25)

Comparing Equations (A20) and (A25), and following similar steps from (A20) to
(A23) on (A25), we will reach:

y(k− τi−3)− ŷ(k− τi−3) = Vi−2Vi−1Wie(k− τi) + Vi−1Wi−1e(k− τi−1) + +Wi−2e(k− τi−2) (A26)

Repeating this sequence until chain m, gives

y(k− τi)− ŷ(k− τi) =
m

∑
j=i+1

j

∏
p=m

VpWje
(
k− τj

)
(A27)

and

y(k− τi−1) = y(k− τi−1)−
m

∑
j=i+1

j

∏
p=m

VpWj Ije
(
k− τj

)
(A28)

According to Equation (A27), the convergence of states brings

lim
k→∞

y(k− τi)− ŷ(k− τi) = 0 (A29)

Now, the estimation error can be written as

e(k + 1) = Tix(k + 1)− z(k + 1) (A30)

Substituting Equations (A22) and (26) in Equation (A30) gives

e(k + 1) = Tm Adm+1x(k− τm)

+
di
∑

j=0
Ti AjBu(k− j− τm)− Gmz(k− τm)

−
di
∑

j=0
Hju(k− j− τm)− Liy(k− τm)

(A31)

Now, substituting Ti Adi − GiTi = LiC, Hdi−1 = Ti Adi−1B − LiD, Hj = Ti AjB,
j = 0, . . . , di − 2 and considering Equation (26) to (29), the above equation is reduced to

e(k + 1) = Gme(k− τm)− Li

m

∑
j=i+1

j

∏
p=m

VpWj Ije
(
k− τj

)
(A32)

From Equation (18) in Theorem 1 and Remark 2, we know that

e(k) = Ge(k− d)

Considering the stability of G, we have lim
k→∞

e(k) = 0. Then, considering all matrices

in Equation (A32) are constant, we can conclude

lim
k→∞

y(k− τi)− ŷ(k− τi) = lim
k→∞

e(k− τi) → 0

Therefore, the estimation error will converge to zero, provided that the error dynamics
(A32) is stable (i.e., condition (29) is satisfied).
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