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Abstract: In this article, a method is proposed to effectively extract weak fault features and accurately
diagnose faults in ball screws, even in the presence of strong background noise. This method
combines singular value decomposition (SVD), complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN), and the 1.5-dimensional spectrum (1.5D) to process and analyze
fault vibration signals. The first step involves decomposing the fault signal using the SVD algorithm.
The singular values are then screened, and the part of the screen containing more noise information is
extracted to complete the first denoising step. The second step involves decomposing the signal after
the initial denoising process using CEEMDAN and removing some of the false components from
the intrinsic mode function (IMF) components, based on the kurtosis correlation function index. The
signal is then reconstructed to complete the second denoising step. Finally, the denoised signal is
analyzed using Teager energy operator demodulation and 1.5D spectral analysis to extract the fault
frequency and determine the location of the fault in the ball screw. This method has been compared
with other denoising methods, such as wavelet packet decomposition combined with CEEMDAN or
SVD combined with variational mode decomposition (VMD), and the results show that under the
condition of strong background noise, the proposed method can better extract the fault frequency of
ball screw.

Keywords: strong background noise; ball screw; SVD; CEEMDAN; 1.5D; faults

1. Introduction

With the rise in the industrialization level and the continuous improvement of me-
chanical automation, ball screws are more and more widely used in industrial production.
As a kind of high-precision, high-speed and high-load-transmission device, ball screws
are widely used in machinery, manufacturing, aviation, rail transit, and other fields [1].
With an increase in the running time of the ball screw, various fault-related problems often
occur. The fault signal of the ball screw usually presents nonlinear and non-stationary
characteristics and is characterized by periodic impact characteristics. The faults generated
in actual production often cause very serious consequences. The working environment
is usually harsh, and the fault signal characteristics are often covered by background
noise and mechanical rotation signals, which are not easy to extract. Therefore, it is neces-
sary to develop a fault diagnosis method when working under strong background noise
interference conditions [2,3].

With the development of signal-processing technology, research on the fault diagnosis
of rotating machinery has achieved certain results. Shi et al. [4] proposed a bearing fault
diagnosis algorithm based on wavelet multi-scale analysis and XGBoost fusion feature
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selection to address the problem that the rolling bearing fault signal is susceptible to the
pollution of the surrounding noise environment and the difficulty of feature extraction and
selection in the acquisition process. The collected sound signal is denoised by five-layer
wavelet decomposition and reconstruction to filter out the doped noise signal. Wu et al. [5]
proposed a method of combining wavelet denoising analysis and FastICA independent
component analysis, based on negative entropy, to deal with the noisy vibration signals
of rolling bearings. First, the original signal is processed by wavelet denoising, then the
processed signal is combined with the original signal to form the input matrix of FastICA
for FastICA denoising. However, this classical noise reduction algorithm has the problem
that the wavelet basis is difficult to select, and the FastICA algorithm is generally used
for bearing signal noise reduction when in actual operation. Cai et al. [6] proposed a
bearing fault feature extraction method based on singular value decomposition (SVD) and
variational mode decomposition (VMD) to address the problem that the impact signal
contains a great deal of noise and it is difficult to extract the fault’s characteristic frequency
when the bearing is weak. The results of simulation analysis and two different bearing
tests show that the proposed method can effectively suppress noise and obtain signals that
reflect the actual fault information. Empirical mode decomposition (EMD) is an adaptive
time-frequency analysis method proposed by Huang et al. [7], but it has the defect of
mode mixing. In order to solve this defect, TORRES et al. [8] proposed the CEEMDAN
algorithm. Wang Zhijian et al. [9] proposed using an evaluative health index (EHI), which
combines the proportional weighting method of three evaluation indexes of monotonicity,
trend, and prognosis and integrates multiple sources of degradation information. Aiming
to address the problem that the fault signal of wind turbine bearings is weak, difficult
to extract, and difficult to identify, Liu et al. [10] proposed a fault diagnosis method for
use with wind turbine bearings, based on adaptive noise complete ensemble empirical
mode decomposition (CEEMDAN) and a grey wolf optimization kernel extreme learning
machine (GWO-KELM). Yan et al. [11] combined the synchrosqueezed generalized S-
transform of variational mode decomposition and the Teager–Kaiser energy operator and
used the Teager–Kaiser energy operator to enhance the extracted attenuation gradient and
effectively highlight the oil and gas area. Tang Guiji et al. [12] proposed a rolling bearing
fault diagnosis method based on multivariate variational mode decomposition (MVMD)
and a 1.5-dimensional spectrum. First, the 1.5-dimensional spectrum of the envelope signal
is calculated, and the fault feature information extracted from the spectrum is then analyzed
to diagnose the fault type. The fault diagnosis experiment of a rolling bearing proves that
this method can effectively extract feature information on a weak bearing fault and achieve
an accurate diagnosis of a bearing fault feature.

In order to make full use of the advantages of SVD, CEEMDAN, and the 1.5D spectrum
in terms of noise reduction and feature extraction, this paper proposes combining the three
for the fault diagnosis of a ball screw in an environment with strong background noise
and uses a singular value decomposition noise reduction method to extract the initial
vibration signal of the ball screw. Then, the initial noise-reduced signal is decomposed
via CEEMDAN, the kurtosis correlation of the IMF component is calculated to filter the
component, and the signal is reconstructed to complete the noise reduction. Finally, the
fault frequency is extracted by demodulating the signal’s Teager energy operator and
analyzing the 1.5D spectrum. Simulation and experimentation show that the proposed
method can effectively extract fault feature information on the ball screw.
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2. Introduction of the Basic Theory
2.1. Singular Value Decomposition

The signal-denoising method of singular value decomposition is based on the phase
space reconstruction theory. The signal to be processed, X = [x(1), x(2), ..., x(n + m− 1)],
is constructed into a Hankel matrix, as shown in Equation (1):

H =


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
x(m) x(m + 1) · · · x(n + m− 1)

 (1)

According to the singular value decomposition theory, for a given m × n dimensional
matrix H with the rank r, the singular value decomposition form of H is:

H = U
[

Σ 0
0 0

]
VH (2)

In Equation (2), U and V are m × m and n × n dimensional unitary matrices, re-
spectively. Σ is an r × r-dimensional diagonal matrix, the diagonal elements of which
are nonzero singular values σi of matrix H and are arranged in descending order, that is,
σ1 ≥ σ2 ≥ . . . ≥ σr. If the source signal X is composed of a useful signal and noise, the sin-
gular value σi of matrix H can reflect the concentration of signal and noise energy. The first
few large singular values will mainly reflect the useful part of the signal, while the smaller
singular values will mainly reflect the noise. The noise in the signal can be removed by
setting the singular values that reflect the noise to zero. By adding and averaging the items
corresponding to the reconstructed matrix, the denoised signal can be restored [13,14].

2.2. CEEMDAN

Aiming to address the problem of modal aliasing in the EMD algorithm, EEMD and
CEEMD decomposition algorithms reduce the modal aliasing of EMD decomposition
by adding paired positive and negative Gaussian white noise to the signal to be decom-
posed. However, there is always a certain amount of white noise in the intrinsic mode
components obtained by these two algorithms, which affects the analysis and processing of
subsequent signals.

CEEMDAN decomposition solves the above problems from two aspects: (1) adding
an IMF component with auxiliary noise after EMD decomposition, instead of directly
adding the Gaussian white noise signal to the original signal; (2) EEMD decomposition
and CEEMD decomposition, which represent the overall average of the modal components
obtained by empirical mode decomposition. CEEMDAN decomposition performs the
overall average calculation after the first-order IMF components is obtained and the final
first-order IMF component is obtained. Then, the above operation is repeated on the
residual part, which effectively solves the problem of white noise transfer from a high
frequency to a low frequency [15].

Let E(i) be the i-th intrinsic mode component obtained by EMD decomposition. The
i-th intrinsic mode component obtained by CEEMDAN decomposition is IMFi. Ei(ωi) is a
Gaussian white noise signal that satisfies the standard normal distribution. The CEEMDAN
decomposition steps are as follows.

Firstly, the Gaussian white noise is added to the signal xi to be decomposed, to obtain
a new signal xi(t) = x(t) + ε0E0(ωi) (i =1, 2, . . ., N). ε0 refers to the amplitude. The new
signal is decomposed using the EMD algorithm to obtain the first-order intrinsic mode
component IMF1 (Equation (3)) and the first residual r1(t) (Equation (4)):

IMF1(t) =
1
N∑N

i=1 IMFi
1(t)i (3)
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r1(t) = x(t)− IMF1(t) (4)

Continue to add the Gaussian white noise to the first residual r1(t), as calculated. The
new signal r1(t) + ε1E1(ωi) (i = 1, 2, . . ., N) is decomposed by EMD to obtain the second
component, IMF2 (Equation (5)), and the second residual, r2(t) (Equation (6)):

IMF2(t) =
1
N∑N

i=1 E1(r1(t) + ε1E1(ωi) ) (5)

rk(t) = r(k−1)(t)− IMFk(t)(k = 2, 3, ..., K) (6)

The amount rk(t) (i = 1, 2, . . ., N) remaining after decomposition is continuously
calculated, and Gaussian white noise is added to the remaining amount to obtain rk. The
IMF(k+1) obtained by EMD decomposition is:

IMF(k+1)(t) =
1
N

Ek(rk(t) + εkEk(ωi)) (7)

The above operation is repeated until the obtained residue is a monotonic function and
cannot be further decomposed. The final residual sequence is rk(t) = x(t)−∑K

k=1 IMFk(t);
then, the original signal is decomposed into x(t) = ∑K

k=1 IMFk(t) + rk(t).
The flow chart of CEEMDAN decomposition is shown in Figure 1.
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2.3. Teager Energy Operator

The Teager energy operator is a nonlinear operator first proposed by Teager and
Kaiser [16]. It has high time resolution and can track instantaneous changes in the signal
quickly and accurately, which makes it suitable for the extraction of impact signal features.
The Teager energy signal contains the total energy of the signal, meaning that the Teager en-
ergy operator contains a large amount of amplitude modulation and frequency modulation
information caused by the fault’s superimposed signal. The Teager energy operator can
be used to analyze the fault’s characteristics. The Teager energy operator of a continuous
signal x(t) can be expressed as:

ϕ[x(t)] = [
.
x(t)]2 − x(t)

..
x(t) (8)

In the formula
.
x(t) = dx(t)

dt ,
..
x(t) = d2x(t)

dt2 represents the first derivative and the second
derivative of the signal x(t), respectively, and t is time. The discrete signal x(n) can be
obtained by discretizing the continuous signal x(t) and its Teager energy operator can be
expressed as:

ϕ[x(n)] =
[
x(n)

]2 − x(n− 1)(n + 1) (9)

Here, n is the nth sampling point in the data window. It can be seen from Equation (8)
that only three data sample points are used to calculate the Teager energy operator, meaning
that the transient characteristics of the signal can be enhanced, which is helpful for detecting
abrupt changes in the signal.

2.4. The 1.5-Dimensional Spectrum

The diagonal slice R3x(τ,τ) of the third-order cumulant R3x(τ1,τ2) of the stationary
random signal x(t) can be defined as:

R3x(τ, τ) = E{x(t)x(t + τ)x(t + τ)} (10)

Here, E {*} is the mathematical expectation; τ is the time delay.
The one-dimensional Fourier transform of the diagonal slice R3x(τ,τ) of the third-order

cumulant of the stationary random signal x(t) is defined as a 1.5-dimensional spectrum
R(ω), as shown in Equation (11):

R(ω) =
∫ ∞

−∞
R3x(τ, τ)e−jωτdτ (11)

The 1.5-dimensional spectrum shows good ability in suppressing Gaussian white
noise and symmetrically distributed noise; it also has less computational complexity than
other high-order spectra, making it a powerful tool for analyzing nonlinear coupling and
non-Gaussian signals [17,18].

3. Fault Diagnosis Process

In this paper, an SVD-CEEMDAN-1.5DTES method is proposed to extract the fault sig-
nal characteristics of a ball screw under conditions of strong background noise interference
and carry out a fault diagnosis [19]. The steps are as follows.

Step 1: For singular value decomposition of the original one-dimensional signal data,
select and decompose several groups of singular values, compare and analyze the size of
the singular values, and retain the larger singular values. The smaller singular values are
set to zero, the signal is reconstructed, and the signal after noise reduction is restored.

Step 2: CEEMDAN decomposition is performed on the signal of the initial noise
reduction to obtain several IMF component components. Because the kurtosis is particularly
sensitive to the pulse impact signal, it is very effective for early ball screw fault detection.
The expression is shown as Equation (12). The correlation between each IMF component and
the original signal can be quantified by the correlation coefficient. The expression is shown
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as Equation (13). The sensitive components, which contain more fault information, are
screened according to the kurtosis correlation function index, and the signal is reconstructed
to complete the second noise reduction.

K =
∑n

i=1
(
xi − x)4

(n− 1)σ4 (12)

ρXY =
E((X− EX)(Y− EY))√

D(X)
√

D(Y)
(13)

Here, x is the mean, and σ is the standard deviation. ρXY is the correlation coefficient
between each component and the original signal, E is the expectation, and D is the variance.
The kurtosis value of the original signal is taken as X and the kurtosis value of the IMF
component is taken as Y, which is substituted into Equation (13) to obtain the size of the
correlation coefficient.

Step 3: Teager energy operator demodulation is performed on the denoised signal,
after which, 1.5D spectrum analysis is performed. The fault frequency extracted from the
spectrum is compared with the fault frequency obtained from the theoretical calculation,
and the fault location of the ball screw is determined.

The specific steps of CEEMDAN decomposition are shown in Figure 2.
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4. Simulation Signal Analysis
Ball Screw Simulation Signal Fault Diagnosis

In order to verify that the proposed method can accurately extract the characteristic
frequency of the ball screw fault, first, the fault simulation signal is studied, then the
periodic impact fault simulation signal of the ball screw is constructed. The mathematical
formula of the vibration model is shown in Equation (14):

x(t) = s(t) + n(t) = ∑ iAih(t− iT) + n(t)

h(t) = exp(−Ct) cos (2πfnt)

Ai = 1 + A0 cos(2πfrt)

(14)
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In the above formula, A0 is the displacement constant, A0 = 0.3; fr is the frequency
of the motor, fr = 30; C is the attenuation coefficient, C = 700; fn is the natural frequency,
fn = 3 kHz; h(t) is the impulse function; Ai is the amplitude of the impact signal; n(t) is the
added Gaussian white noise, with a value of 4 dB; x(t) is the fault simulation signal after
adding Gaussian white noise; t is the period of characteristic frequency, where the fault
characteristic frequency f = 1/T = 90Hz.

Comparing (a) and (b) in Figure 3, it can be seen that the time domain waveform
with noise has become less obvious under the influence of noise, as shown in Figure 3c.
Therefore, the signal needs to be processed.
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This paper chooses to use the singular value decomposition noise reduction method.
Firstly, singular value decomposition of the original one-dimensional signal data is carried
out, and twelve groups of eigenvalues are selected and decomposed. Then, the size of each
singular value and the corresponding eigenvectors are calculated. By analyzing the size
of the singular value, several groups with larger singular values are selected. It can be
seen from Figure 4 that the first two of the twelve eigenvalues, obtained by the singular
value decomposition of the original signal, are relatively large, which will mainly reflect
the useful signal. The third to the twelfth eigenvalues are smaller than the first two, which
mainly reflect the noise. The singular values reflecting the noise are set to zero, and the
signal is reconstructed to restore the signal after noise reduction.

Selecting the number of eigenvalues of SVD is a trade-off process, in which the balance
between accuracy and computational efficiency needs to be considered. More eigenvalues
can better retain the information of the original data, and can also provide more details
and accuracy, so as to better describe the changes and patterns of the data. However, fewer
eigenvalues can improve the efficiency of calculation. The computational complexity of
singular value decomposition is proportional to the number of eigenvalues. Selecting an
appropriate number of eigenvalues can increase the calculation speed and improve the
efficiency of the algorithm. The motivation for selecting 12 eigenvalues is to maintain a
balance between data accuracy and computational efficiency.
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Figure 4. De-noising of singular value decomposition.

Figure 5 shows the signal frequency domain diagram after singular value decomposi-
tion and noise reduction. Comparing Figure 3c with Figure 5, it can be seen that the noise
on both sides of the frequency domain image is obviously suppressed. Singular value
decomposition denoising can remove part of the noise in the signal. However, it is still
impossible to source effective fault information from the resulting spectrogram. Therefore,
it is necessary to further reduce the noise.
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The characteristics of CEEMDAN decomposition comprise gradually decomposing
vibration signals of different frequencies, from high frequency to low frequency, but some
pseudo-components and false components will be generated in the decomposition pro-
cess. Therefore, it is necessary to filter the IMF components to remove some irrelevant
components. The initial noise reduction signal is decomposed by CEEMDAN and a total of
13 IMF components are generated. The signal fault frequency component usually exists
in the high-frequency part of the signal, and the remaining modal functions can be used
as noise interference. Due to space limitations, only the first seven IMF components after
decomposition are listed. The time domain waveform is shown in Figure 6.
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Sensitive fault components are screened according to the kurtosis−correlation coeffi-
cient index. As shown in Figure 7, the first three components of the correlation coefficient
contain more fault information; the kurtosis value generally shows a downward trend,
indicating that the impact characteristics of the first several IMF components are obvious
and that there is a greater possibility of failure. Considering the above two index values,
the vibration signals of the first three components are reconstructed to complete the second
noise reduction. The Teager energy operator is used to demodulate the vibration signal
of the two noise reductions, then the 1.5D spectrum analysis is performed. From Figure 8,
it can be seen that the fault characteristic frequency extraction method proposed in this
paper can accurately extract the rotation frequency, the twice the rotation frequency, the
fault characteristic frequency, and its 2 to 9 times frequency of the fault simulation signal,
indicating that the singular value decomposition and CEEMDAN joint noise reduction can
meet the requirements of noise reduction. The Teager energy operator can highlight the
fault impact component, and the 1.5D spectrum can suppress the noise component well.
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5. Measured Signal Analysis

The ball screw model GD4010 was selected for the test, and the process parameters
are shown in Table 1.

Table 1. The GD4010 process parameters of the ball screw pair.

Name Screw Diameter Ball Diameter Contact Angle Screw Lead Angle

unit d0/mm db/mm α/◦ λ/◦

numerical value 40 5.953 45 4.55

The fatigue pitting failure fault signal of a ball screw pair was analyzed and tested.
Because the ball screw pair will undergo induction quenching heat treatment on the surface
before leaving the factory, the hardness and wear resistance will be greatly improved.
Therefore, it often takes some time to run in a new ball screw pair to the point of obvious
pitting failure characteristics. In order to save testing time, EDM technology was used to
create pits on the surface of the screw raceway to simulate the pitting failure state of the
screw, as shown in Figure 9.
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The frequency of the driving motor is fr; if the pitting defect occurs in the nut raceway,
the corresponding fault characteristic frequency is fo; if the pitting defect appears in the
screw raceway, the fault characteristic frequency is fi [20], and the expression is as follows:

fr =
n
60

fo =
πd0ωs(1−γ′ cos α)

2db

fi =
πd0ωs(1+γ′ cos α)

2db

(15)
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where n is the motor speed, db is the ball diameter, d0 is the nominal diameter of the screw,
α is the contact angle of the ball with the nut and the screw, and ωs is the derivative of
the angular displacement generated by the screw rotation. Where γ′ = db/2rm, rm is the
vertical distance from the ball center to the screw center.

In order to verify the anti-noise performance of the method, Gaussian white noise
with a signal-to-noise ratio of 14 dB was added to the original signal. The time-domain and
frequency-domain diagrams of the denoised signal are shown in Figures 10 and 11.
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Figure 11. Singular Value Decomposition of Measured Signal.

It can be seen from (a) in Figure 10 that there was a great deal of random noise
interference, the signal was messy, and the impact characteristics have been completely
annihilated. The fault characteristic frequency in frequency domain (b) in Figure 10 has
migrated, and the fault characteristic frequency of the screw raceway could not be observed
due to the influence of strong background noise. Therefore, it was necessary to denoise
the signal. The wavelet packet was used to pre-denoise the ball screw raceway fault
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signal of the ball screw. Singular value decomposition of the signal was carried out, and a
total of 12 singular values were decomposed. The singular values were filtered and then
reconstructed. Each singular value that was calculated is shown in Figure 11. It can clearly
be seen that the fault features were mainly concentrated in the first and second singular
values. Therefore, the signal corresponding to the two singular values was reconstructed,
which effectively removed other parts with less fault information and achieved a certain
noise-reduction effect.

By comparing the original signal and the signal after filtering in Figure 11, it can be
seen that a small part of the noise was removed after singular value decomposition; the
impact characteristics were still not obvious, and the noise interference was very large.
Comparing Figures 10 and 12, it can be seen that the noise on both sides has been well
suppressed, and the signal-to-noise ratio has been improved. However, the fault frequency
cannot be identified from the spectrogram. Thus, the fault frequency of the screw cannot be
extracted by relying solely on singular value decomposition noise reduction. Therefore, it
is necessary to perform CEEMDAN decomposition on the initial noise reduction signal and
then filter the sensitive components and reconstruct them for secondary noise reduction. A
total of 13 IMF components were generated during the decomposition process, and only
the first seven components are shown in Figure 13. The time-domain waveform of the first
seven IMF components of CEEMDAN decomposition is shown in Figure 13.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. Frequency domain diagram of the experimental fault signal after initial noise reduction. 

 
Figure 13. CEEMDAN decomposition diagram of the experimental signal after noise reduction. 

The sensitive components were screened, based on the set kurtosis−correlation coeffi-
cient criterion. It can be seen from Figure 14 that the correlation coefficient shows a down-
ward trend as a whole, indicating that the first three components contain more fault infor-
mation. The first and second components of kurtosis value are the largest, and the impact 
characteristics are obvious. Considered comprehensively, the vibration signals of the first 
three components were reconstructed to complete the secondary noise reduction pro-
cessing. 

Figure 12. Frequency domain diagram of the experimental fault signal after initial noise reduction.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. Frequency domain diagram of the experimental fault signal after initial noise reduction. 

 
Figure 13. CEEMDAN decomposition diagram of the experimental signal after noise reduction. 

The sensitive components were screened, based on the set kurtosis−correlation coeffi-
cient criterion. It can be seen from Figure 14 that the correlation coefficient shows a down-
ward trend as a whole, indicating that the first three components contain more fault infor-
mation. The first and second components of kurtosis value are the largest, and the impact 
characteristics are obvious. Considered comprehensively, the vibration signals of the first 
three components were reconstructed to complete the secondary noise reduction pro-
cessing. 

Figure 13. CEEMDAN decomposition diagram of the experimental signal after noise reduction.



Actuators 2023, 12, 416 13 of 16

The sensitive components were screened, based on the set kurtosis−correlation co-
efficient criterion. It can be seen from Figure 14 that the correlation coefficient shows
a downward trend as a whole, indicating that the first three components contain more
fault information. The first and second components of kurtosis value are the largest, and
the impact characteristics are obvious. Considered comprehensively, the vibration sig-
nals of the first three components were reconstructed to complete the secondary noise
reduction processing.
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The first two IMF components after CEEMDAN decomposition were reconstructed;
the reconstructed signal vibration image is shown in Figure 15. This is the final vibration
signal image, which was extracted after two noise reductions.
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In order to verify the effectiveness and accuracy of the method proposed in this
chapter, the original signal was directly analyzed using 1.5DTES without noise reduction.
Singular value decomposition, CEEMDAN and Teager energy spectrum analysis were used
to compare with the proposed method. The results are as follows.

In Figure 16, the fault signal of the ball screw is analyzed using 1.5DTES, which can
only identify double the failure frequency. The noise interference is great, and the extraction
effect is poor. From Figures 17 and 18, it can be concluded that the Teager energy spectrum
and 1.5DTES can extract the 2-times rotation frequency, the fault characteristic frequency,
and the 2 to 6-times frequency, and the sideband of the rotation frequency modulation
can be clearly observed. It has been comprehensively determined that there is a fault in
the screw raceway of the ball screw. Comparing Figures 17 and 18, it is clear that the
rotation frequency and twice rotation frequency can be extracted from Figure 18, while only
a twice the rotation frequency can be identified in Figure 17. In addition, by combining
the Teager energy operator with the 1.5D spectrum, the noise component is significantly
lower, the spectral line is more prominent, and the overall effect is better. This shows that
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the 1.5D spectrum has a good inhibitory effect on noise. The frequency value extracted
from Figure 18 is 161.6 Hz, and the theoretical fault frequency is 161.74 Hz. These values
are very close; Therefore, it is possible to prove that the extraction is very accurate. This
also verifies that the method used in this chapter can accurately extract the frequency of
the screw raceway fault signal.
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Wavelet denoising and singular value denoising have certain effects on ball screw fault
diagnosis. The wavelet denoising method is widely used in the field of signal processing. It
can effectively remove the noise and interference from the signal and retain the important
information of the signal. In the fault diagnosis of ball screws, wavelet denoising can
remove the noise and interference in the vibration signal, improve the signal-to-noise ratio
of the signal, and is conducive to the accurate diagnosis of ball screw faults. Singular
value denoising is employed to decompose the signal into different parts by singular value
decomposition and to remove the noise and interference contained therein. In ball screw
fault diagnosis, singular value denoising can decompose the vibration signal, extract the
principal component of the signal, and avoid the influence of noise and interference on
the fault diagnosis. Therefore, a wavelet regression network (WRN) was used to denoise
the original signal for the first time, and the results are compared with the results of
this method.
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Ren Liang et al. [21] used the singular spectrum decomposition algorithm to decom-
pose the fault signal and reconstructed the decomposed signal according to the time domain
cross-correlation criterion. Subsequently, the whale optimization algorithm (WOA) was
used to optimize the parameters of VMD, and the reconstructed signal was decomposed by
the parameter-optimized VMD. Working according to the kurtosis index, the fault char-
acteristic signal was extracted from the decomposed intrinsic mode function. In order to
verify the superiority of the proposed method, Ren Liang’s method was used to analyze the
measured fault signal with 14 dB of Gaussian white noise, and the results were compared
with the proposed method. The results of the above two methods are shown in Table 2.

Table 2. The kurtosis correlation coefficient of each IMF.

IMF 1 2 3 4 5

WRN-CEEMDAN 0.9761 0.2690 0.0572 0.0071 0.0028
SVD-CEEMDAN 0.9860 0.3396 0.0511 0.1790 0.0373
SVD-WOA-VMD 0.5598 0.4701 0.5004 0.4768 0.3937

6. Conclusions

(1) In this paper, a fault diagnosis method for ball screw faults based on the SVD-
CEEMDAN-1.5DTES algorithm is proposed, which can effectively extract the fault
characteristics of a ball screw in a strong background noise environment and accurately
diagnose the fault in a ball screw.

(2) The SVD algorithm can effectively suppress noise interference. The application of
the 1.5-dimensional envelope spectrum offers more advantages than the traditional
envelope spectrum. It can accurately extract the weak fault information generated by
the ball screw under the interference of strong noise, and can effectively suppress the
background noise. The diagnosis results, which are based on the SVD-CEEMDAN-
1.5DTES algorithm, are better than those with the SVD-CEEMDAN Teager algorithm.

(3) Within a strong background noise environment, the fault diagnosis results for the
ball screw based on the SVD-CEEMDAN denoising algorithm are better than those
based on the WRN-CEEMDAN algorithm and SVD-WOA-VMD algorithm. In future
research, this method will be further optimized.
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