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Abstract: Recently, there have been significant developments in the field of vibration energy har-
vesters to feed sensors for structural health monitoring in aeronautics and other high technology
fields. Within the framework of the EU InComEss project, new eco-friendly piezoelectric materials
are under development. A foreseen application is vibration energy harvesting from the wing slats
of aircraft. Semi-analytical models of the vibrating slat make it possible to estimate the maximum
voltage that can be generated by a piezoelectric patch bonded to a slat surface. A more detailed
analysis must consider details of the three-dimensional geometry of both the harvester and the
bonding layer. This can only be carried out with multiphysics finite element software. A finite
element model of a whole slat would require a large computational effort as millions of elements
are typically needed to model very thin piezoelectric layers. To simplify this analysis, an integrated
analytical–numerical method is proposed in this paper. A large-scale analytical model of the whole
slat was used to calculate loads on the portion of the slat where a piezoelectric patch was attached.
Then, a small-scale finite element model of the portion of the slat with the piezoelectric patch was
used to calculate the open circuit voltage generated by the patch. The response of the harvester to
random excitation, typical of aeronautic applications, was calculated. The effects of the details of the
harvester design on the generated voltage were analyzed and discussed.

Keywords: mechanical vibrations; strain energy harvesting; piezoelectric material; finite element
model; structural health monitoring; aircraft; slat

1. Introduction

Vibration energy harvesting by means of piezoelectric (PE) materials is a promis-
ing technology for feeding remote sensor nodes and other microelectronic equipment,
especially when weight, space and accessibility constraints are important. In aeronautics,
several applications of vibration energy harvesting have been proposed [1,2], but the most
important application is feeding sensors for structural health monitoring (SHM) [3–5]. In
the framework of the EU InComEss project [6], new lead-free piezoelectric materials are
under development. A foreseen application is vibration energy harvesting from wing slats.
Slats are movable aerodynamic surfaces on the leading edge of the wing that increase
the lift force on the wing when they are deployed. In [7], an analytical model based on
the modal superposition approach [8] was used to simulate PE harvesters mounted on a
deployed slat. A comparison was made between the performance of two possible design
solutions: cantilever harvesters and PE patches directly bonded to the slat surface. Numeri-
cal results showed that both solutions were able to generate relevant voltage and power.
The cantilever harvester optimally tuned to the most excited mode of vibration of the slat
showed the best performance, since it exploited the resonance phenomenon, but this device
required more mass, volume and stress inside the brittle piezoelectric material than the PE
patch. Because the mass, volume and reliability of PE devices are very important issues in
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slat case-studies, the PE patch was selected for further development within the framework
of the InComEss project. The deployed slat in [7] showed the largest vibrations; however,
most of the energy could be harvested during the flight when the slat was retracted. The
analytical model presented in [7] was extended in this study to investigate this operating
condition. Moreover, to analyze the effect of details such as the three-dimensional geometry
of the PE patch and thin adhesive layers used to bind the PE patch to the slat, an integrated
approach combining a large-scale analytical model and a small-scale finite element model
is proposed.

The large-scale model, implemented in MATLAB®, is fully analytical and is based
on the modal expansion approach. It describes a whole slat excited by the broadband
acceleration spectrum typical of wings, and it enables the calculation of the bending
moment and shear force acting on the portion of the slat where the harvester is mounted.
The contact between the slat and the wing edge is simulated by means of a distributed
stiffness, and the variation in the value of the contact stiffness makes it possible to simulate
both retracted and deployed slats.

The small-scale model, implemented in COMSOL Multiphysics®, is numerical and is
based on a multiphysics finite element (FE) method. It describes the sandwich structure of
the harvester mounted on an equivalent portion of the slat, which is excited by the loads
calculated by means of the large-scale model. This makes it possible to compute the voltage
generated by the PE material considering the effects of the adhesive layer and of the other
layers that compose the sandwich.

The paper is organized as follows: Section 2 describes the problem and the structure
of the combined analytical–numerical approach. Section 3 provides the input data: slat di-
mensions, PE patch dimensions, mechanical properties, and electrical properties. Section 4
deals with the large-scale analytical model of the whole slat. Section 5 deals with the
small-scale FE model. Section 6 shows the numerical results and, in particular, the effects
of the adhesive thickness on the voltage generated by the harvester. Finally, conclusions
are drawn.

2. Integrated Analytical–Numerical Method

The slat is the mobile leading-edge flap of a wing of an aircraft, which is operated
to increase the angle of attack of the wing during low-speed maneuvers, such as take-off
and landing. The slats are retracted during flight and are forced by the aerodynamic loads
to remain in contact with the leading edge of the wing. The deployment and retraction
of the slat is performed by servomechanisms. In the framework of this research, it was
assumed that the slat is moved by two servomechanisms, so the whole deployed slat could
be schematized as a pinned beam with overhangs, as shown in Figure 1a. A distributed
stiffness was added to allow for the contact force between the wing and the retracted slat.
Figure 1b shows the scheme of the retracted slat. The slat vibrates since it is excited by
the wing through the slat supports. The vibration levels of the supports are equal to the
vibration levels of the wing’s leading edge corresponding with the connecting points. The
slat is not a rigid body; hence, it deforms due to inertia force. Figure 2 shows that the
vibration levels at the supports are different, since vibrations along the wing of the aircraft
increase from the root towards the tip of the wing [7]. In Figure 2, wr(x, t) represents the
displacement of the deformed slat with respect to the undeformed configuration and a(t)
is the acceleration level of one of the two supports of the slat.
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Figure 1. (a) Scheme of the deployed slat; (b) scheme of the retracted slat.
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Figure 2. Vibrating slat. The inertia force causes an elastic deformation with respect to the rigid
body motion.

From a physical point of view, the slat can be modelled as a pinned beam excited by a
trapezoidal distribution of forces (as proposed in [7]) which represents the inertia force due
to the vibration of the wing; see Figure 3.
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Figure 3. Physical model of the slat excited by the trapezoidal distribution of the inertia force.

In aeronautics, acceleration levels are given in the frequency domain according to
standard specifications. In this research, the standard specification RTCA-DO-160 CAT S
curve E was adopted because it refers to wing components. Figure 4 shows the PSD of the
acceleration of the external support of the slat. Therefore, a frequency domain analysis
was needed to calculate the power spectral density (PSD) of the voltage generated by a
PE patch mounted on the slat from the acceleration PSD, and then the voltage RMS value
could be obtained with Parseval’s Theorem.
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Figure 4. PSD of the acceleration of the external support of the slat.

The piezoelectric patch is very thin and flexible and covers a very small part of the
whole slat. Therefore, the vibrations of the slat caused by the motion of the supports are
not influenced by the presence of the patch. Conversely, the deformation of the portion of
the slat skin where the patch is attached determines the strain inside the PE patch and the
generated voltage. The adhesive and protective layers that are inserted between the slat
skin and the PE patch may also influence the generated voltage. For the above-mentioned
reasons, a computational method based on the synergic use of a large-scale model and a
small-scale model was developed. Figure 5 shows a flow chart that describes the steps and
the interactions between the large-scale and small-scale models.
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The large-scale model refers to the whole slat, is based on the modal expansion
approach, and is implemented in MATLAB. The aim of this model is to calculate the
frequency response functions (FRFs) of the points along the slat caused by a harmonic
distributed inertia force having the shape depicted in Figure 3. In particular, the FRFs
between bending moment, shear force, and slat acceleration are obtained. They enable the
calculation of the forces and moments acting on every portion of the slat.

The small-scale model includes the PE patch and the portion of the slat where the
patch is attached. It is developed with the FE method and implemented in COMSOL. The
actual cross-section of the slat, which is rather complex, is transformed into an equivalent
cross-section that generates in the slat skin the same strain pattern as the actual cross-section
when the same loads are present. The small-scale FE is used to calculate, for a series of
frequencies, the harmonic response of the system stimulated by the inertia distributed
force and by the moments and forces deriving from the large-scale model at the assigned
frequency. The fitting of the results of these analyses gives the numerical FRF (FRFv( f ))
between slat acceleration and the open circuit voltage generated by the PE patch. The
FRFv( f ) relates the PSD of the OCV to the PSD of the applied acceleration:

PSDv( f ) = |FRFv( f )|2 · PSDa( f ). (1)

The open circuit voltage RMS value can be obtained from Parseval’s Theorem as

VRMS =

√∫ f2

f1

PSDv( f ) d f . (2)

The OCV is an important merit figures since it allows for the evaluation of the electric
performance of the harvester, as discussed in [9].

3. Input Data: Slat and PE Patch Properties

The slat considered in this paper is built by the aerospace company Sonaca Group. It is
made of a composite material and has the cross-section shown in Figure 6. The properties
of the material and the cross-section, provided by Sonaca, are summarized in Table 1.
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Table 1. Mechanical properties of the slat.

Parameter Unit Value

Young’s modulus (E) GPa 45
Density (ρ) kg m−3 1800

Cross-section area (A) m2 2347.6× 10−6

Cross-section moment of inertia (I) m4 2, 615, 710.7× 10−12
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A macro fiber composite (MFC) piezoelectric patch manufactured by Smart Material
GmbH (patch M8514—P2 in the datasheet of [10]) and directly bonded to the slat skin was
considered here. Figure 6 shows the slat, the PE patch, and the global reference frame.
The y-axis is aligned to the neutral axis of the slat cross-section. The center of the patch is
located at xpc = 1.45 m and zn = 0.025 m.

Figure 7 represents the scheme of the M8514—P2 patch and shows the local reference
frame and the main dimensions of the patch. The patch is designed to exploit the strain
along its longitudinal direction (axis 1), and it is poled along the direction perpendicular to
its middle plane (axis 3).
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Figure 7. Scheme of M8514—P2 patch (main dimensions and the local reference frame are depicted).

Table 2 shows the values of the geometric parameters depicted in Figure 7.

Table 2. Geometrical parameters of the PE patch.

Parameter Unit Value

Patch overall length (Lp,o) m 0.100
Patch active length (Lp,a) m 0.085

Patch overall width (wp,o) m 0.018
Patch active width (wp,a) m 0.014

Patch thickness (Hp) m 0.0003
Coordinate xp1 m 1.4075
Coordinate xpc m 1.450
Coordinate xp2 m 1.4925

To exploit the largest strain values, the PE patch is oriented to align its 1-axis with the
x-axis of the global reference frame of the slat. Indeed, the slat vibrates in the z-direction due
to the transverse load distribution; hence, the axial strain caused by the bending moment
distribution is the main contribution.

In Table 3, the electromechanical properties of the considered PE patch are presented.

Table 3. Electromechanical properties of the PE patch.

Parameter Unit Value

Compliance constant along 1-axis at
constant electric field (sE

11) GPa−1 3.296× 10−11

Piezoelectric strain constant (d31) C N−1 −210× 10−12

Capacitance (Cp) F 84.04 × 10 −9

4. Large-Scale Analytical Model of the Slat

The variable inertia force that excites the slat can be expressed as

q(x, t) = ρAg(x)a(t) (3)
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where g(x) is a shape function that correlates the acceleration of any point of the slat with
the acceleration a(t) of one of its supports (the external in the present study); see Figure 2.
As demonstrated in [7], the shape function is

g(x) =
[

α

L2
(L1 + L2 − x) +

1
L2

(x− L1)

]
, (4)

where α is a parameter related to the slope of the trapezoidal distribution and L1 and L2
are the length of the spans of the slat; see Figure 1a. Here, the parameter α was set to 0.05,
while L1 = 0.81 m and L2 = 1.38 m [7].

The vibrating slat is considered to be a Euler–Bernoulli beam with constant properties:
modulus of elasticity E, cross-section moment of inertia I, mass density ρ, cross-section
area A, and coefficient of strain-rate damping cs (a proportional damping is assumed). The
equation of the forced vibrations of each of the three spans in Figure 1a (k = 1, 2, 3) is

EI
∂4wr,k(xk, t)

∂xk
4 + cs I

∂5wr,k(xk, t)
∂x4

k∂t
+ ρA

∂2wr,k(xk, t)
∂t2 = −ρAg(xk)a(t)− kxwr,k(xk, t), (5)

where kx is the distributed stiffness. The backward electromechanical coupling term [11] is
not considered in Equation (5) since the length of the PE patch is much smaller than the
overall slat length and because the PE patch is much thinner than the slat.

The first steps of the modal expansion approach are the calculations of the natural
frequencies and modes of vibration of the undamped system.

The free undamped vibrations for the retracted slat are described by the following
homogeneous equation of motion:

EI
∂4wr,k(xk, t)

∂x4
k

+ ρA
∂2wr,k(xk, t)

∂t2 + kxwr,k(xk, t) = 0. (6)

The relative displacement can be expressed as the product of a spatial function ψk,
which represents the deformed shape of the slat, and a time function f [8]:

wr,k(xk, t) = ψk(xk) f (t). (7)

By inserting Equation (7) in Equation (6) and separating the variables, it becomes(
EI
ρA

∂4ψk(xk)

∂x4
k

+ kx
ρA ψk(xk)

)
ψk(xk)

= −
..
f (t)
f (t)

(8)

The right-hand side of Equation (8) has the dimension of a squared angular frequency:(
EI
ρA

∂4ψk(xk)

∂x4
k

+ kx
ρA ψk(xk)

)
ψk(xk)

= ω2. (9)

After some algebraic manipulations, the partial differential equation for the spatial
component ψk of wr,k is obtained:

∂4ψk(xk)

∂x4
k
− γ4ψk(xk) = 0, (10)

where

γ4 =

(
ρAω2

EI
− kx

EI

)
, (11)
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includes the unknown natural angular frequencies. The solution of differential Equation
(10) for each of three spans of the slat (k = 1, 2, 3) in Figure 1a takes the form:

ψk(xk) = Aksinh(γxk) + Bkcosh(γxk) + Cksin(γxk) + Dkcos(γxk), (12)

where Ak, Bk, Ck and Dk are unknown coefficients. By imposing the boundary conditions
on the three spans of the slat and solving the corresponding eigenvalue problem, as
discussed in [7], an infinite discrete set of values γi is found and the corresponding values
(Ak,i, Bk,i, Ck,i, and Dk,i) of the unknown coefficients are calculated. From Equation (12),
the ith mode of vibration of the slat becomes

ψk,i(xi) = Ak,isinh(γixk) + Bk,icosh(γixk) + Ck,isin(γixk) + Dk,icos(γixk), k = 1, 2, 3 (13)

The corresponding natural frequency fn,i of the ith mode of vibration of the slat can be
calculated with Equation (11) as follows:

fn,i =
1

2π

√
γ4

i
EI
ρA

+
kx

ρA
. (14)

Equation (13) shows that the slat has the same modes of vibrations when deployed
or retracted. On the other hand, Equation (14) shows that the modes are characterized
by different natural frequencies due to the dependence on kx. Therefore, the interaction
between the retracted slat and the wing determines an increase in the natural frequency of
each mode. Figure 8 represents the natural frequencies of the first five modes of vibration
of the retracted slat as a function of the distributed stiffness kx considering the mechanical
properties of the composite slat shown in Table 1.
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the distributed stiffness kx.

Figure 8 shows that when the distributed stiffness increases, all the natural frequencies
of the modes converge to the same value, which means that the dynamics of the slat are
close to those of a rigid body mounted on the distributed stiffness kx. On the contrary,
when the distributed stiffness is much smaller than the flexural stiffness of the slat, it has a
negligible effect on the natural frequencies.
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The relative displacement wr(x, t) of any point of the slat can be expressed by using
the modal expansion approach as a linear combination of the modes of vibration of the
slat [8,11,12]:

wr(x, t) =
+∞

∑
i=1

φi(x)ηi(t), (15)

where φi(x) is the ith mass-normalized mode of vibration (that derives from the non-
normalized mode [7]) and ηi(t) is the ith modal coordinate. Hence, the equation of motion
of the ith modal coordinate is obtained by introducing Equation (15) in Equation (5) and
applying the orthogonality conditions [9,11]:

..
ηi(t) + 4π ζi fn,i

.
ηi(t) + 4π2 f 2

n,i ηi(t) = −
∫ L

0
ρA φi(x) g(x)a(t)dx, (16)

where fn,i and ζi are the natural frequency and the damping ratio of the ith mode of
vibration, respectively.

In the frequency domain, the modal coordinates ηi(t) and the acceleration a(t) are
expressed as

ηi(t) = η0,i eiωt, a(t) = a0 eiωt. (17)

The frequency response function (FRF) between the modal coordinate amplitude η0,i
and the amplitude of the acceleration a0 is

FRFηi ( f ) =
η0,i

a0
= −

∫ L
0 ρAφi(x)g(x)dx

4π2 f 2
n,i + 8π2iζi fn,i f − 4π2 f 2

. (18)

Therefore, only considering N modes of vibration of the slat, if Equation (18) is inserted
into Equation (15), the FRF between the amplitude of the relative displacement of any point
of the slat and the acceleration a0 can be calculated as follows:

FRFw(x, f ) =
wr,0

a0
=

N

∑
i=1

φi(x)FRFηi ( f ). (19)

The bending moment and the shear force along the slat are related to the relative
displacement wr(x, t) by the following equations:

M(x, t) = EI
∂2wr(x, t)

∂x2 , (20)

T(x, t) = EI
∂3wr(x, t)

∂x3 , (21)

With harmonic excitation, the bending moment and shear force can be described in
the frequency domain using the displacement FRF:

M0(x, f ) = EI
∂2

∂x2

(
N

∑
i=1

φi(x)FRFηi ( f )

)
a0, (22)

T0(x, f ) = EI
∂3

∂x3

(
N

∑
i=1

φi(x)FRFηi ( f )

)
a0, (23)

Finally, the bending moment and shear force FRFs are defined as

FRFM(x, f ) = EI
N

∑
i=1

∂2φi(x)
∂x2 FRFηi ( f ), (24)
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FRFT(x, f ) = EI
N

∑
i=1

∂3φi(x)
∂x3 FRFηi ( f ). (25)

Figure 9 shows the magnitude of the FRFs related to the bending moment and shear
force for different values of the distributed stiffness calculated at the center of the PE patch
(xpc). The magnitude of the bending moment FRF in Figure 9 is characterized by peaks at
the natural frequencies of the odd modes, whereas the magnitude of the shear force FRF is
characterized by peaks at the natural frequencies of the even modes. Indeed, the bending
moment distribution corresponds to symmetric loads acting on a portion of the slat, so it
only excites the odd modes, whereas the shear force corresponds to an anti-symmetric load
and only excites the even modes.
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5. Small-Scale Model of a Portion of the Slat with the PE Patch
5.1. Equivalent Model of a Portion of the Slat

Typically, a PE patch has a longitudinal dimension that is much shorter than the
length of the host structure. Moreover, the cross-section dimensions of the harvester are
significantly smaller than those of the cross-section of the structure. These large differences
in the geometrical dimensions represent an important issue related to the development of
the FE model. Indeed, many very thin elements are required to discretize the system in the
region close to the PE patch, resulting in a large computational effort. To overcome this
drawback, a portion of the vibrating structure containing the PE patch is first considered.
Then, the cross-section of this portion is reduced to a simpler and smaller equivalent
cross-section to achieve a better aspect ratio between the dimensions of the equivalent
cross-section and the ones of the patch.

Figure 10a shows that in each portion of the slat, the external loads are the distributed
load q due to inertia force (Equation (3)), the bending moment M, and shear force T exerted
by the rest of the slat (subscripts R and L refers to the left and right sides, respectively). The
bending moment ML and shear force TL can be calculated from MR, TR and q by means of
the equilibrium equations. Since the bending moment ML and shear force TL can also be
exerted by the clamp of a cantilever beam, Figure 10b shows that the slat portion can be
converted to an equivalent cantilever beam with the same length and forced by the same
external loads acting on that portion of the slat. It is worth noticing that the slat portion
and the cantilever beam have the same bending moment distribution. The same bending
moment distribution causes the same curvature and the same strain and stress distribution,
which guarantees the same performance of the PE patch.
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Figure 10. (a) Equilibrium of a portion of the slat.; (b) equilibrium of the equivalent cantilever beam.

The OCV generated by the PE patch depends on the strain distribution within the
patch. Since the PE patch is very thin compared with the slat thickness, it is assumed that
the strain distribution within the patch coincides with the strain distribution of the slat just
below the patch. In this scenario, the OCV generated by the PE patch bonded to the slat
can be reproduced by simply bonding the patch to an underlayer, which reproduces the
same strain distribution of the slat just below the patch. By assuming a 1D approximation,
the strain distribution S(x) along the longitudinal direction of the slat subject to a bending
moment distribution M f (x) can be approximated as

S(x, t) =
M f (x, t)

WR
, (26)

where WR = EI/zn is the module of resistance of the slat cross-section, zn is the distance
from the neutral axis of the slat, E is the Young’s modulus, and I is the moment of inertia
of the cross-section of the slat. Equation (26) shows that two structures loaded by the
same bending moment distribution with different cross-section and Young’s modulus
values may provide the same strain distribution if they have the same module of resistance.
Therefore, it is possible to assume that the equivalent beam has a rectangular cross-section
and that the PE patch is bonded to the upper surface of the beam. Figure 11a shows
the actual cross-section of the slat, and Figure 11b schematizes the cross-section of the
equivalent beam.
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Figure 11. (a) Actual slat structure cross-section; (b) cross-section of the equivalent beam.
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The module of resistance WR,eq of the equivalent beam with rectangular cross-section is

WR,eq =
Eeq Ieq

zn,eq
=

EeqBeqH2
eq

6
, (27)

where Beq and Heq are the width and thickness of the equivalent beam, respectively, and
zn,eq = Heq/2. Width and thickness

(
Beq and Heq

)
are defined to obtain a suitable aspect

ratio between the cross-sections of the beam and the PE patch. Consequently, the module
of resistance WR,eq only equals the module of resistance WR of the cross-section of the slat if
the Young’s modulus of the equivalent beam takes this value:

Eeq =
6EI

znBeqH2
eq

. (28)

5.2. Finite Element Model

The numerical FE model of the patch can be implemented in COMSOL Multiphysics®.
As previously mentioned, the equivalent beam has a rectangular cross-section, and

the PE patch is bonded to the top side of the beam. Table 2 shows that the PE patch has an
overall length and width of 0.1 m and 0.018 m, respectively. However, the active portion
of the patch, containing the piezoelectric material, has smaller dimensions. Indeed, the
active portion is enclosed by a polymeric material (Kapton). The length of the equivalent
beam was chosen to be slightly longer than the active portion of the PE patch. The width
of the beam is equal to the width of the patch. The determination of the thickness of the
equivalent beam must consider that the FE model will be used to perform a frequency
domain analysis. The equivalent cantilever beam has its own natural frequency ( fn,eq) that
can be excited by the applied loads but does not correspond to an actual natural frequency
of the slat:

fn,eq =
1.8752

2πL2
eq

√
EeqBeqH3

eq

12ρeq Aeq
. (29)

Hence, the thickness Heq was defined to have a natural frequency of the equivalent
beam far from the range of frequency of interest (above 2000 Hz). Table 4 shows the
geometrical features of the FE model.

Table 4. Geometrical features of the FE model.

Parameter Unit Value

Patch length (Lp) m 0.085
Patch width (wp) m 0.014

Patch thickness (Hp) m 0.0003
Beam length (Leq) m 0.090
Beam width (weq) m 0.014

Beam thickness (Heq) m 0.002

The cross-section area and moment of inertia of the equivalent beam can be easily
calculated using the formulas of the rectangular cross-section. Finally, the equivalent
Young’s modulus is obtained from Equation (28). The density of the beam is determined by
assuming the mass per unit length µeq of the beam equal to that of the slat µ, yielding

ρeq =
µ

Aeq
. (30)

Table 5 presents the mechanical parameters of the equivalent beam.
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Table 5. Mechanical properties of the equivalent cantilever beam.

Parameter Unit Value

Young’s modulus (Eeq) GPa 5.00× 1014

Density (ρeq) kg m−3 1.51× 105

Cross-section area (Aeq) m2 2.80× 10−5

Cross-section moment of inertia (Ieq) m4 9.33× 10−12

Natural frequency ( fn,eq) Hz 2297

Since the geometry of the equivalent beam in Figure 11b is symmetric with respect to
the x–z plane, the model only considers one half of the system to reduce the computational
effort; see Figure 12a.
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where  𝑖  are the mechanical strain components (6 × 1),  𝑖  represents the electric dis-

placement components (3 × 1),  𝑗 represents the mechanical stress components (6 × 1), 

𝐸𝑗  represents the electric field components (3 × 1), 𝑠𝑖𝑗
𝐸  represents the compliance con-

stants in a constant electric field (6 × 6), 𝑑𝑖𝑗 represents the piezoelectric strain constants 

(3 × 6), and 𝜀𝑖𝑗
  represents the permittivity constants at constant stress (3 × 3). Therefore, 

the full characterization of a piezoelectric material requires 63 material constants. The fol-

lowing assumptions that are usually made when thin piezoelectric layers are considered 

[13] can be introduced: 

1. Electrodes of the PE material acting along the 3-axis of the local reference frame of 
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Figure 12. (a) Boundary conditions for mechanics.; (b) boundary conditions for electrostatics.

The constitutive equations of a PE material allow for electromechanical coupling in
the multiphysics problem. The strain-charge and stress-forms are available in COMSOL
Multiphysics®. In this analysis, the strain-charge form was adopted, since it leads to a
drastic reduction in the number of material constants when some assumptions are made.
The constitutive equations in the strain-charge form are as follows [12]:
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
=


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11 sE

12 sE
13 sE

14 sE
15 sE
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sE

21 sE
22 sE

23 sE
24 sE

25 sE
26 d12 d22 d32

sE
31 sE

32 sE
33 sE

34 sE
35 sE

36 d13 d23 d33
sE

41 sE
42 sE

43 sE
44 sE

45 sE
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sE
51 sE

52 sE
53 sE

54 sE
55 sE

56 d15 d25 d35
sE

61 sE
62 sE

63 sE
64 sE

65 sE
66 d16 d26 d36

d11 d12 d13 d14 d15 d16 εT
11 εT

12 εT
13

d21 d22 d23 d24 d25 d26 εT
21 εT

22 εT
23

d31 d32 d33 d34 d35 d36 εT
31 εT

32 εT
33


·



T1
T2
T3
T4
T5
T6
E1
E2
E3


(31)

where Si are the mechanical strain components (6× 1), Di represents the electric displace-
ment components (3 × 1), Tj represents the mechanical stress components (6 × 1), Ej

represents the electric field components (3× 1), sE
ij represents the compliance constants

in a constant electric field (6× 6), dij represents the piezoelectric strain constants (3× 6),
and εT

ij represents the permittivity constants at constant stress (3× 3). Therefore, the full
characterization of a piezoelectric material requires 63 material constants. The following
assumptions that are usually made when thin piezoelectric layers are considered [13] can
be introduced:

1. Electrodes of the PE material acting along the 3-axis of the local reference frame of the
material, i.e., E1 = E2 = 0, E3 6= 0.

2. Thin beam, i.e., T2 = T3 = T4 = T5 = T6 = 0, T1 6= 0.
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3. Orthotropic material.

In this case, the 9× 9 matrix of material constants in Equation (31) can be reduced
to a 2× 2 symmetric matrix with only three material constants. The reduced constitutive
equation becomes [6] {

S1
D3

}
=

[
sE

11
d31

dT
31

εT
33

]{
T1
E3

}
(32)

The compliance constant sE
11 and the piezoelectric strain constant d31 are provided in

the datasheet of the considered PE patch [10]. The permittivity constant εT
33 is not provided

in the datasheet; however, it can be calculated as [4,6]

εT
33 = ε0

CpHp

wpLp
+

d2
31

sE
11

(33)

where ε0 is the vacuum permittivity. Tables 3 and 6 represent the electromechanical
parameters of the PE patch implemented in COMSOL.

Table 6. Electromechanical properties of the PE patch.

Parameter Unit Value

εT
33 F m−1 2544ε0

Density
(
ρp ) kg m−3 5440

Two mechanical boundary conditions are applied to the model (Figure 12a). Firstly,
a fixed constraint to the clamped surface of the cantilever beam is imposed. Secondly, a
symmetry condition is imposed on the surfaces of the beam and the patch belonging to the
plane of symmetry. Finally, both the beam and the piezo are loaded by a distributed load
per unit length corresponding to the inertia force obtained from Equations (3) and (4).

Two electrostatic boundary conditions are applied (Figure 12b). A floating potential is
imposed on the top side of the PE patch, whereas its bottom side is set to ground potential.
In this way, the value of the floating potential, which is computed from the solution of the
multiphysics problem, corresponds to the OCV at the patch terminals.

The geometry is discretized by using a mapped mesh (second-order FE elements),
which is obtained by extruding a quadrilateral mesh (element size range 0.5–1 mm). To
obtain accurate results, four elements are used along the thickness of the beam and six
elements are used along the thickness of the patch. Figure 13 shows the mapped mesh used
to discretize the geometry.
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6. Numerical Results
6.1. Validation of the Integrated Analytical–Numerical Method

If the PE layer is directly bonded to the slat surface, the OCV FRFs can be calculated
both by means of the integrated model proposed in this paper and by means of the analytical
model presented in [7] modified to consider contact stiffness kx. Figure 14 compares the
magnitude of the calculated OCV FRF considering kx = 0 Nm−2 (deployed slat, Figure 14a)
and kx = 106 Nm−2 (retracted slat, Figure 14b).
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integrated models. (a) kx = 0 Nm−2; (b) kx = 106 Nm−2.

Figure 14a,b shows that the integrated and analytical models, respectively, were in
good agreement, even if different values of kx were adopted.

6.2. Effect of Contact Stiffness on Generated Voltage

The deployment and retraction of the slat modify the contact stiffness between the
slat and the wing and influence the generated voltage. To analyze this effect, a parametric
analysis was carried out by means of the integrated model. The scheme in Figure 5 shows
that the numerical OCV FRF, obtained using COMSOL, could be imported in MATLAB to
calculate the VRMS using Equations (1) and (2). Figure 15 represents the VRMS generated by
the PE patch as a function of the distributed stiffness kx. It can be noted that the effect of kx
on voltage output was only valuable above 106 Nm−2. For large values of kx the generated
voltage drastically decreased because the slat began to behave as a rigid body connected
to the wing edge. These results agreed with the trend of the natural frequencies against
contact stiffness, which is presented in Figure 8.

6.3. Effect of Interposed Layers on Performance

The integrated model was found to be suitable for analyzing the effect of the interposed
layers between the PE patch and the slat skin. Typical layers are the ones of the adhesive
and Kapton, which are used to seal the PE material. The PE layer can be embedded into a
more complex electric generator, such as the one presented in [6,14], which was a hybrid
Thermo–Piezoelectric Generator (TPEG). Hence, not only adhesive and Kapton layers
but also thermoelectric and conductive layers may be interposed between the PE layer
and the surface of the structure. Finally, the FE model also allows for the evaluation of
the performance of several PE generators piled one onto the other to increase the total
generated electric power.
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in COMSOL.

In the framework of this research, a layer of an isotropic polymeric material was added
to the FE model. Figure 16 shows the cross-section of the model.
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Figure 16. Cross-section of the model with the interposed layer.

The layer can be made of two different materials: Material 1 has the mechanical proper-
ties typical of polymers such as epoxy and Kapton; Material 2 has a Young’s modulus about
one order of magnitude smaller than that of Material 1. The geometrical and mechanical
properties of the added layers are shown in Table 7. It is worth noticing that the Young’s
modulus of the added layers was about one/two orders of magnitude smaller than the
ones of the PE and slat materials.
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Table 7. Electromechanical properties of the added layers.

Parameter Unit Value

Material 1 Material 2

Length (La) m 0.085 0.085
Width (wa ) m 0.014 0.014

Young’s modulus (Ea ) GPa 2 0.5
Poisson’s ratio (νa ) 0.3 0.3

Density (ρa ) kg m−3 1100 1100

A series of parametric simulations was carried out to evaluate the generated voltage
as a function of the thickness Ha of the polymeric layer. It was assumed that kx = 0 Nm−2

(deployed slat). The model was discretized using the same mesh as the previous simulations.
The polymeric layer was discretized using five elements along its thickness. Figure 17a
shows the RMS values of the generated OC voltage as a function of the thickness of the
interposed layer and the Young’s modulus of the polymeric layer. Figure 17b shows the
distance of the center of the PE patch from the neutral axis of the equivalent beam.
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Figure 17 highlights that moving away the center of the PE patch from the neutral axis
increased its performance, since, as shown in Equation (26), the strain within the patch
increased. However, this advantageous effect gradually decreased, since the strain was
not correctly transmitted from the slat to the patch when the thickness of the interposed
polymeric layer was very large. Indeed, for large thicknesses, the distance from the neutral
axis linearly increased, whereas the performance showed a decrease in the growth rate.

The comparison between the two curves of Figure 17 shows that if the polymeric layer
had a small Young’s modulus, the positive effect due to the increased distance from the
neutral axis vanished for smaller values of thickness.

It is worth noticing that if the PE patch was located inside the slat structure, the
increase in the polymeric layer thickness led to a small decrease in the distance from the
neutral axis, with a reduction in the generated voltage.

7. Conclusions

An integrated analytical–numerical model for the prediction of the voltage generated
by a small PE patch mounted on a long slender body that vibrates due to random excitation
has been presented and applied to a wing slat.
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The introduction of a variable contact stiffness between the slat and the wing edge
makes it possible to simulate the behavior of the PE patch, both when the slat is retracted
and when the slat is deployed. Numerical results showed that the PE patch generated
much less voltage when the slat was retracted, because the large contact stiffness reduced
the deformability of the slat.

The transmission of the strain from the slat surface to the active PE layer through
the intermediate layers (adhesive and protective) is an important issue. To this end, the
integrated model was used to simulate the effect of a passive layer of increasing thickness
located between the slat and the active PE layer. The results showed that a small increase
in the thickness of the intermediate layer had a beneficial effect. This effect was the result
of the increase in the distance between the PE layer and the neutral axis of the cross-section
caused by the thicker layer. It vanished when the intermediate layer became very thick
(some mm with the considered materials).

A further application of the integrated model will be the simulation of more complex
sandwich structures such as generators that include both PE harvesters and thermo–electric
harvesters based on the Seebeck effect.
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