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Abstract: The paper presents the preliminary results of the experimental investigation of four various
loudspeakers used for driving the synthetic jet actuator. The parameters, characteristic synthetic
jet velocity, pressure inside the cavity, device sound pressure level (SPL), and the heat sink thermal
resistance, were presented for various input power and driving frequency. The resonance frequency
was determined based on electrical impedance. The highest synthetic jet momentum velocity was
achieved at diaphragm resonance frequency. The maximum sound pressure level was observed,
also at resonant frequency. For the same real power delivered to the actuator and for its resonance
frequency, the heat sink thermal resistance had the lowest value for the specific loudspeaker. In
turn, the synthetic jet velocity reached maximum for this actuator. For all actuators tested, the sound
pressure level was dependent on momentum velocity.

Keywords: synthetic jet; synthetic jet actuator; heat sink; SPL

1. Introduction

Synthetic jet (SJ) actuators are a novel, interesting kind of generators of the fluid
flow. They have been widely researched since 1990 [1]. SJ actuators generate synthetic
jets from the fluid, which is moved by loudspeakers [2–4], piezoelectric transducers [5–8],
pistons [9], or plasma [10]. SJ may be useful in heat transfer enhancement processes [11–15],
mixing [16], flow control [17,18] or propulsions [19]. Recently, the synthetic jets were
extensively investigated. A number of literature positions on SJ properties and applica-
tions can be found. As exemplary references, the review articles [20,21] are cited. The
first position [20] includes a brief review of heat transfer enhancement using SJ character-
ized by different parameters. Similarly, the second article [21] presents the review of SJ
performances and parameters that can impact the fluid flow and heat transfer processes.

The SJ actuator is a simple apparatus, also known as a zero-net-mass-flux device due
to lack of fluid mass addition to the working system. It consists of three basic parts: a
cavity with an orifice, diaphragm, and the element causing the diaphragm deflection. In
the case of applying a loudspeaker, the synthetic jet is formed when the working fluid is
periodically sucked into and ejected from an orifice in a cavity by the diaphragm vibrations,
which are caused by a loudspeaker. Thus, the loudspeaker parameter, as well as orifice and
cavity geometry, will affect the synthetic jet actuator characteristics.

Heat transfer enhancement with the use of synthetic jet obtains maximum at a specific
axial distance between the cooled object and orifice [12–14]. This distance causes the
increase of the total space occupied by the cooling device. A possible solution was presented
in [22], where the heat sink was located in the synthetic jet actuator cavity, which resulted
in a great reduction of the device’s space requirement.

In the present paper, the authors report the results of the preliminary investigations of
four loudspeakers used as synthetic jet actuators for the heat sink heat transfer enhance-
ment. It is a continuation of the research presented in [22–24], where only one loudspeaker
was tested. The synthetic jet velocity, pressure inside the cavity, device sound pressure

Actuators 2021, 10, 224. https://doi.org/10.3390/act10090224 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0001-9931-3012
https://orcid.org/0000-0002-1985-8379
https://doi.org/10.3390/act10090224
https://doi.org/10.3390/act10090224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10090224
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10090224?type=check_update&version=1


Actuators 2021, 10, 224 2 of 10

level, and the heat sink thermal resistance were tested. Various input powers and driving
frequencies of SJA were applied. The basic thermal, flow, and acoustics performances for
the SJA with various types of loudspeakers were obtained.

2. Materials and Methods

In the present work, four types of tested loudspeakers were applied as SJ actuators
and are depicted in Table 1.

Table 1. Specification of loudspeakers tested.

Case and Type of Loudspeaker Impedance,
R [Ω]

BL,
[T.m]

SPL,
[dB]

Mass of the
Diaphragm Mms [g]

L1 W.18.200.8.FGX 6.1 7.5 89 16.5
L2 W.18.180.8.FCX_v2 5.5 7.1 90 14.6
L3 M.18.200.8.MCX 5.7 7.4 92 13.5
L4 M.18.150.8.MC 5.6 3.9 90 10.8

The photo of the heat sink integrated with the SJA is presented in Figure 1 and the
cross section is presented in Figure 2. The enclosure of the heat sink was based on a cylinder
with outer and inner diameter equal to 180 mm and 170 mm, respectively. The height of the
enclosure was 50 mm. Made of milled aluminum, the enclosure featured 32 fins of 2-mm
thickness, 16 with a length of 42 mm and 16 with a length 57 mm. A total of 16 orifices
with the diameter of 10 mm and length of 5 mm were arranged at equal, angular intervals
on the cylindrical surface of the outer ring. The abovementioned, four different models of
loudspeakers were used to set the air of the room temperature and atmospheric pressure
as the working fluid in motion.

SJ actuators were supplied with a sinusoidal signal from RIGOL DGG4162 function
generator (Puyuan Jingdian Technology Co., Ltd, Suzhou, China) and amplified by the
AUNA CD-708 audio amplifier. Electric parameters of loudspeakers tested were measured
with the use of Keithley 2700 multimeter (22-bit) (Tektronix, Beaverton, USA). An accuracy
of measurements of the effective voltage was better than 0.2% of the value measured. The
effective current was determined indirectly by the measure of the voltage drop across
the standard resistor 1 Ω (±0.01%). In turn, measurements of the apparent power were
performed with an accuracy ±0.25% of the set value.
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The ambient temperature in the laboratory room was controlled with an air condition-
ing system. The atmospheric pressure was measured with the Honeywell HPB200W2DA-B
(Plymouth MN, USA) barometer with an accuracy of ±40 Pa while the ambient temperature
measurement was performed with the use of the ATU 08 constant current thermometer
with an accuracy of ±0.5 K. During measurements, the ambient temperature was in the
range of 20–23 ◦C and the barometric pressure was in the range of 990–1002 hPa. For
obtaining thermal characteristics of the SJA tested, the measuring system described in
detail in [23,24] was applied.

The heat sink base temperature and ambient temperature were measured with the
K-type thermocouples (AHLBORN, Holzkirchen, Germany) with the reference junction
temperature stabilized by the Kaye 170 Ice Point Reference. The voltage signal from
thermocouple was measured with a Keithley 2700. The accuracy of the temperature
measurement was estimated to be better than ±0.07 K in the considered temperature
range [13]. The temperature was measured after the heat sink reached steady state, and the
number of measurements was equal to 100.

The synthetic jet velocity was measured with the use of a constant temperature
anemometry method. The ATU 08 bridge (Kraków, Poland), which features separate
channels for constant temperature anemometry measurements and the channels for tem-
perature fluctuations measurements with cold-wire method, was applied. The probe
equipped with two wires—for the fluid velocity and fluid temperature measuring—was
used. The measuring system was calibrated in the velocity range of 0.3–49 m/s. The accu-
racy of measurements was ±0.1 m/s in the range up to 2.6 m/s and ±2% of the measured
value in the range of 2.6–49 m/s. The velocity was measured in the isothermal condition
(the heater was switched off). The National Instruments NI-USB-6211 card was used for
the acquisition of the constant temperature anemometry bridge output signal. The more
detailed description of the SJ velocity measurements is included in [23].

The sound pressure level (SPL) was measured with the use of Testo 816-1 (Lenzkirch,
Germany) sound level meter. The Testo 816-1 complies with the requirements of IEC
61672-1 Class 2 standard. Its measuring range is 30–130 dB in a frequency range of
20–8000 Hz. Before measurements, the sound level meter was calibrated with the use of
a Testo 0554 0452 calibrator. The National Instruments NI-USB-6211 card was used to
record the output signal of the meter. The sound level meter was located at a distance of
1 m from the synthetic jet actuator. The measurements were performed according to ISO
3746:2010 standard.

The changes of the pressure inside the SJA cavity were recorded using the GRAS 40PP
(Holte, Denmark) microphone with the National Instruments NI 9250 card. Its measuring
range is 10–20,000 Hz and 33–128 dB. The typical uncertainty is presented in the Table 2.
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Table 2. Typical uncertainty.

Name Relative Uncertainty Absolute Uncertainty

P (apparent power) ±0.55% -

U0 (momentum velocity) ±5.0% -

∆T (temperature difference) - ±0.25 K

R(thermal resistance) ±3.4% -

Q(thermal power) ±1.5% -

The scheme of the experimental set-up is presented in Figure 3.
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3. Results
3.1. Data Reduction

The characteristic parameter of the synthetic jet, the synthetic jet velocity, was obtained
as the centerline momentum velocity, according to the formula [25]

U0 =

√
1
t

∫ t

0
(uC)

2dτ (1)

where t is an oscillation period of the loudspeaker diaphragm, τ is time, and uc is the
centerline velocity at the orifice exit.

Resonance frequencies were received from the impedance vs. frequency dependences,
where the electrical impedance is defined as

Z =
E
I

(2)

where E and I are the effective voltage and effective current, respectively.
In turn, the apparent power supplied the SJA is given by

P = E·I (3)

The heat sink thermal resistance was calculated according to the equation

R =
∆T
Q

(4)
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where ∆T is a difference of the heat sink base temperature and the ambient temperature
while Q is the thermal power dissipated by the heat sink. It was obtained according to the
energy balance of the SJA with integrated heat sink detail, discussed in [23,24].

3.2. Results of Measurements

As the first result of the measurements of the parameters characterizing the operation
of the SJA with different loudspeakers, the dependence of the impedance vs. the frequency
was obtained. The synthetic jet actuator impedance as a function of the frequency is
presented in Figure 4.
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Figure 4. SJA impedance as a function of frequency, P = 4.0 W.

From the curves presented above, the resonance frequencies characterizing loudspeak-
ers tested were obtained. The results included in Figure 4 concern the case of the apparent
power equal to 4 W. As concluded in [25], the resonance frequency did not depend on the
actuator supply voltage, and the same may be determined at one value of apparent power.
The resonance frequencies obtained were: 27 Hz for loudspeaker L1, 43 Hz for L2, 63 Hz
for L3, and 42 Hz for L4.

The changes of the pressure inside the SJA cavity were the next measurement results.
Figure 5 presents effective values of the pressure in function of the signal frequency at the
constant apparent power equal to 1 W. The local maximum of the pressure tested occurred
at the resonance frequencies. The highest pressure value characterized the loudspeaker L2.
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The next measurements performed determined the synthetic jet centerline momentum
velocity. The results are presented in Figure 6 in the form of dependence of SJ centerline
momentum velocity on the frequency for the loudspeakers considered at the constant
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apparent power 4 W. As can be seen, the maximum of the velocity occurred at the resonance
frequencies and took values equal to about 8.8 m/s for loudspeakers L1, L3, and L4, and
about 12.3 m/s for the L2. The synthetic jet characteristic velocity for the synthetic jet
actuator with integrated heat sink and for various numbers of orifices and orifice diameters
was presented in [24].
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The obtained results presented in Figures 4–6 show that the best SJ actuator parameters,
impedance, effective pressure in the cavity, and SJ centerline momentum velocity were
achieved for the resonance frequency in the case of L2 loudspeaker tested.

The next parameter measured during the investigations of different loudspeakers,
SJ actuators, was the sound pressure level. Figure 7 includes the dependence of SPL on
the frequency at the constant apparent power 4.0 W for the four loudspeakers tested.
The obtained results showed that the SPL generated by the SJ actuators depended on
the frequency [26], and the maximum of SPL occurred for the resonance frequency. A
further increase in frequency caused a slight decrease in SPL. For f > 60 Hz, the SPL values
remained in the range of 55–65 dB for all loudspeakers considered.

Actuators 2021, 10, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 7. Sound pressure level generated at P = 4.0 W. 

4. Discussion 
The experimental results presented in the above section were developed in terms of 

their maximum values received at resonance frequencies. As the first result, the SJ center-
line momentum velocity in function of the apparent power was obtained. Figure 8 in-
cludes this dependence. As can be seen, characteristics of L1, L3, and L4 loudspeakers 
coincided, while, for the case of L2, the SJ centerline momentum velocity was much higher 
than for the other cases. 

 
Figure 8. SJ centerline momentum velocities at individual resonance frequency in function of ap-
parent power. 

The next stage in the investigations was to find the dependence of the sound pressure 
level on the apparent power and the centerline momentum velocity under resonance fre-
quency condition for the actuators tested. The results are presented in Figure 9. 

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

SP
L [

dB
]

f [Hz]

Case L1
Case L2
Case L3
Case L4

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8

U 0
[m

/s
]

P [W]

Case L1
Case L2
Case L3
Case L4

Figure 7. Sound pressure level generated at P = 4.0 W.

4. Discussion

The experimental results presented in the above section were developed in terms
of their maximum values received at resonance frequencies. As the first result, the SJ
centerline momentum velocity in function of the apparent power was obtained. Figure 8
includes this dependence. As can be seen, characteristics of L1, L3, and L4 loudspeakers
coincided, while, for the case of L2, the SJ centerline momentum velocity was much higher
than for the other cases.
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The next stage in the investigations was to find the dependence of the sound pressure
level on the apparent power and the centerline momentum velocity under resonance
frequency condition for the actuators tested. The results are presented in Figure 9.
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Figure 9. Sound pressure level of the actuators under resonance frequency condition in function of: (a) apparent power;
(b) centerline momentum velocity.

Measurement data included in Figure 9a represent the same trend as in the cases
investigated in [2,27]—the increase in SPL with the P increasing. Above P = 3.0 W the value
of SPL for L1, L2, and L4 actuators fluctuated around the value 65 dB. In the case of L3, the
SPL was lower. In turn, the graph in Figure 9b clearly shows the increase in sound pressure
level with the characteristic velocity increasing.

As the last result of the considerations, the thermal characteristics of the actuators
integrated with the heat sink were determined. The heat performances are presented in the
form of the heat sink thermal resistance in function of the apparent power at the resonance
frequency (Figure 10) and the heat sink temperature difference in function of the dissipated
thermal power (Figure 11). The heat sink was characterized by the thermal resistance
equal to 1.4 K/W [23]. Thus, in the case of the loudspeaker L2, the thermal resistance
was reduced to 0.17 K/W at the power P = 7 W, which gave the 8.2 times better cooling
compared to free convection characterizing the heat sink operation without the SJ actuator.
The L1, L3, and L4 loudspeakers achieved the comparable value of thermal resistance of
about 0.2 K/W at P = 7 W. In summary, the actuator L2 allowed, at the same apparent
power, the reduction in thermal resistance of about 18%. Presented in Figure 11 is the
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dependence of ∆T on thermal power dissipated, showing the similar tendency, which was
an obvious consequence of the previous relationship. Characteristics of actuators L1, L3,
and L4 were similar, while for L2 there was a significant difference. Under maximum ∆T
equal to 60 K, the thermal power dissipated by the heat sink cooled with synthetic jets was
about 275 W for L1, L3, and L4 actuators applied. The value of Q achieved 330 W in the
case of the L2 loudspeaker tested.
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Figure 10. Heat sink thermal resistances as a function of power delivered to the actuator at individual
resonance frequency.
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individual resonance frequency.

The performed preliminary investigations of four loudspeakers used as synthetic jet
actuators showed the impact of the loudspeaker type on the basic SJ actuators’ character-
istics. The flow and acoustic performances, synthetic jet centerline momentum velocity,
pressure inside the cavity, and device sound pressure level, were investigated. Additionally,
thermal characteristics of the heat sink integrated with the SJ actuators tested were obtained.
The presented results will be useful for synthetic jet actuator optimization, especially from
the point of energy conversion.

5. Conclusions

The different loudspeakers resulted in the different synthetic jet actuator performances.
From the energetic point of view, the best actuator is characterized by high energy conver-
sion; thus, the same input power generated high cavity pressure and high characteristic
velocity. High synthetic jet velocities corresponded with enhanced heat transfer process
from the heat sink.
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