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Abstract: The active structural control (ASC) has been applied to base-isolated buildings to achieve
a high-damping system. The critical step for designing an ASC system is selecting control parameters
and isolation parameters that satisfy the design restrictions. However, the conventional methods
are limited in theoretically estimating the maximum control force, which requires great demand
for trial-and-error approaches and numerical simulations. This paper constructed the equivalent
model of the feedback control system that theoretically expresses the dependence of vibration
characteristics (natural period and damping ratio) of the control system on the feedback gain. Then,
the control-force spectrum is proposed that estimates the maximum control force for a feedback
control system, adjusting both the natural period and damping ratio of the control system. The
maximum responses and control force are estimated without additional numerical simulations and
trial-and-error approaches using the equivalent model and control-force spectrum. Moreover, a
design method was devised for determining the allowance range of the vibration characteristics
of structures (damping ratio and natural period) and controllers that satisfy the design limitations
(maximum responses and maximum control force). The design method does not require trial-and-
error and numerical simulations, thus simplifying the design procedure. Finally, this paper uses
numerical examples and a design example to verify the validity of the control-force spectrum and
design method.

Keywords: active structural control; maximum control force; spectrum; feedback control; equiva-
lent model

1. Introduction

Passive base-isolated (PBI) buildings protect people and household effects from earth-
quakes [1,2], and have been widely used since the Kobe earthquake (1995) in Japan [3].
PBI structures are popular for constructing hospitals, public buildings, and other essential
facilities [4]. For example, some precision machine factories, which are very sensitive to
the absolute acceleration response, have installed PBI structures [5]. The PBI structure
suppresses the absolute acceleration response by increasing the natural period of the building.
However, it is difficult for a long-period PBI building to suppress the maximum displacement
of the isolation layer within the design criteria subjected to a long-period earthquake [6].
Increasing the damping of the isolation layer suppresses the displacement responses of the
displacement, for example adding viscous dampers to the isolation layer. Adding viscous
dampers reduces the displacement of the isolation layer, but it will significantly increase
absolute accelerations and inter-story drifts in the superstructure [7]. To solve this problem,
we need a device to add additional negative stiffness and positive damping to a PBI structure
to achieve a long-period high-damping structure simultaneously.
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Ibrahim summarized the performance and applications of passive negative stiffness
isolators [8]. The negative stiffness provided by the passive devices is very complex to
adjust; thus, their optimal performance is limited to a certain condition (disturbance and
geometric parameters) [9]. Semi-active control systems vary real-time parameters of the
structure, such as stiffness and damping coefficient, requiring limited external power to
operate [10,11]. Semi-active variable stiffness dampers reduce bearing displacements while
maintaining acceleration response at the same level as the long-period base-isolation. Their
effectiveness has been validated via analytical and experimental studies [12,13]. However,
semi-active control devices cannot dissipate energy to the structure [10]. The combination
of base-isolation and active structural control (ASC) improves the control performance by
adjusting the natural period and damping ratio of the control system and dissipating input
energy in the structure [14].

The required control force for ASC is quite large, making the estimation of the
maximum control force significant in designing controllers and actuators. The conven-
tional process of designing the control system and estimating the maximum control force
mainly uses trial-and-error approaches, which need much guessing, testing, and numer-
ical simulations [15,16]. Kohiyama et al. developed a method to estimate the maximum
response and control force for feedback control systems [17,18]. However, the methods
proposed by Kohiyama et al. need to construct the modal expression for the dynamics
of the system and did not present the spectrum of the maximum control force, making it
difficult to apply in design. The authors proposed a method to achieve a high-damping
ASC system using velocity-feedback control and precisely estimating the maximum control
force of single-degree-of-freedom (SDOF) ASC systems without numerical simulations [19].
However, this method only adjusts the damping ratio of the system by ASC, meaning it
cannot add additional negative stiffness to the system.

This study expands the spectra method to feedback control systems that simultane-
ously adjust the damping ratio and natural period for SDOF models. The equivalent model,
which theoretically expresses the dynamic characteristics (natural period and damping
ratio) of feedback control systems, is constructed, making it possible to estimate the maxi-
mum responses of the system only using the response spectra of the design earthquake
wave. Moreover, this paper presents a new spectrum, the control-force spectrum, that esti-
mates the maximum control force for feedback control systems. The presented control-force
spectrum only uses displacement- and velocity- response-spectrum to estimate the maxi-
mum control force; thus, it requires no additional numerical simulations. The control-force
spectrum describes the dependency of the maximum control force on all design parameters
(the feedback gain and vibration characteristics of the structure). This paper also devises a
design method for an SDOF control system using the control-force spectrum. The design
method theoretically illustrates the possible design area for the feedback gain and the
parameters of the structure (stiffness and damping coefficient) satisfying the design criteria
without numerical simulations and trial-and-error approaches.

2. Mathematic Model

Figure 1 shows the mathematical model used in this paper.
The dynamics of the mathematical model are

mẍ(t) + cs ẋ(t) + ksx(t) = d(t)− u(t), (1)

with
d(t) = −mẍg(t), (2)

where m is the mass of the structure; ks is the stiffness of the structure; cs is the damping
coefficient of the structure; x is the displacement response; ẋ is the velocity response; ẍ is
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the relative acceleration response; d is the disturbance force; ẍg is the ground acceleration;
u is the control force. ks and cs are defined by

ks =
4π2m

T2
s

and (3a)

cs = 2ζs
√

mks, (3b)

where Ts and ζs are the natural period and damping ratio of the structure, respectively.
The state-space representation of (1) is shown bellow:

ż(t) = Az(t) + Bdd(t)− Buu(t), (4)

where z is the state vector; A is the system matrix; Bd and Bu are the input matrix for d and
u, respectively. z, A, Bd, and Bu are defined by the following equations:

z(t) =
[

x(t)
ẋ(t)

]
, (5a)

A =

[
0 1

−ks/m −cs/m

]
, and (5b)

Bu = Bd =

[
0

1/m

]
. (5c)

u

Controller

m
x(t)

xg

ks

Viscous
damper

Bearing

cs

Figure 1. Mathematical model (active model).

Figure 2 presents the block diagram of the control system.

A
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KP

Bu

xg(t)

u(t)

z(t)z(t)

Controller

Plant

s-1I

Figure 2. Block diagram of control system.
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Feedback control law

u(t) = KPz(t) =
[
KPD KPV

][
x(t) ẋ(t)

]T
= KPDx(t) + KPV ẋ(t)

(6)

is used, where KP is the state-feedback gain; KPD and KPV are the feedback gain for
displacement and velocity, respectively.

3. Equivalent Model

This paper defines the equivalent model as a linear spring-dashpot model (see
Figure 3), and the responses of the equivalent model are the same as the active model (a
passive model with an actuator, see Figure 1) under the same input. This section shows the
construction of the equivalent model, and theoretically clarify the relationship between the
vibration characteristics of the control system and feedback gain.

u

Controller

m
x(t)

xg

ks

Viscous
damper

Bearing

cs

m
x(t)

xg

keq

Equivalent
damping

Equivalent
stiffness

ceq

(a) (b)

Figure 3. Equivalent model of (a) control system, (b) equivalent model (x̂(t) = x(t)).

Substituting (6) into (1) yields

mẍ(t) + cs ẋ(t) + ksx(t) = d(t)− KPDx(t)− KPV ẋ(t). (7)

Representing (7) yields

mẍ(t) + ceq ẋ(t) + keqx(t) = d(t), (8)

where keq and ceq are the equivalent stiffness and the equivalent damping coefficient
(Figure 3):

keq = ks + KPD and (9a)

ceq = cs + KPV. (9b)

From (9), it can be seen that the feedback gain for displacement, KPD, affects the equiv-
alent stiffness, keq, and the feedback gain for velocity, KPV, affects the equivalent damping
coefficient, ceq. The calculation formulas for determining feedback gain to achieving the
target vibration characteristics (Teq,tar and ζeq,tar) are given below:

KPD = keq,tar − ks and (10a)

KPV = ceq,tar − cs. (10b)

Moreover, the equivalent natural angular frequency, ωeq, equivalent natural period,
Teq, and equivalent damping ratio, ζeq, are

ωeq =

√
keq

m
, (11a)

Teq =
2π

ωeq
, and (11b)



Actuators 2022, 11, 156 5 of 18

ζeq =
ceq

2mωeq
. (11c)

Using the vibration characteristics of the equivalent model determined by (11), the max-
imum responses of the control system can be estimated via response spectra without
additional numerical simulations.

4. Control-Force Spectrum

This section devises the control-force spectrum for an ASC model, which expresses
the dependency of the maximum control force on all parameters for designing the control
system. This section also uses numerical examples to check the accuracy of the proposed
control-force spectrum.

4.1. Derivation of the Control-Force Spectrum

Substituting (10) in the control law, (6), the control force can be estimated by the
following equation:

u(t) = (keq − ks)x(t) + (ceq − cs)ẋ(t). (12)

Thus, the maximum control force, umax, is

umax = max
{∣∣(keq − ks)x(t) + (ceq − cs)ẋ(t)

∣∣}. (13)

Since the phase of displacement response is usually unequal to that of velocity re-
sponse, the maximum displacement response and velocity response do not appear simulta-
neously in most cases. Therefore,

umax ≤
∣∣keq − ks

∣∣max{|x(t)|}+
∣∣ceq − cs

∣∣max{|ẋ(t)|}. (14)

From the response spectra of the earthquake, the maximum responses are estimated
without numerical simulations:

max{|x(t)|} = SD(Teq, ζeq) and (15a)

max{|ẋ(t)|} = SV(Teq, ζeq), (15b)

where SD(Teq, ζeq) and SV(Teq, ζeq) are the maximum displacement response and the
maximum velocity response refer to the displacement response spectrum and the velocity
response spectrum of the earthquake, respectively.

Substituting (15) into (14) yields

umax ≤
∣∣keq − ks

∣∣SD(Teq, ζeq) +
∣∣ceq − cs

∣∣SV(Teq, ζeq). (16)

The maximum control force, umax, divided by the weight of the structure, mg, yields
the maximum shear-force coefficient of the maximum control, Cu,max:

Cu,max =
umax

mg
≤ CuD,max + CuV,max , (17)

where

CuD,max =

∣∣keq − ks
∣∣

mg
SD(Teq, ζeq) and (18a)

CuV,max =

∣∣ceq − cs
∣∣

mg
SV(Teq, ζeq). (18b)

From (17), the shear-force coefficient of the maximum control force contains both
the displacement component, SD, and the velocity component, SV. Since the maximum
displacement and velocity do not appear at the same time in most cases, this paper uses the
square root of the sum of squares (SRSS) to estimate the maximum shear-force coefficient
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of the control force and defines the following estimation equation as the control-force
spectrum, S̃C:

S̃C(Ts, ζs, Teq, ζeq) :=
√

C2
uD,max + C2

uV,max. (19)

From (18) and (19), it can be seen that the maximum control force is estimated by
the response spectra of the earthquake (SD and SV); thus, it does not require additional
numerical simulations. The control force prediction spectrum, S̃C, is a function of the
natural period of the structure, Ts, the damping ratio of the structure, ζs, the equivalent
natural period, Teq, and the equivalent damping ratio, ζeq.

Appendix A shows the accuracy verification of the control-force spectrum, (19). From
Appendix A, the estimation errors of the presented response spectrum are less than 10%
for most cases.

4.2. Numerical Example

This section uses several earthquake waves, Taft NS, El Centro 1940 NS, JMA Kobe
NS, and Code Hachinohe, to calculate the control-force spectrum. The Code Hachinohe
is reproduced from the real earthquake wave to minimize the effects of natural periods
of the original waves. The pseudo-velocity response spectrum, pSV, of Code Hachinohe
is 100 cm/s for a structure with a damping ratio of 5% after a corner period of 0.64 s.
The phase characteristic is the same as the earthquake wave of the Hachinohe 1968 EW.
Figures 4–7 show the accelerogram and pseudo-velocity response spectrum of Taft NS, El
Centro 1940 NS, JMA Kobe NS, and Code Hachinohe.

The earthquake waves used in this section are standardized to 1.5 times Level II of the
Japan earthquake resistance design standard [20]. The peak ground acceleration (PGA) and
peak ground velocity (PGV) of the earthquakes used in this section are shown in Table 1.
Table 2 shows the parameters of the model used in this section.

Figure 8 shows control-force prediction spectra for Taft NS, El Centro 1940 NS, JMA
Kobe NS, and Code Hachinohe. From Figure 8, the following results are obtained, and the
analysis of the following results is presented at Appendix B.

1. The maximum control force decreases as the equivalent damping, ζeq, ratio increases
if Teq < 1 s.

2. The maximum control force increases as the equivalent damping ratio, ζeq, increases
if Ts = Teq.

3. The maximum control force increases as the equivalent natural period, Teq, increases
if Teq > 6 s only for the case of Code Hachinohe.

Table 1. Earthquake waves for numerical verification.

Earthquake Wave PGA [cm/s2] PGV [cm/s]

Taft NS 626.6 75.0
El Centro 1940 NS 748.5 75.0

JMA Kobe NS 667.2 75.0
Code Hachinohe 599.1 65.6

1.5 times Level II of Japan earthquake resistance design standard.

Table 2. Parameters of model for numerical verification.

Parameter Symbol Value

mass m 1.00 kg
stiffness ks 2.46 N/m

damping coefficient cs 0.03 Ns/m
Ts = 4 s, ζs = 0.01.
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(a) (b)

Figure 4. Tatf NS wave (PGV = 75.0 cm/s): (a) accelerogram, (b) pseudo–velocity response spectrum.

(a) (b)

Figure 5. El Centro 1940 NS wave (PGV = 75.0 cm/s): (a) accelerogram, (b) pseudo–velocity re-
sponse spectrum.

(a) (b)

Figure 6. JMA Kobe NS wave (PGV = 75.0 cm/s): (a) accelerogram, (b) pseudo–velocity response
spectrum.

(a) (b)

Figure 7. Code Hachinohe wave (1.5 times Level II of the Japan earthquake resistance design
standard): (a) accelerogram, (b) pseudo–velocity response spectrum.
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(a) (b)

(c) (d)

Figure 8. Control-force spectrum (Ts = 4 s, ζs = 0.01): (a) Taft NS, (b) El Centro 1940 NS, (c) JMA
Kobe NS, and (d) Code Hachinohe.

5. Design Method

This section devises a design method for PBI structures with ASC for determining the
damping ratio and natural period of the structure, and maximum control force that satisfies
these restrictions using the response spectra and control-force spectrum. This section also
uses a design example to confirm the accuracy of the design method.

5.1. Design Algorithm

Step 1. Specifies the design conditions:
design earthquake wave,
mass of the structure (m),
restrictions of the maximum responses (displacement, xlim, velocity, ẋlim, and ab-
solute acceleration,

{
ẍ + ẍg

}
lim),

restrictions of natural period and damping ratio of structure (Ts,lim and ζs,lim),
and restriction of shear-force coefficient of control force (Cu,lim).

Step 2. Uses the response spectra of the design earthquake wave to select the target
equivalent model (equivalent natural period, Teq,tar, and equivalent damping ra-
tio, ζeq,tar) that satisfies the limitations on the maximum responses set at Step 1.

Step 3. Uses the control force prediction spectrum to estimate the maximum control
force of the equivalent model selected at Step 2. If all design limitations (Ts,lim,
ζs,lim, and Cu,lim) are satisfied, specifies appropriate values for Ts and ζs, then go
to the next step. If not, go back to Step 2 and select another equivalent model.

Step 4. Calculate the stiffness and damping coefficient by the following steps:

• Calculate the target equivalent stiffness and target equivalent damping
coefficient (keq,tar and ceq,tar) by substituting Teq,tar and ζeq,tar, which were
selected at Step 2, into (11).

• Calculate the stiffness and damping coefficient of the structure (ks and cs)
by substituting Ts and ζs, which were selected at Step 3, into (3).

Step 5. Calculate the feedback gain, KP, by substituting keq,tar, ceq,tar, ks, and cs, which
were obtained at Step 4, into (10).

5.2. Design Example

Step 1. Design earthquake wave:
Code Hachinohe wave (Figure 7).

Mass of the structure:
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m = 1 kg.
Restrictions of the maximum response:

xlim = 60 cm,
ẋlim = 80 cm/s, and{

ẍ + ẍg
}

lim = 80 cm/s2.
Restrictions of natural period and damping ratio of structure:

1 s ≤ Ts,lim ≤ 4 s and
0.01 ≤ ζs,lim ≤ 0.1.

Restriction of shear-force coefficient of control force:
Cu,lim = 0.06.

Step 2. Figure 9 shows the response spectra of the Code Hachinohe wave. Note that the
blue plots in Figure 9a show the maximum responses of models with a specified
equivalent natural period and equivalent damping ratio, and the plots with the
same equivalent natural period are connected by the blue lines. From Figure 9,
it can be seen that increasing the damping ratio over 40% cannot achieve a higher
performance; thus, we do not consider the cases with a damping ratio large than
40%. We select the following equivalent model:
Teq,tar = 6 s and ζeq,tar = 0.40,
which satisfies the restrictions on the maximum responses set at Step 1.

Step 3. Figure 10 shows the control-force spectrum calculated by (19). From Figure 10,
we select the structure with the natural period Ts = 4 s and damping ratio
ζs = 0.05 that meets all restrictions set at Step 1.

Step 4. Substituting the target equivalent natural period, Teq,tar = 6 s, and target equiv-
alent damping ratio, ζeq,tar = 0.4 into (11), the value of the target equivalent
stiffness and target equivalent damping coefficient is obtained:
keq,tar = 1.10 N/m and ceq,tar = 0.84 Ns/m;.
substituting the natural period of the structure, Ts = 5 s, and damping ratio of
the structure, ζs = 0.05 into (3), the value of the stiffness of the structure and
damping coefficient of the structure is obtained:
ks = 1.58 N/m and cs = 0.13 Ns/m.

Step 5. Substituting the target equivalent stiffness, keq,tar, stiffness of the structure, ks,
target equivalent damping coefficient, ceq,tar, and damping coefficient of the
structure, cs, into (10), the feedback gain is obtained: KP = [−0.48, 0.71].

0

50

100

150

200

250

300

A

D

0 20 40 60 80

2 s

3 s

4 s
5 s

6 s
7 s 8 s

{x + xg}lim

Teq =

xlim

(a)

V

(b)

Selected model

xlim

Figure 9. Response spectra of Code Hachinohe wave: (a) SD–SA relationship, (b) SV.
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Cu,lim

Selected model

ζs = 0.01 ζs = 0.05 ζs = 0.10

Figure 10. Control-force spectrum of Code Hachinohe wave (design example).

Figure 11 shows time–history waves of responses of the model selected in the design
example of the design method. Figure 12 shows the relationship between displacement
and control force. From Figures 11 and 12, the following results are obtained:

• The responses of the control system are suppressed by ASC.
• The limitations on the maximum responses and maximum control force are met.
• The estimated maximum responses and maximum control force match

simulation results.
• The controller provides additional negative stiffness and positive damping to

the system.

Therefore, the effectiveness of the design method is validated.

Without ASC With ASC Design limitation Estimation

(a) (b)

(c) (d)

Figure 11. Time–history wave of design example (Code Hachinohe, Ts = 5 s, ζs = 0.05, Teq = 6 s,
ζeq = 0.40): (a) displacement response, (b) velocity response, (c) absolute acceleration response,
and (d) shear-force coefficient of control force.
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Figure 12. Force–displacement loop: shear-force coefficient of control force.

6. Conclusions

This paper constructed the equivalent model to theoretically express the dynamic
characteristics of feedback control systems. The maximum responses of feedback control
systems are estimated via response spectra of the earthquake wave. Moreover, this paper
devised the control-force spectrum, which expresses the dependency of the maximum
control force for feedback control systems on the maximum responses. Thus, using the
presented equivalent model and control-force spectrum, the maximum control force is
theoretically estimated without additional numerical simulations. Numerical examples
have shown that the estimation errors of the control-force prediction spectra are less than
10% for most cases. This paper also developed the design method, which illustrates the
possible design area of the feedback gain and building, satisfying the design limitations and
eliminating the trial-and-error approaches and numerical simulations. The effectiveness
of the proposed design method was validated via a numerical design example. From the
numerical examples, this paper clarified the following six points:

(1) If Teq = Ts, there are no estimation errors for all cases. The reason for this is that the
control force only contains the velocity component when Teq = Ts.

(2) Since the phase difference usually occurs between the displacement and velocity,
the estimation error may occur if Teq 6= Ts.

(3) The maximum control force decreases as the equivalent damping ratio increases in
the resonance range.

(4) The maximum shear-force coefficient of control force increases as the equivalent
damping ratio, ζeq, increases if Teq = Ts.

(5) The responses of the design example are suppressed by ASC.
(6) The controller of the design example provides additional negative stiffness and

positive damping.
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Appendix A. Accuracy Verification of the Control-Force Spectrum

This section uses the FEMA P695 wave list [21] to verify the accuracy of the control-
force spectrum, S̃C. Table A1 shows the information of the FEMA P695 wave list. The
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parameters of the models used in this section are shown below:

Ts: 2 s, 4 s, and 6 s;
ζs: 0.01 and 0.05;
Teq: 0.01∼10 s per 0.01 s;
ζeq: 0.1, 0.3, 0.5, and 0.7.

Table A1. FEMA P695 wave list [21].

No. Name Recording Station Year-M. PGA [cm/s2] PGV [cm/s]
comp. 1 comp. 2 comp. 1 comp. 2

1 Northridge Beverly
Hills—Mulhol 1994-6.7 407.00 506.00 58.89 62.57

2 Northridge
Canyon

Country—
WLC

1994-6.7 344.00 472.00 22.00 44.86

3 Duzce Bolu 1999-7.1 713.00 806.00 56.43 62.03
4 Hector Mine Hector 1999-7.1 260.00 330.00 28.52 41.67
5 Imperial Valley Delta 1979-6.5 233.00 344.00 25.93 32.93

6 Imperial Valley El Centro
Array #11 1979-6.5 357.00 372.00 34.41 42.09

7 Kobe Nishi—Akashi 1995-6.9 499.00 493.00 37.24 36.54
8 Kobe Shin—Osaka 1995-6.9 238.00 208.00 37.77 27.85
9 Kocaeli Duzce 1999-7.5 306.00 351.00 58.80 46.33

10 Kocaeli Arcelik 1999-7.5 214.00 147.00 17.67 39.53

11 Landers Yermo Fire
Station 1992-7.3 240.00 148.00 51.27 29.72

12 Landers Coolwater 1992-7.3 278.32 408.66 275.47 433.74
13 Loma Prieta Capitola 1989-6.9 518.00 434.00 34.94 29.16

14 Loma Prieta Gilroy Array
#3 1989-6.9 544.00 360.00 35.66 44.61

15 Manjil Abbar 1990-7.4 504.70 487.06 42.41 50.69

16 Superstition
Hills

El Centro Imp.
Co. 1987-6.5 351.00 253.00 46.30 40.82

17 Superstition
Hills

Poe Road
(temp) 1987-6.5 437.00 294.00 35.65 32.74

18 Cape
Mendocino

Rio Dell
Overpass 1992-7.0 378.00 538.00 43.72 41.81

19 Chi-Chi CHY101 1999-7.6 346.00 431.00 70.52 114.93
20 Chi-Chi TCU045 1999-7.6 487.06 348.88 12.67 20.54

21 San Fernando
LA—

Hollywood
Stor

1971-6.6 206.00 171.00 18.81 14.81

22 Friuli Tolmezzo 1976-6.5 344.00 309.00 22.00 30.75

Two methods, the absolute sum (ABS) method and the square root of the sum of
squares (SRSS) method, are used to compare the estimation errors:

S̃C,ABS := CuD,max + CuV,max and (A1a)

S̃C,SRSS :=
√

C2
uD,max + C2

uV,max. (A1b)

We select the cases of Ts = 4 s, ζs = 0.01, component 1 of Imperial Vally wave of El
Centro Array #11 recording (FEMA ID No. 6) and component 1 of Kobe wave of Nishi-
Akasaki recording (FEMA ID No. 7) to show the estimation errors. Figure A1 presents the
estimation errors of the ABS method, and Figure A2 presents those of the SRSS method.
Furthermore, the estimation errors, e, are calculated by the following equation:

e =
S̃C − SC

SC
× 100% (A2)

where SC is the shear-force coefficient of the maximum control force calculated by the nu-
merical simulations (real value). From Figures A1 and A2, the following results are obtained:
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(1) The estimation error of the ABS method is obviously larger than that of the
SRSS method.

(2) The estimation error of the ABS method is always larger than 0.
(3) The estimation error of the SRSS method is less than 20% for the two selected cases.
(4) There are no estimation errors for both the ABS method and SRSS method if Teq = Ts

(4 s in Figures A1 and A2) [19].

Figure A3 shows the mean value of the estimation errors, ē, and the standard derivation
of the maximum estimation errors, σe, using the ABS method and the SRSS method for
all equivalent natural periods (Ts = 4 s and ζs = 0.01). In addition, the mean value and
the standard derivation of the estimation errors for all equivalent natural periods, Teq, are
calculated by

ē =
∑ e(Teq)

NT
and (A3)

σe =

√
∑
[
e(Teq)− ē

]2
NT

, (A4)

where NT is the number of cases of the equivalent natural period (in this section, NT is
1000). From Figure A3, the following results are obtained:

(1) The mean value and standard derivation of the maximum estimation errors of the
SRSS method are larger than that of the ABS method.

(2) The estimation errors of the SRSS method are less than 20% for most cases.

Table A2 shows the mean value of ē, ēall, and the mean value of σe, σe,all, for all waves
of the ABS method and SRSS method:

ēall =
∑ ē(FEMA ID No.)

NID
(A5)

σ̄e,all =
∑ σe(FEMA ID No.)

NID
(A6)

where NID is the number of cases of the waves (in this section NID is 44).
From Table A2, the following results are obtained:

(1) Both the mean value of the estimation error and the standard derivation of the
estimation error of the SRSS method are obviously less than that of the ABS method.

(2) The mean values of the standard derivation of the estimation error of the SRSS method
for each case are less than 8%.

Thus, this paper uses the SRSS method to estimate the maximum control force.

(a) (b)

Figure A1. Accuracy of S̃C,ABS (Ts = 4 s, ζs = 0.01): (a) component 1 of No. 6 wave, (b) component 1
of No. 7 wave.
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(a) (b)

Figure A2. Accuracy of S̃C,SRSS (Ts = 4 s, ζs = 0.01): (a) component 1 of No. 6 wave, (b) component 1
of No. 7 wave.

Component 1 Component 2

SC,ABS

SC,SRSS

(a)

(b)

(c)

Figure A3. Cont.
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(d)

Figure A3. Estimation error of control-force spectrum of FEMA waves (Ts = 4 s, ζs = 0.01, Teq:
0.01∼10 s per 0.01 s): (a) ζeq = 0.10, (b) ζeq = 0.30, (c) ζeq = 0.50, and (d) ζeq = 0.70.

Table A2. Standard derivation of estimation errors for 44 cases.

Ts ζs ζeq
ABS Method SRSS Method

ēall σ̄e,all ēall σ̄e,all

2 s

0.01

0.10 10.79% 11.92% −0.04% 2.26%
0.30 21.21% 14.00% −0.26% 4.46%
0.50 25.93% 14.22% −0.30% 6.04%
0.70 27.74% 14.26% −0.64% 6.86%

0.05

0.10 7.98% 10.17% −0.04% 1.69%
0.30 17.36% 15.31% −0.09% 4.07%
0.50 23.30% 14.59% −0.23% 5.46%
0.70 26.16% 14.31% −0.52% 6.51%

4 s

0.01

0.10 21.47% 12.46% −0.27% 4.16%
0.30 31.56% 14.05% 0.04% 6.82%
0.50 30.23% 15.89% 0.49% 7.88%
0.70 26.06% 15.33% 0.23% 7.45%

0.05

0.10 14.52% 13.42% −0.10% 3.10%
0.30 30.31% 13.81% −0.07% 6.35%
0.50 30.72% 15.73% 0.55% 7.76%
0.70 26.86% 15.45% 0.30% 7.52%

6 s

0.01

0.10 27.40% 12.53% −0.32% 5.60%
0.30 29.21% 15.03% −0.26% 7.30%
0.50 23.45% 15.54% −0.28% 6.70%
0.70 19.23% 14.82% 0.16% 6.25%

0.05

0.10 22.58% 12.32% −0.23% 4.22%
0.30 30.29% 14.83% −0.22% 7.38%
0.50 24.32% 15.58% −0.27% 6.85%
0.70 19.79% 14.88% 0.15% 6.37%

Teq = 0.01 ∼ 10 s per 0.01 s (1000 data for each wave).

Appendix B. Analysis of Numerical Examples of Control-Force Spectrum

This section analyzes the reason for the results for the numerical examples of the
control-force spectrum (Figure 8) using response spectra. Figures A4–A7 present the
displacement response spectra, SD, and velocity response spectra of Taft NS, El Centro 1940
NS, JMA Kobe NS, and Code Hachinohe, respectively.
Result 1:

The maximum control force decreases as the equivalent damping ratio, ζeq, increases if
Teq < 1 s.
Reason for result 1:

From Equation (19), the maximum control force increases as the maximum displace-
ment response or maximum velocity response increases. From Figures A4–A7, it can be seen
that the maximum displacement response and the maximum velocity response decrease as
the equivalent damping ratio increases. Thus the maximum control force decreases as the
equivalent damping ratio increases if Teq ≤ 1 s.
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Result 2:
The maximum control force increases as the equivalent damping ratio, ζeq, increases, if

Ts = Teq.
Reason for result 2:

The value of keq is equal to ks if Teq = Ts. Therefore, from (18)

CuD,max = 0 (A7)

is obtained. Substituting (A7) into (A8) yields

S̃C(Ts, ζs, Teq=Ts, ζeq)

= CuV,max =

∣∣ceq − cs
∣∣

mg
SV(Teq, ζeq)

(A8)

Since the values of m, g, cs, and SV(Teq), ζeq in (A8) are constant for one case, the value
of S̃C increases as equivalent damping increases.
Result 3:

The maximum control force increases as the equivalent natural period, Teq, increases if
Teq > 6 s only for the case of Code Hachinohe.
Reason for result 3:

The Code Hachinohe is a code design wave. The maximum displacement response of
a structure increases as the equivalent natural period increases under the Code Hachinohe
wave. Since the maximum control force increases as the maximum displacement response,
the maximum control force increases as the equivalent natural period, Teq, increases only
for the case of Code Hachinohe.

(a) (b)

Figure A4. Response spectra of Tatf NS: (a) displacement response spectrum and (b) velocity re-
sponse spectrum.

(a) (b)

Figure A5. Response spectra of El Centro 1940 NS: (a) displacement response spectrum and (b) veloc-
ity response spectrum.



Actuators 2022, 11, 156 17 of 18

(a) (b)

Figure A6. Response spectra of JMA Kobe NS: (a) displacement response spectrum and (b) velocity
response spectrum.

(a) (b)

Figure A7. Response spectra of Code Hachinohe: (a) displacement response spectrum and (b) velocity
response spectrum.
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