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Abstract: This paper establishes a matrix displacement model and an improved dynamic model for
the static and dynamic performances analysis for a kind of bridge-type displacement amplification
mechanism with distributed-compliance, which has better performances than traditional lumped-
compliance bridge-type mechanisms. In the matrix displacement model, the stiffness matrix for two
rigid bodies connected by flexures is first obtained by regarding the displacements and the forces on
two mass centers of the rigid bodies as the node displacements and node forces. By extending and
superimposing each elemental stiffness matrix, the global stiffness matrix for the flexure mechanism
can be obtained to calculate the displacement amplification ratio and input stiffness of the bridge-type
mechanism. In the improved dynamic model, in order to establish the Lagrangian dynamic model
more accurately, the deflectional, axial, and rotational velocities of any point on the beam flexure are
calculated by solving the derivatives of the deformation curves of beam flexures versus time to obtain
the expression of the kinetic energy in the vibrating beams. On this basis, the three-degree-of-freedom
vibration differential equation for the bridge-type mechanism is established by using the Lagrange
method, and the natural frequency in the working direction is obtained accurately. The presented
models are compared with the finite element analysis, and experiments for two case studies of the
bridge-type distributed-compliance mechanism are presented. The comparisons results demonstrate
the high prediction accuracy of the improved dynamic model.

Keywords: bridge-type amplification mechanism; stiffness matrix; Lagrangian dynamic model;
distributed-compliance

1. Introduction

Piezoelectric actuators (PZTs) are widely used in the field of micropositioning/nanopo
sitioning, which has the advantages of ultra-high resolution, high response speed, high
stiffness, and high thrust [1–3]. However, the relative stroke displacement generated by
PZTs is only about 10 µm/cm, which severely limits their application range [4,5]. In
view of this problem, displacement amplification mechanisms are often used to amplify
the travel range of PZTs [6]. Due to the advantages of no friction, no backlash, no wear,
and a compact structure, the flexure mechanism is usually used for the displacement
amplification mechanism. In various amplification mechanisms, the lever-type flexure
mechanisms are commonly used for the displacement amplification, but they usually have
larger dimensions, low amplification ratios, and low resonant frequencies [7]. Different from
the traditional lever-type mechanisms, the bridge-type mechanisms have the advantages of
high amplification ratios, high resonance frequencies, and a small size, which have been
used widely in modern industry [8–10].

The structure configurations and modeling methods of bridge-type flexure mecha-
nisms have been widely studied. Lobontiu et al. used the Castigliano second theorem
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to obtain an analytical model for the displacement amplification ratio and input/output
stiffness calculations for the bridge-type mechanism [11]. Ma et al. derived the theoretic
displacement amplification ratio of the bridge-type mechanism by using the elastic beam
theory and work–energy theorem [12]. Xu et al. formulated an analytical model for the
amplification ratio, input stiffness, and natural frequency calculations of a compound
bridge-type amplifier based on the Euler–Bernoulli beam bending theory [13]. Liang et al.
used two compound bridge-type mechanisms to design a novel monolithic two-degree-
of-freedom (DOF) rotation decoupled platform [14]. Chen et al. designed and analyzed a
three-dimensional bridge-type mechanism based on the stiffness distribution and the screw
theory [15]. Some other bridge-type mechanisms and analytical modeling methods have
also been reported [9,16–18].

Most of the bridge-type amplification mechanisms proposed in the previous studies
used the notch flexure hinges for lumped-compliance. However, the large mass of rigid
bodies in the traditional bridge-type mechanism with lumped-compliance has a serious
impact on its dynamic performance. Instead of the notch flexure hinges used in the lumped-
compliance mechanism, the distributed-compliance mechanism uses beam flexures to
significantly reduce the mass of the mechanism, which can increase the natural frequency
of the mechanism effectively [19,20]. In addition, different from the flexure hinge, the stress
generated by the deformation of the mechanism is evenly distributed on the flexure beams;
therefore, the distributed-compliance mechanism has better reliability and dynamic char-
acteristics than the traditional lumped-compliance mechanism, especially in high-speed
applications. Some amplified PZTs with the distributed-compliance mechanism have been
commercialized by a number of companies including Cedrat Technologies, Core Tomorrow,
etc. Even so, the static and dynamic characteristics of the bridge-type mechanism with
distributed-compliance have still not been analytically modeled. Finite element analysis
(FEA) is the conventional method adopted to design the mechanism’s structure, and the
analytical model, especially the dynamic model, has not been established in the litera-
ture. Currently, the topology-optimization-based methods for the designing of distributed
compliant mechanisms are also very popular and have attracted more and more attention,
because they can solve the optimal distribution of structural materials [21,22]. Therefore,
in the design process, a simple and accurate analytical model is required, which can pre-
dict the performances of the flexure mechanism and determine its structural parameters
according to the design specifications.

In addition, for the dynamic analysis of the flexure mechanism, the existing model-
ing methods are basically based on the Lagrange method, that is the kinetic energy and
potential energy of the system need to be calculated, respectively. Ling et al. also pro-
posed an extended dynamic stiffness modeling method to analyze the kinetostatic and
dynamic characteristics of lumped-compliance flexure mechanisms based on d’Alembert’s
principle [23]. For the modeling of the lumped-compliance mechanism, the mass or the
kinetic energy of the flexure hinges having a light weight and volume is usually reasonably
ignored to simplify the dynamic model. Different from the lumped-compliance mechanism,
in the distributed-compliance mechanism, when the beam flexure has a large thickness,
its mass and kinetic energy cannot be reasonably ignored; otherwise, the modeling accu-
racy will be seriously reduced, which is also the difficulty in the dynamic modeling of
distributed-compliance mechanisms.

For the above problems, the static and dynamic characteristics of the bridge-type
displacement amplification mechanism with distributed-compliance are deeply analyzed
in this paper. By using the stiffness matrix displacement method, an analytical model
for the calculations of the displacement amplification ratio and input stiffness of the
distributed-compliance bridge-type mechanism is established. More importantly, in order
to accurately obtain the dynamic performance of the mechanism, the velocity of any point
on the vibrating beam flexure is calculated to obtain the expression of the kinetic energy by
solving the derivatives of the deformation curves of the beams versus time, and the natural
frequency in the working direction can be obtained using the Lagrange method, which is
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validated by FEA and experimental testing results. The comparisons among the analytical
model, FEA results, and testing results demonstrate the high accuracy of the proposed
analytical model.

The main contribution of this paper is to establish an analytical model for calculating
the statics and dynamic characteristics for a class of distributed-compliance bridge-type
amplification mechanisms. The static model is firstly established by using the matrix
displacement method, while an improved dynamic model is formulated by considering
the kinetic energy of the flexure beams in the mechanism. The modeling method and
corresponding theoretical formulas of the displacement amplification ratio, input stiffness,
and natural frequency proposed in this paper can accurately reveal the static and dynamic
characteristics of the distributed-compliance bridge-type amplification mechanism, which
provides a useful and accurate reference for the optimal designing and manufacturing of
such kinds of bridge-type mechanisms.

2. Compliance Modeling

Figure 1 presents several typical distributed-compliance flexure mechanisms, includ-
ing the traditional bridge-type amplifier, compound bridge-type amplifier, compound
double-parallelogram mechanism, and cartwheel flexure mechanism. Take the bridge-type
mechanism as an example; the mechanism has 4 or 8 beam flexures connected by a bridge-
type structure. In this section, a matrix displacement method based on Timoshenko beam
theory is derived to obtain the static and dynamic performances of the bridge-type flexure
mechanisms with distributed-compliance.

Figure 1. Typical distributed-compliance flexure mechanisms. (a) Traditional bridge-type am-
plifier. (b) Compound bridge-type amplifier. (c) Compound double-parallelogram mechanism.
(d) Cartwheel flexure mechanism.

2.1. Beam Flexure’s Stiffness Matrix

The above bridge-type distributed-compliance mechanisms are composed of multiple
long beam flexures; hence, the compliance or stiffness characteristic of a beam flexure needs
to be firstly calculated. Since the Timoshenko model considers the influence of the shear
force on the deformation, compared with the Euler–Bernoulli model, a load–deformation
relationship with higher accuracy can be calculated by the Timoshenko model. Therefore,
the Timoshenko model is adopted to calculate single-beam flexure deformation for the
bridge-type distributed-compliance mechanism. According to the Timoshenko beam theory,
as shown in Figure 2a, the load–deformation relationship for the beam flexure is [24,25]

Fxj = − EA
l ui

Fyj = − 12EIGA
GAl3+18EIl wi − 6EIGA

GAl2+18EI θi

Mzj =
6EIGA

GAl2+18EI wi +
2EI(2GAl2−9EI)

GAl3+18EIl θi

(1)
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where E and G are the elastic modulus and the shear modulus of the mechanism material.
A = bt and I = bt3/12 are the cross-sectional area and the cross-section’s second inertia
moment, respectively.

Fyj

X

Y

X

t

l

Oi

Fxj
Mzj

b

Oj

i j

Mzi
Mzj

y

x

Fyi

Fyj
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Fxi

i j
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uj

wj

(a)

(b)

Figure 2. Model and deformation of a beam flexure. (a) The model of a fixed–free beam structure.
(b) The model of a free–free beam structure.

By superimposing two cases of a free–fixed and fixed–free beam structure, as shown
in Figure 2b, the stiffness matrix equations of a free–free beam flexure loaded at both ends
is represented as

F = kδ (2)

where F and δ are the force and displacement vectors, respectively, expressed as

F =
[

Fxi Fyi Mzi Fxj Fyj Mzj
]T

δ =
[

ui wi θi uj wj θj
]T (3)

The stiffness matrix for the free–free beam flexure shown in Figure 2b can be deduced as

k =



EA
l 0 0 − EA

l 0 0
0 12EIGA

GAl3+18EIl
6EIGA

GAl2+18EI 0 − 12EIGA
GAl3+18EIl

6EIGA
GAl2+18EI

0 6EIGA
GAl2+18EI

2EI(2GAl2+9EI)
GAl3+18EIl 0 − 6EIGA

GAl2+18EI
2EI(2GAl2−9EI)

GAl3+18EIl
− EA

l 0 0 EA
l 0 0

0 − 12EIGA
GAl3+18EIl − 6EIGA

GAl2+18EI 0 12EIGA
GAl3+18EIl − 6EIGA

GAl2+18EI

0 6EIGA
GAl2+18EI

2EI(2GAl2−9EI)
GAl3+18EIl 0 − 6EIGA

GAl2+18EI
2EI(2GAl2+9EI)

GAl3+18EIl


(4)

The detailed derivation of Equations (1)–(4) can be found in [26].

2.2. Stiffness Matrix of Two Bodies Connected by Flexures

According to the stiffness matrix of a beam flexure with a free–free structure repre-
sented in Equations (2) and (4), the stiffness matrix of two connecting rigid bodies can be
deduced. As shown in Figure 3, the ith and the jth rigid bodies are connected in parallel by
nij beam flexures.
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Suppose the points of Oi and Oj are, respectively, the centroids of the ith and jth rigid

bodies, the relationship between the force vector
[

Fio Fjo
]T applied to the two mass

centers and the displacement vectors
[

∆qio ∆qjo
]T of the two points can be derived as

[
Fio
Fjo

]
= Kij

[
∆qio
∆qjo

]
=

[
K11

ij K12
ij

K21
ij K22

ij

][
∆qio
∆qjo

]
=

nij

∑
k=1

[
Jik 0
0 Jjk

]
k
[

Jik 0
0 Jjk

]T[ ∆qio
∆qjo

] (5)

where

Jik =

 1 0 0
0 1 0
−ryik rxik 1

 cos θik − sin θik 0
sin θik cos θik 0

0 0 1

 (6)

Jjk =

 1 0 0
0 1 0
−ryjk rxjk 1

 cos θjk − sin θjk 0
sin θjk cos θjk 0

0 0 1

 (7)

In the above two equations,
[

rxik ryik

]T (
[

rxjk ryjk

]T
) are the vector

−−−→
OiOik (

−−−→
OjOjk)

expressed in Oi − XY (Oj − XY). θik (θjk) are the rotating angles of Oik − XY (Ojk − XY)
with respect to Oi − XY (Oj − XY), as shown in Figure 3.

Y

ith body 

...

nij elements in total
jth body 

Oi Oj

Oik Ojk

...iXOF

iYOF

iZOM
jYOF

jZOM

jXOF

Y

X

Figure 3. Two rigid bodies connected by beam flexures.

2.3. Global Stiffness Matrix for Flexure Mechanism

If there are n movable rigid bodies in the whole flexure mechanism, 3n DOFs of
the movable rigid bodies can be chosen as the generalized coordinates of the compliant
mechanism if only its in-plane motion is considered. The global diagonal stiffness matrix K
with 3n× 3n for the flexure mechanism is established as follows.

If the ith and the jth rigid bodies are both movable, the stiffness matrix Kij in
Equation (5) can be extended into an 3n× 3n contribution matrix KC, which can be repre-
sented as

3i− 2 3j− 2
∼ 3i ∼ 3j

KC =
3i− 2 ∼ 3i

3j− 2 ∼ 3j



. . . 0 · · · 0 . . .

0 K11
ij · · · K12

ij 0
...

...
. . .

...
...

0 K21
ij · · · K22

ij 0

. . . 0 · · · 0
. . .


3n×3n

(8)

where the labels outside the matrix represent the positions of the sub-matrices in the
contribution matrix. For another case of the fixed ith rigid body and movable jth rigid body,
only K22

ij in the four submatrices should be extended to the 3n× 3n contribution matrix,
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and vice versa. Through the above two matrix extension methods, the global stiffness
matrix can be established by the superimposition of all the contribution matrices, and the
load–deformation equation for the global stiffness matrix can be represented as

F = Kq (9)

where q =
[

q1 q2 · · · qn
]T and F =

[
F1 F2 · · · Fn

]T represent the 3n × 1
displacement and force vectors of the rigid bodies in the flexure mechanism.

According to the derived stiffness matrix, the dynamic vibration equation of the
flexure mechanism based on the selected generalized coordinates can be written as

Mq̈ + Kq = F. (10)

where the mass matrix M is

M = diag(M1, M2, ..., Mn). (11)

The subvector of the mass matrix is Mi = diag(mxi, myi, Jzi), where mxi and myi
denote the mass of the rigid body and Jzi is the moment of inertia about the center of mass.

The natural frequencies of the mechanism without considering the mass and vibration
kinetic energy of the beam flexures can be calculated by the following two equations:

det
(

λI−M−1K
)
= 0 (12)

fi =
1

2π

√
λi, i = 1, 2, · · · , 3n. (13)

3. Improved Dynamic Model

The dynamic characteristic is an important specification in the design of compliant
mechanisms. The high natural frequency of the compliant mechanism can effectively sup-
press external interference. Different from the lumped-compliance bridge-type mechanism,
the beam flexures are used to replace the flexure hinges in the distributed-compliance
mechanism. Therefore, if the mass of the beam flexures reaches a certain degree, their mass
and vibration kinetic energy cannot be ignored in the process of dynamic modeling.

In order to establish the differential equation of vibration by using the Lagrange
equation, the kinetic energy and potential energy of the system should be calculated first.
According to the selected generalized coordinates, the kinetic energy of the rigid body can
be easily obtained; therefore, this section mainly discusses the kinetic energy calculation
of beam flexures. For the convenience of calculation, the beam flexure with a constant
cross-section is taken as the analysis object, and its deformation is shown in Figure 4. It is
assumed that the deflection curve w(x) of the beam flexures is the cubic equation of the
abscissa in its local coordinate system:

w(x) = a3x3 + a2x2 + a1x + a0 (14)

where a0, a1, a2 and a3 are undetermined coefficients of the deflection curve. According to
the deflections and the angles at both ends of the beam flexure, w(0), θ(0) = w′(0) and
w(l), θ(l) = w′(l), which are expressed by the generalized coordinates of the mechanism,
the coefficients of the deflection curve can be obtained as

a0 = w(0)
a1 = θ(0)
a2=

3w(l)−3w(0)−lθ(l)−2lθ(0)
l2

a3 = −2w(l)+2w(0)+lθ(l)+lθ(0)
l3

(15)
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y

x
Undeformed

v(0)

w(0)
(0) w(l)

v(l)

(l)

t

dv(x)/dt

dw(x)/dt

d (x)/dt

Deformed

Figure 4. Schematic diagram of kinetic energy calculation for beam flexure.

By deriving the deflection equation from time, the velocity of each point on the beam
flexure can be obtained as dw(x)

dt . Therefore, after integrating the kinetic energy of each
point on the beam, the kinetic energy generated by movement in the deflection direction of
the beam flexure can be calculated as

TBd =
∫ l

0

1
2

ρbt
[

dw(x)
dt

]2

dx (16)

In addition to the deflection direction, each point on the beam also moves along the
axial direction. As shown in Figure 4, according to the selected generalized coordinates, the
axial displacements at both ends of the beam flexure are v(0) and v(l). Assuming that the
axial displacement of each point after the deformation of the beam is linearly distributed
along the axis, the axial displacement of each point can be calculated as

v(x) = v(0)− v(0)− v(l)
l

x 0 ≤ x ≤ l (17)

Therefore, the kinetic energy generated by the axial motion of the beam flexure can be
expressed as

TBa =
∫ l

0

1
2

ρbt
[

dv(x)
dt

]2

dx (18)

Considering the kinetic energy generated by the rotation of the beam flexure, as shown
in Figure 4, the rotation angle θ(x) and moment of inertia Je of each infinitesimal point on
the beam flexure can be calculated as{

θ(x) = w′(x)
Je = 1

12 ρbtdx
(
(dx)2 + t2

)
≈ 1

12 ρbt3dx
(19)

Therefore, the rotational kinetic energy generated by the rotation of each point on the
beam can be calculated as

TBr =
∫ l

0

1
2
· 1

12
ρbt3

[
dθ(x)

dt

]2

dx (20)

Therefore, the total kinetic energy generated by the deformation movement of one
beam flexure is

TB = TBd + TBa + TBr (21)

Plus the kinetic energy of the rigid bodies, the total kinetic energy of the mechanism is

T =
NR

∑
i=1

TRi +
NB

∑
j=1

TBj (22)
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where TRi is the kinetic energy of the ith rigid body, TBj represents the kinetic energy
of the jth beam flexure, and NR and NB are, respectively, the number of rigid bodies and
beam flexures in the mechanism. Both of the two kinds of kinetic energy are represented by
the selected generalized coordinates in the mechanism.

According to the deformation ∆l caused by axial tension or compression and section
moment M(x) of the beam flexures, the potential energy of one beam flexure and the whole
compliant mechanism can be obtained as

VB =
Ebt∆l2

l
+
∫ l

0

M2(x)
EI

dx, V =
NB

∑
j=1

VBj (23)

The expressions of kinetic energy and potential energy are substituted into the La-
grange equation:

d
dt

[
∂(T −V)

∂u̇

]
− ∂(T −V)

∂u
= f (24)

where u and f are the vectors of generalized coordinates and generalized forces, respectively.
By simplifying Equation (24), the vibration differential equation of the system can be
obtained as

M̂ü + K̂u = f (25)

where M̂ and K̂ are the equivalent mass and stiffness matrices of the improved dynamic
model, respectively. When the generalized force vector f = 0, the mechanism vibrates
freely. According to the improved dynamic model of Equation (25), the improved natural
frequency can also be obtained by using Equations (12) and (13).

4. Case Studies and Verification

Two case studies were conducted to verify the matrix displacement model and the
improved dynamic model for the distributed-compliance bridge-type amplification mecha-
nism. The first example is a compound distributed-compliance bridge-type amplifier, and
the second example is a parallel-guided bridge-type amplifier. The presented modeling
methods were also validated by FEA via ANSYS and experimental tests.

4.1. Compound Distributed-Compliance Bridge-Type Amplification Mechanism

The compound distributed-compliance bridge-type displacement amplification mecha-
nism, as shown in Figure 5, was taken as the first case to verify the accuracy of the proposed
analytical model. It can be seen intuitively from Figure 5 that the mass of the beam flexures
is similar to that of the rigid bodies, so their vibration kinetic energy cannot be ignored
in the process of dynamic modeling. In order to reflect the accuracy of the improved
dynamic model, the matrix displacement method is also used to model the amplification
mechanism for comparison. As shown in Figure 5, the total number of movable rigid bodies
in this compound bridge-type amplification mechanism is n = 3, and the two input forces
generated by the PZT are applied to the first and second rigid bodies. The displacement
amplification ratio, the input stiffness, and the natural frequency in the working direction
are all calculated by the analytical model obtained by the matrix displacement method.

Figure 5. The generalized coordinates of the bridge-type amplifier.



Actuators 2022, 11, 368 9 of 14

For the improved dynamic modeling, in order to accurately illustrate the motion
characteristics of each rigid body in the bridge-type mechanism, the input displacement q
of the bridge-type mechanism and the displacements x1 and x2 of rigid bodies 1/2 and 3
in the working direction are taken as the three generalized coordinates of the system, as
shown in Figure 5.

According to the selected generalized coordinates, the sum of the kinetic energy of the
rigid bodies in the mechanism can be calculated as

TR =
3

∑
i=1

Ti = 2× 1
2

m1

[(
q̇
2

)2
+ x2

1

]
+

1
2

m2x2
2 (26)

Take Beam 4 as an example: as shown in Figure 6a, the deflections and the angles at
both ends are {

w4(0) = 0, θ4(0) = w′4(0) = 0
w4(l) = x1 cos α +

(
q
/

2
)
· cos α, θ4(l) = w′4(l) = 0

(27)

The coefficients of the deflection curve w4(x) = a43x3 + a42x2 + a41x + a40 are
a43 = − 2x1 cos θ+q cos θ

l3

a42 = 3
2 ·

2x1 cos θ+q cos θ

l2

a40=a41 = 0
(28)

Therefore, the kinetic energy of the four beam flexures 1–4 below can be calculated by
Equation (21). Similarly, as shown in Figure 6b, the deflections w6, the angles θ6, and the
axial displacements v6 at both ends of Beam Flexure 6 are

w6(0) = −
[
x1 cos α−

(
q
/

2
)
· sin α

]
, θ6(0) = w′6(0) = 0

w6(l) = −x2 cos α, θ6(l) = w′6(l) = 0
v6(0) = −

[
x1 sin α +

(
q
/

2
)
· cos α

]
, v6(l) = −x2 sin α

(29)

Therefore, by calculating the coefficients of the deflection equation, the kinetic energy
of the upper four beam flexures 5–8 can also be obtained smoothly.

x1

q/2 x

y

x2

q/2

x

y

x1

Beam 3/4

(a)

(b)

Beam 5/6
Figure 6. Deformation curves of beam flexures. (a) Beam 3/4. (b) Beam 5/6.
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For the potential energy calculation, it can be seen from Figure 6 that the deformation
caused by the axial tension or compression of the lower and upper four beams is

∆l1−4 = q cos α
2 − x1 sin α

∆l5−8 = −x2 sin α + x1 sin α + q cos α
2

(30)

Their section moment is

M(x) = EIw′′ = EI(6a3x + 2a2) (31)

Thus, the potential energy of the beam flexures can be calculated by Equation (23).
According to the obtained kinetic energy and potential energy of the system, the natural
frequency of the mechanism can be obtained by solving the characteristic equation of
Equation (25).

For a comprehensive comparison, FEA and an experimental test (Figure 7) were
also performed to validate the improved dynamic model. In the experimental setup, a
capacitive displacement sensor (NMT.C1) with a resolution of 2.5 nm and a measuring
range of 200 µm was used to measure the output displacement of the mechanism. An
inductance micrometer (DGG-8Z) with a resolution 0.01 µm was adopted to measure the
input displacement of the mechanism. The inductive micrometer and the force sensor
(JLBS-MD of Jinnuo company) were combined at the input end of the mechanism for the
measurement of the input stiffness of the mechanism. A data acquisition card (PCI-6221)
with a 16-bit A/D converter was used to acquire the voltage of the displacement sensor
(0–10 V).

450 500 550 600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

V
)

First−order natural frequency:
529 Hz

High−order natural
frequency:
552 Hz

Figure 7. Dynamic performance tests of the bridge-type amplifier.

Three samples with different thicknesses t, widths b, and lengths l of the beam flexures,
as illustrated in Table 1, were used for the comparisons with the FEA and the exper-
imental results. The material of the mechanism was Aluminum 7075, and its density
ρ = 2770 kg/m3, Young′s modulus E = 71 GPa, and Poisson′s ratio µ = 0.33. The com-
parison results are listed in Table 1. The comparison results show that, although the static
characteristics such as the amplification ratio and input stiffness calculated by the matrix
displacement model are relatively accurate, the calculated first-order natural frequency
obtained from the matrix displacement method has a large error compared with the FEA
and the experimental results, which makes it difficult to be applied to the dynamic per-
formance prediction of distributed-compliance flexure mechanisms. Compared with the
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matrix method, the results of the proposed improved dynamic model are much closer to the
results of the finite element simulation and experimental test than the matrix displacement
model, and its error for Sample 1 is reduced from 50.37% to 2.49% by taking the FEA
result as the reference value. Moreover, it can be seen from Table 1 that there are relative
large differences between the experimental results and the FEA results, which is mainly
attributed to the machining error of the flexure beams.

The error comparisons and variation trends of first-order natural frequencies calculated
by matrix displacement model and improved dynamic model for different thicknesses t
of flexure beams are also shown in Figure 8. It can be seen from the figure that with the
increase of beam thickness and mass, the error of matrix displacement method becomes
much larger, while the error of improved dynamic modeling method is always kept within
8%, which proves the effectiveness of improved dynamic model for distributed-compliance
flexure mechanism.

Table 1. Comparisons of the static and dynamic performances of the bridge-type amplifier among
the analytical, FEA, and testing results.

Sample Methods Amplification Ratio Input Stiffness (N/µm) 1st-Order Nat. Freq. (Hz) Freq. Error (%)

1 l = 40 mm Matrix 6.31 19.35 855.13 50.37%
b = 12 mm FEA 6.24 18.45 568.68 /
t = 2 mm Test 6.03 16.58 529 /

Imp. dyn. / / 554.51 2.49%

2 l = 45 mm Matrix 6.73 6.14 461.26 37.17%
b = 12 mm FEA 6.24 5.95 326.27 /
t = 1.5 mm Test 6.38 4.91 293.54 /

Imp. dyn. / / 301.78 7.5%

3 l = 45 mm Matrix 6.34 18.19 802.31 57.11%
b = 12 mm FEA 6.28 17.28 510.64 /
t = 2.2 mm Test 6.07 15.96 484 /

Imp. dyn. / / 488.19 4.39%
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Figure 8. Comparison of natural frequency calculation errors.

4.2. Bridge-Type Mechanism Guided by Parallelogram Mechanism

Figure 9 shows a kind of bridge-type displacement amplification mechanism guided by
a double-parallelogram mechanism, which was also used to validate the improved dynamic
model. The double-parallelogram mechanism was connected with the above compound
distributed-compliance bridge-type amplifier above to form the new nanopositioning stage.
Both the bridge-type mechanism and the double-parallelogram mechanism use beam
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flexures to realize the distributed-compliance. The dimensions of the beam flexures in
the bridge-type mechanism were t = 2 mm, b = 12 mm, and l = 40 mm, while those in the
parallelogram mechanism were 1.5 mm, 12 mm, and 45 mm, respectively.

Figure 9. Parallel-guided bridge-type amplifier.

As shown in Figure 9, the same generalized coordinates as the analysis of the bridge-
type mechanism were selected, and the deflections and rotation angles at both ends of the
beam flexures in the parallelogram mechanism are{

w(0) = 0, θ(0) = w′(0) = 0
w(l) = x2, θ(l) = w′(l) = 0

(32)

The calculation results of the natural frequency of the mechanism itself without the
PZT are compared in Table 2. The relative errors between the improved dynamic model
and FEA results are less than 4%. The accuracy of the natural frequency obtained by the
improved dynamic model is greatly increased from 56.8% to 96.4% compared with the
matrix model.

Table 2. Comparison of the natural frequencies.

Matrix Method Improved Method FEA Test
(Hz) (Hz) (Hz) (Hz)

892.36 548.73 569.04 512

5. Conclusions

In this paper, the static and dynamic performances of a kind of bridge-type flexure
mechanism with distributed-compliance were calculated by using the matrix displacement
model and the improved dynamic model. Due to distributed stresses and low mass,
this kind of bridge-type distributed-compliance displacement amplification mechanism
has much better reliability and dynamic characteristics than the traditional amplification
mechanism based on a lumped flexure hinge, especially in high-speed applications. The
matrix displacement method was first deduced for the displacement amplification ratio
and input stiffness calculations of the bridge-type mechanism. In the modeling method, the
stiffness matrix for a free–free flexure beam element was first obtained from its theoretical
compliance matrix based on the Timoshenko beam theory. According to the elemental
stiffness matrix, the updated stiffness matrix of two rigid bodies connected by the beam
flexures can be deduced. The mass centers of two rigid bodies and the forces applied
to them are regarded as the node displacement and node forces. By expanding and
superimposing each updated elemental stiffness matrix, the global stiffness matrix for the
distributed-compliance mechanism can be obtained.

Furthermore, in order to improve the accuracy of the natural frequency calculation
by the matrix displacement method, an improved dynamic model was constructed by
examining the vibration kinetic energy of beam flexures in the bridge-type distributed-
compliance mechanism. Firstly, three generalized coordinates of the distributed-compliance
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bridge-type mechanism were selected, and the deflection curve, axial displacement, and
rotation angle of the beam flexures were then represented by the generalized coordinates.
Then, by deriving the above deformation curves from time, the deflectional, axial, and
rotational velocities of each point on the beam flexure can be obtained to calculate the
kinetic energy and potential energy in the vibrating beams. Finally, by using the Lagrange
method, a three-DOF dynamic equation for the bridge-type mechanism was established to
calculate the natural frequency in the working direction.

To verify the accuracy of the analytical model, the FEA and experimental tests for two
kinds of distributed-compliance bridge-type mechanism were carried out. The comparisons
results showed that the analytical, FEA, and experimental results had high agreement with
each other, and the maximum error was less than 8%. It was also shown that, compared
with the matrix displacement model, the improved dynamic model can greatly improve
the prediction accuracy of the natural frequency, from 56.8% to 96.4%, which has a refer-
ence value for the design of the distributed-compliance flexure mechanism and amplified
piezoelectric actuator.
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