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Abstract: In order to solve the trajectory-tracking-control problem of the state-constrained flexible
manipulator systems, a finite-time back-stepping control method based on command filtering is
presented in this paper. Considering that the virtual signal requires integration in each step, which
will lead to high computational complexity in the traditional back-stepping, the finite-time command
filter is used to filter the virtual signal and to obtain the intermediate signal in finite time, to thus
reduce the computational complexity. The compensation mechanism is used to eliminate the error
generated by the command filter. Furthermore, the adaptive estimation method is introduced to
approach the uncertainty of the state-constrained flexible manipulator system. Then, the Lyapunov
function is used to prove that the tracking error of the system can be stabilized in a sufficiently small
origin neighborhood within a finite time. The simulation of a single rod flexible manipulator system
demonstrates the effect of the proposed approach.

Keywords: flexible manipulator; state-constrained; finite-time control; back-stepping control

1. Introduction

Due to the advantages of light weight, low power consumption, low cost and large pay-
loads, flexible manipulators have been widely used in important fields, such as intelligent
manufacturing, microsurgery and space operations [1–4].

A dynamic model of a flexible-joint manipulator system has the characteristics of
nonlinearity, strong coupling and time variability. The design of its controller has always
been a challenging problem. In recent years, many control methods have been applied
to control manipulator systems, such as PID control, adaptive control, robust control,
vibration control, fuzzy control and collaborative control [5–10]. Reference [5] proposed
an adaptive sliding-mode control for uncertain single link flexible manipulator system;
however, this controller does not deal with the chattering problem well.

Compared with sliding-mode control, the back-stepping control method overcomes
this disadvantage, and thus the back-stepping controller design method is widely used
in high-order nonlinear flexible manipulator system. In reference [7], the back-stepping
method is applied to the controller design of a flexible manipulator system; however,
the virtual control signal needs integration in each step of operation, which increases the
computational complexity of the system. The dynamic surface control is introduced in
reference [8–10] to reduce the computational complexity of the system by using a first-order
filter but does not consider the filtering error caused by the introduction of filter, which
reduces the tracking effect of a closed-loop system.

In addition, considering that the system is often subject to various restrictions in the
actual operation process (such as saturation, physical restrictions, etc.) if the system state
exceeds the given limit range, it will reduce the control effect and even lead to system
instability. Therefore, how to design a controller to control the input and output of the
system within the desired range should be considered. In order to control the system state
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within the desired range, the literature [11,12] has applied the barrier Lyapunov function to
the nonlinear system; however, they did not consider the application of this control method
in the manipulator system.

References [13–18] applied the barrier Lyapunov function to a manipulator system
with limited output, and reference [19] further applied it to an n-order rigid manipulator
system with full state constraints; however, the references [13–19] did not consider the
flexibility in the actual manipulator system, and the design of the controller is based on
the traditional back-stepping method, which requires a large amount of calculation. It was
also indicated that the convergence speed of the system has not been considered in the
literature [13–19], which will limit the control effect of the actual system.

At the same time, fast convergence, rapid response and good robustness are very
important for the manipulator control system, and the finite-time control is very effective
to improve these performances. Reference [20] applied finite-time control to the tracking
control of a spacecraft system. Reference [21] applied finite-time control to the manipulator
system with terminal sliding mode but ignores the flexibility of the manipulator system.
Reference [22] studied the application of finite-time control based on a neural network with
a flexible manipulator but does not consider the condition of limited state. Reference [23]
applied adaptive command filtering control to nonlinear systems with full state constraints,
without considering finite-time control.

At present, the problem of finite-time trajectory-tracking control of flexible manipu-
lators with limited states has not been well solved. Aiming at this problem, a trajectory-
tracking control algorithm based on the barrier Lyapunov function and the command filter
back-stepping control method is proposed in this paper, which can achieve finite-time
convergence and solves the trajectory-tracking problem of the state-constrained flexible
manipulator system.

Compared with dynamic surface control and traditional back-stepping control, the
method designed in this paper not only eliminates the computational complexity by de-
signing the finite-time command filter in the process of establishing the finite-time virtual
control function but also designs the finite-time error-compensation mechanism to eliminate
the error in the filtering process, and verifies the finite-time convergence of the closed-loop
system by Lyapunov function.

This paper is divided into five sections. The next section introduces the dynamic
model of flexible manipulators and the problem statement. Designs of the command
filter back-stepping controller for the flexible manipulator system are given in Section 3.
Simulation results is provided in Section 4, followed by a brief conclusion in Section 5.

2. Preliminaries
2.1. Dynamic Model of Flexible Manipulator

The flexible-joint model of a manipulator is shown in Figure 1.
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Figure 1. The flexible-joint model of a manipulator. Figure 1. The flexible-joint model of a manipulator.

The dynamic model of flexible manipulators studied in this paper is as follows.
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{
M(q)

..
q + C

(
q,

.
q
) .
q + F

( .
q
)
= K(qm − q)

J
..
qm + B

.
qm + K(qm − q) = τ

(1)

where q ∈ Rn,
.
q ∈ Rn,

..
q ∈ Rn are the joint position, velocity and acceleration, respectively.

M(q) ∈ Rn×n is a symmetric positive definite inertia matrix, and C
(
q,

.
q
)
∈ Rn×n is the

Coriolis matrix. F ∈ Rn×n is the joint friction coefficient matrix. qm ∈ Rn,
.
qm ∈ Rn,

..
qm ∈ Rn

are the position, velocity and acceleration of the motor rotor angle, respectively. K ∈ Rn×n

represents the flexibility of the model joints. J ∈ Rn×n represents the inertia term of the
model, B ∈ Rn×n represents the damping term of the model joints, τ ∈ Rn is the control
input vector of the system. The dynamic model satisfies the following properties [24].

Property 1. M(q) is a symmetric positive definite matrix, M−1(q) is bounded, and
Mh ≤ ‖M(q)‖2 ≤ MH , where Mh and MH are normal numbers.

Property 2. M−1(q)K is bounded, and ‖M−1(q)K‖2 ≤ ρ, where ρ is a constant and
satisfies ρ > 0.

Let q = x1,
.
q = x2, qm = x3,

.
qm = x4, and then system (1) is equivalently trans-

formed into 
.
x1 = x2.
x2 = M−1(x1)[−C(x1, x2)x2 − F(x2)− K(x1 − x3)].
x3 = x4.
x4 = J−1[−Bx4 − K(x3 − x1) + τ]

(2)

where xi = [xi,1, xi,2, · · · , xi,n], (i = 1, 2, 3, 4) is the state variable of the system, and τ is the
control input of the system. The state variable of the system satisfies the following assumption

|xi| ≤ ki, ki > 0, i = (1, 2, 3, 4) (3)

Furthermore, we define the desired trajectory xd = [xd,1, xd,2, · · · , xd,n]
T ∈ Rn, where

xd and
.
xd are continuous and bounded.

2.2. Problem Statement

Design a nonlinear trajectory-tracking control strategy for the above state-constrained
flexible manipulator system (1) to ensure that the joint position of the flexible manipulator
q tracks the desired trajectory qd. The tracking error can converge to a neighborhood near
zero, that is, ∀β > 0, ∃t0 ≥ 0, when t > t0, there exists |q− qd| < β, and all state variables
of the closed-loop system are continuously stable and bounded.

3. Controller Design
3.1. Error Compensation

According to the trajectory-tracking task in the problem description, the tracking error
signal in the virtual control signal is defined as

z1 = x1 − xd
z2 = x2 − φ2
z3 = x3 − φ3
z4 = x4 − φ4

(4)

where φi+1 = [φi,1,1, φi,2,1, · · · , φi,n,1]
T , i = (1, 2, 3), which is output by the following com-

mand filter 
.
φi,s,1 = li,s,1

li,s,1 = −λi,s,1|φi,s,1 − αi,s|1/2sign(φi,s,1 − αi,s) + φi,s,2
.
φi,s,2 = −λi,s,2sign

(
φi,s,2 −

.
φi,s,1

) (5)

where φi,n,1 is the state of the nth command filter in ith step, λi,s,1 and λi,s,2 are all positive
numbers, and the virtual control function αi,s is the input of the command filter.
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Note that, in order to ensure that the system state converges in a finite time, the
filtering error of the command filter satisfies lim

t→T1
‖φ2 − α1‖ ≤ ω1, lim

t→T2
‖φ3 − α2‖ ≤ ω2,

lim
t→T3
‖φ4 − α3‖ ≤ ω3, where ω1, ω2 and ω3 are all positive numbers, T1, T2 and T3 are the

convergence times of the command filter used for the first step, the second step and the
third step, respectively.

In order to reduce the error existing between the virtual control signal and the finite-
time command filter output signal, the error-compensation mechanism is constructed
as follows

.
υ1 = −p1υ1 + υ2 + (φ2 − α1)− [q1,1sign(υ1,1), · · · , q1,nsign(υ1,n)]

T

.
υ2 = −p2υ2 + (φ3 − α2)− υ1 + υ3 − [q2,1sign(υ2,1), · · · , q2,nsign(υ2,n)]

T

.
υ3 = −p3υ3 + υ4 + (φ4 − α3)− [q3,1sign(υ3,1), · · · , q3,nsign(υ3,n)]

T

.
υ4 = −p4υ4 − υ3 − [q4,1sign(υ4,1), · · · , q4,nsign(υ4,n)]

T

(6)

where υ represents the error compensation vector, and pi > 0 and qi > 0 are the tuning
parameters that need to be designed.

Then, the compensated tracking error signal is designed as
v1 = z1 − υ1
v2 = z2 − υ2
v3 = z3 − υ3
v4 = z4 − υ4

(7)

Ultimately, the virtual control signals in the controller are

α1 = −p1z1 +
.
xd −

[
a1,1vr

1,1, · · · , a1,nvr
1,n

]T

α2 = −p2z2 − z1 +
.
φ2 − 1

2 v2 − 1
2h2

[
v2,1θ̂2ST

2,1S2,1, · · · , v2,n θ̂2ST
2,nS2,n

]T
−
[

a2,1vr
2,1, · · · , a2,nvr

2,n

]T

α3 = −p3z3 − z2 +
.
φ3 −

[
a3,1vr

3,1, · · · , a3,nvr
3,n

]T

τ = −p4z4 − z3 +
.
φ4 − 1

2 v4 − 1
2h2

[
v4,1θ̂4ST

4,1S4,1, · · · , v4,n θ̂4ST
4,nS4,n

]T
−
[

a4,1vr
4,1, · · · , a4,nvr

4,n

]T

(8)

where a and h are all positive numbers, and 0 < r < 1. θ̂2 and θ̂4 are the estimated variables
obtained by the adaptive update law in (21).

Remark 1. In the process of designing the tracking controller of the flexible manipulator system
using the traditional back-stepping method, each step needs to design a virtual control signal
as (4) to ensure that each subsystem has the desired performance. However, using virtual controlled
derivatives results in increased computational complexity. In this paper, the output of the finite-time
command filter (5) is used to approximate the virtual signal and the derivative of the virtual signal to
replace the calculation of the derivative of the virtual signal in the traditional back-stepping process;
thereby, the computational complexity is eliminated. However, filter errors will persist until the
finite-time command filter stabilizes, which will affect the control quality. Therefore, this paper
proposes a finite-time error-compensation mechanism of (6) to quickly eliminate filtering errors.

3.2. Stability Analysis

This section investigates the command filtering back-stepping control strategy with
state constraints and error compensation. Some necessary and sufficient conditions are
derived for the main results.



Actuators 2022, 11, 139 5 of 13

Lemma 1 [25]. If xi ∈ R,i = (1, 2, · · · , n) and 0 < p ≤ 1, then the following inequality holds(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p ≤ n1−p

(
n

∑
i=1
|xi|
)p

(9)

Lemma 2 [26]. If there exists a real number λ1 > 0, λ2 > 0 and 0 < γ < 1, the finite-time
stable extended Lyapunov condition can be obtained by

.
V(x) + λ1V(x) + λ2Vγ(x) ≤ 0, and the

convergence time Tr ≤ t0 + [1/(λ1(1− γ))] ln
[(

λ1V1−γ(t0) + λ2
)
/λ2

]
.

Theorem 1. For the flexible-joint manipulator (1), using the error-compensation mechanism in (6)
and the virtual control signal in (8), the joint position track the desired joint position in a finite time,
and all system states in the closed-loop system are bounded in a finite time.

Proof of Theorem 1. The stability of the closed-loop system is proven by the following
four steps.

Step 1. Select Lyapunov function V1 = 1
2 vT

1 v1, taking the time derivative of V1 yields

.
V1 = vT

1
.
v1 = vT

1
( .
z1 −

.
υ1
)
= vT

1
( .
x1 −

.
xd −

.
υ1
)

= vT
1
[
α1 + z2 + (φ2 − α1)−

.
xd −

.
υ1
] (10)

Substitute α1 and υ1 into (20) to find

.
V1 = −k1vT

1 v1 + vT
2 v2 −

[
a1,1vr

1,1, · · · , a1,nvr
1,n
]T

+ [v1,1q1,1sign(υ1,1), · · · , v1,nq1,nsign(υ1,n)]
T (11)

Step 2. Select Lyapunov function V2 = V1 +
1
2 vT

2 v2, and taking the derivative of V2 yields

.
V2 =

.
V1 + vT

2
.
v2 =

.
V1 + vT

2
( .
z2 −

.
υ2
)

=
.

V1 + vT
2

( .
x2 −

.
φ2 −

.
υ2

)
=

.
V1 + vT

2

(
f2 + g2x2 −

.
φ2 −

.
υ2

) (12)

where f2 = −M−1(x1)[C(x1, x2)x2 + Fx2 + Kx1], g2 = M−1(x1)K.
Since the function f2 contains uncertainty, it is approximated by a neural network [27],

then f2 = [ f2,1, f2,2, · · · , f2,n]
T can be approximately expressed as

f2,i = WT
2,iS2,i + ζ2,i, i = (1, 2, · · · , n) (13)

where W2,i is the weight matrix, S2,i is the basis function vector, and ζ2,i is the approximation
error and satisfies ‖ζ2,i‖ ≤ ε2, ε2 > 0.

According to the Young inequality, we can find

vT
2 f2 ≤

n

∑
i=1

(
v2

2,i‖W2,i‖2ST
2,iS2,i

2h2 +
h2 + v2

2,i + ε2
2

2

)
(14)

where h is a positive number. Substitute α2,
.
υ2 and vT

2 f2 into (14), we obtain

.
V2 ≤ −

2
∑

i=1

(
pivT

i vi
)
+ g2vT

2 v3 +
n
∑

i=1

(
v2

2,i

(
‖W2,i‖2−θ̂2

)
ST

2,iS2,i

2h2 +
h2+ε2

2
2

)

−
n
∑

i=1

(
a1,iv

γ+1
1,i + a2,iv

γ+1
2,i

)
+

n
∑

i=1
(v1,iq1,isign(υ1,i) + v2,iq2,isign(υ2,i))

(15)
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Step 3. Select Lyapunov function V3 = V2 +
1
2 vT

3 v3, and taking the derivative of
V3 yields

.
V3 =

.
V2 + vT

3
.
v3

=
.

V2 + vT
3

(
α3 + z4 + (φ4 − α3)−

.
φ3 −

.
υ3

) (16)

Substitute α3 and
.
υ3 into (20) to obtain

.
V3 =

.
V2 − p3vT

3 v3 − g2vT
3 v2 + vT

3 v4

−
[

a3,1vr+1
3,1 , · · · , a3,nvr+1

3,n

]T
+ [v3,1q3,1sign(υ3,1), · · · , v3,nq3,nsign(υ3,n)]

T
(17)

Step 4. Select Lyapunov function V4 = V3 +
1
2 vT

4 v4, and take the derivative of V4 yields

.
V4 =

.
V3 + vT

4
.
v4 =

.
V3 + vT

4
( .
z4 −

.
υ4
)

=
.

V3 + vT
4

( .
x4 −

.
φ4 −

.
υ4

)
=

.
V3 + vT

4

(
f4 + g4τ −

.
φ4 −

.
υ4

) (18)

where f4 = −J−1[Bx4 + K(x3 − x1)], g4 = J−1. Similar to (13), f4 can be written as

f4,i = WT
4,iS4,i + ζ4,i, i = (1, 2, · · · , n) (19)

where W4,i is weight matrix, S4,i is the basis function vector, and ζ4,i is the approximation
error and satisfies ‖ζ4,i‖ ≤ ε4, ε4 > 0.

In view of (18) and the Young inequality, we have

.
V4 ≤ −

4
∑

i=1

(
pivT

i vi
)
+

n
∑

i=1

(
v2

2,i

(
‖W2,i‖2−θ̂2

)
ST

2,iS2,i

2h2 +
h2+ε2

2
2

)

+
n
∑

i=1

(
v2

4,i

(
‖W4,i‖2−θ̂4

)
ST

4,iS4,i

2h2 +
h2+ε2

4
2

)
−

4
∑

i=1

n
∑

j=1

(
ai,jv

γ+1
i,j

)
+

4
∑

i=1

n
∑

j=1

(
vi,jqi,jsign

(
υi,j
))

≤ −
4
∑

i=1

(
pi −

qi
2
)
vT

i vi +
n
∑

i=1

(
v2

2,i

(
‖W2,i‖2−θ̂2

)
ST

2,iS2,i

2h2 +
h2+ε2

2
2

)

+
n
∑

i=1

(
v2

4,i

(
‖W4,i‖2−θ̂4

)
ST

4,iS4,i

2h2 +
h2+ε2

4
2

)
−

4
∑

i=1

n
∑

j=1

(
ai,jv

γ+1
i,j

)
+

4
∑

i=1

n
∑

j=1

( qi,j
2

)
(20)

Let θ2 = max
(
‖W2,i‖2

)
, θ4 = max

(
‖W4,i‖2

)
, i = (1, 2, · · · , n), then the estimate θ̂2

and θ̂4 of θ2 and θ4 can be obtained by the following adaptive update law
.
θ̂2 = −m2l2θ̂2 +

1
2h2 m2

n
∑

i=1
v2

2,iS
T
2,iS2,i

.
θ̂4 = −m4l4θ̂2 +

1
2h2 m4

n
∑

i=1
v2

4,iS
T
4,iS4,i

(21)

where m2 > 0, m4 > 0, l2 > 0, l4 > 0. Let θ̃2 = θ2 − θ̂2, θ̃4 = θ4 − θ̂4; furthermore,
we construct the following Lyapunov function Ṽ4 = V4 +

1
2m2

θ̃2
2 + 1

2m4
θ̃2

4 , and take the

derivative of Ṽ4, we have
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.
Ṽ4 =

.
V4 +

1
2m2

θ̃2

.
θ̃2 +

1
2m4

θ̃4

.
θ̃4

≤ −
4
∑

i=1

(
pivT

i vi −
qi
2 vT

i vi
)
+ 1

m2
θ̃2

(
.
θ2 −

.
θ̂2

)
+ 1

m4
θ̃4

(
.
θ4 −

.
θ̂4

)
−

4
∑

i=1

n
∑

j=1

(
ai,jv

γ+1
i,j

)
+

n
∑

i=1

(
v2

2,i θ̃2ST
2,iS2,i+v2

4,i θ̃4ST
4,iS4,i

2h2 +
ε2

2+ε2
4

2 + h2
)

≤ −
4
∑

i=1

(
pivT

i vi −
qi
2 vT

i vi
)
+ n

2
(
ε2

2 + ε2
4
)
+ nh2 −

4
∑

i=1

n
∑

j=1

(
ai,jv

γ+1
i,j

)
+l2θ̃2θ̂2 + l4θ̃4θ̂4

≤ −
4
∑

i=1

(
pivT

i vi −
qi
2 vT

i vi
)
+ n

2
(
ε2

2 + ε2
4
)
+ nh2 −

4
∑

i=1

n
∑

j=1

(
ai,jv

γ+1
i,j

)
+l2d2θ2

2 + l4d4θ2
4 −

χ2
p2

θ̃2
2 −

χ4
p4

θ̃2
4

(22)

where χ2 = (p2l2(2d2 − 1))/2d2, χ4 = (p4l4(2d4 − 1))/2d4, d2 > 0.5, d4 > 0.5. By
Lemma 1, we obtain

.
Ṽ4 ≤ −ρṼ4 − σṼ

γ+1
2

4 + c (23)

in which
ρ = min(2pi − qi, 2χ2, 2χ4),

σ = min
(

ai,j2
γ+1

2 , 2χ
γ+1

2
2 , 2χ

γ+1
2

2

)
,

c = n
2
(
ε2

2 + ε2
4
)
+ nh2 + n

4
∑

i=1

qi
2 + l2d2θ2

2 + l4d4θ2
4 .

It is clear that we can find a positive number 0 < δ < 1 such that

.
Ṽ4 ≤ −δρṼ4 − (1− δ)ρṼ4 − σṼ

γ+1
2

4 + c (24)

Furthermore, it can be seen from Lemma 2 that, if Ṽ4 > c
(1−δ)ρ

, then we have

.
Ṽ4 ≤ −δρṼ4 − σṼ

γ+1
2

4 (25)

which indicates that vi, θ̃2, θ̃4 will converge to the following region in finite time(
vi, θ̃2, θ̃4

)
∈
{

Ṽ4 ≤
c

(1− δ)ρ

}
(26)

The time Tr required to reach the region in (26) is

Tr ≤
1

δρ
(

1− γ+1
2

) ln
((

δρṼ1− γ+1
2

4 (0) + σ

)
/σ

)
, (27)

which means that the state of the system converges in the desired neighborhood near
the origin in finite time, and all control signals in the closed-loop system are bounded in
finite time. �

Remark 2. In view of the definition of convergence region, it can be seen that we can obtain a
smaller convergence area by increasing the parameters pi, ai, qi, χ2, χ4,i = (1, 2, 3, 4).

4. Simulation

In this section, a simulation example of a single joint flexible manipulator is provided
to illustrate the theoretical result. The parameter of system (1) is shown in Table 1.
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Table 1. Parameters of the flexible manipulator.

Parameters Value

M 0.2/kg
L 0.3/m
g 9.8/m/s2

K 6.47/N·m/rad
B 0.01
J 0.21/ m/s2

The structure diagram of the control system is shown in Figure 2.
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Figure 2. The structure diagram of the control system.

Suppose that the desired tracking trajectory is set as qd = sin(t), then the initial
state is x1(0) = q(0) = 0.2, x2(0) =

.
q(0) = 0. The term of joint friction is set as

F
( .
q
)
= 0.01 cos

.
q. The constraints of the system state are ‖x1‖ ≤ 1.8, ‖x2‖ ≤ 2, ‖x3‖ ≤ 3,

‖x4‖ ≤ 10, respectively.
The parameters of the command filter (5) are set as λi,s,1 = λi,s,2 = 30. The parameters

of the error-compensation mechanism (6) are selected as p1 = 1, p2 = 15, p3 = p4 = 20,
and q1 = q2 = q3 = q4 = 1. The parameters of virtual control signals (8) are set as
a1 = 1,a2 = a3 = 5, a4 = 7, h = 1, r = 3/5. The parameters of the adaptive update law
(21) are set as m2 = m4 = 1, l2 = l4 = 1. The other parameters used in (22) are selected as
γ = 1/2, ε2 = ε4 = 0.1, d2 = d4 = 1.
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First, in order to verify the effectiveness of the error-compensation mechanism for the
flexible manipulator system (1), the position and velocity tracking curves are shown in
Figure 3 in the case that the error-compensation mechanism is not used in the controller,
and the position tracking error curves without error compensation are shown in Figure 4.
Then, the position and velocity tracking curves are shown in Figure 5 by using the error-
compensation mechanism, and the position tracking error curves with error compensation
are shown in Figure 6.
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Figure 6. Position tracking error curves with error compensation.

As can be seen from Figure 3 to Figure 6, the use of the error-compensation mechanism
in the controller can improve the accuracy of the position and velocity tracking effectively.
In addition, after using the error-compensation mechanism, the system state can satisfy
the state constraints at the same time. Then, the effectiveness of the error-compensation
mechanism designed in this paper is verified.

Secondly, the finite-time control effect of the control algorithm proposed in this paper
is verified by adjusting parameters in the following two cases. The parameters is set as
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pi = 5, ai = 2, qi = 1, i = (1, 2, 3, 4) in the first case. The parameters is set as pi = 10, ai = 5,
qi = 1, i = (1, 2, 3, 4) in the second case.

Figures 7 and 8 show the joint position tracking curves under two different control
parameters. It can be seen from Figure 7 that, in the first case, the joint trajectory can
track the desired trajectory in 2.3 s, while by increasing the adjustment parameters, the
joint can track the desired trajectory in 0.2 s, as shown in Figure 8. As can be seen from
Figures 7 and 8, we can improve the convergence efficiency by increasing the gain of the
control parameters.
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5. Conclusions

Aiming at the finite-time tracking-control problem of state-constrained flexible ma-
nipulator systems, this paper proposes an adaptive neural network command filtering
back-stepping control method. Compared with the traditional back-stepping control,
the computational complexity is eliminated by designing a finite-time command filter in
the process of establishing a finite-time virtual control function, and a finite-time error-
compensation mechanism is designed to eliminate errors in the filtering process. The
Lyapunov function is used to verify the finite-time convergence of the closed-loop system.
In future work, the method designed in this paper will be extended to a multi-joint flexible
manipulator system, and an adaptive robust control method will be considered to overcome
the influence of unknown external disturbances.
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