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Abstract: The Craig–Bampton method is frequently applied in most commercial multibody dynamic
software. Nevertheless, the Craig–Bampton modes only represent the free-free modes in flexible
multibody systems. However, the free-free modes are incapable of all engineering applications.
Hence, a rational set of reference conditions must be correctly chosen to define a unique displacement
field. Firstly, a simple 2D beam with two revolute joints is taken as an example to prove that the free-
free modes are not suitable for all engineering applications, and the results are validated by ANSYS
and the analytical solution. Secondly, the Craig–Bampton method is improved by two different
methods: (i) the reference conditions are added to the original Craig–Bampton matrix and (ii) the
reference conditions are applied to the shape functions to redefine the mass and stiffness matrices
before constructing the original Craig–Bampton matrix. This implementation illustrates that the
improved Craig–Bampton matrix can not only generate the free-free modes but is also suitable for the
non-free-free modes. Finally, two discrepant reference conditions are imposed to obtain the dynamic
response of the flexible connecting rod based on the improved Craig–Bampton method, which is
validated using the normal mode approach. Simulations show that the improved Craig–Bampton
method can be used as a general-purpose method in durability analysis.

Keywords: Craig–Bampton method; flexible multibody system; reference conditions; component
mode synthesis

1. Introduction

With recent developments in science and technology, the requirement for mechani-
cal manufacturing efficiency and machining precision is continuously increasing in the
industrial environment [1]. This requirement will force designers in different research
fields to cooperate so as to integrate the different mechanical modules into complicated ma-
chines [2,3]. Therefore, the structure and dimensions of mechanical systems have become
larger and more complicated [4]. In addition, the connection between mechanical modules
with different functions has become extremely sophisticated as well [5]. Further, due to
the developing trend indicating that mechanical systems will become more lightweight
and high-speed in the future, the components in the mechanical system will be prone
to deformation [6]. These aforementioned reasons are the main motivations to make the
dynamics models of complicated systems highly nonlinear and to increase the complexity
of the numerical simulation of the durability analysis [7–9].

To study the dynamic performance of flexible multibody systems, especially when
small deformation occurs, the floating frame of reference (FFR) formulation [10] is fre-
quently applied to the durability analysis by many industry sectors [11]. To obtain the exact
displacement of the node on the flexible body, the flexible body is meshed using many finite
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elements. This leads to a significant increase in both the number of degrees of freedom
of the system [12] and the difficulty of the system durability analysis [13]. This is mainly
because when the number of nodes on the flexible body is increased, the elements in the
mass matrix become smaller, and the elements in the stiffness matrix become larger [14].
This will lead to very high-frequency modes, which significantly restrict the selection of
the time step during numerical simulation [15–17], and leads to a loss of computational
efficiency and an increased computational cost [18].

The sub-structuring technique component mode synthesis (CMS) presented by Hurty [19]
and Gradwell [20] improves the computational efficiency of a complex structure by reduc-
ing the number of elastic coordinates of the flexible components. This is due to the CMS
transferring the physical coordinates to the modal coordinates. In the model space, the linear
superposition of the eigenvectors corresponding to the low-frequency modes [21] can repre-
sent the elastic coordinates of the nodes on the flexible components. During this process, the
low-frequency modes play an important role in the deformation of the node on the flexible
body; in contrast, the high-frequency modes are negligible in the displacement of the flexible
system [22]. Hence, only low-frequency modes are included to ensure the convergence of the
displacement, while the high-frequency modes are removed from the modal space. Therefore,
the computational efficiency of the flexible multibody system is conspicuously enhanced by
the CMS [23].

A complex multibody system can be divided into several substructures, and the
dynamics model of each substructure can be independently formulated and solved in paral-
lel [24]. The eigenvectors of each substructure can be obtained by the finite element method,
experimental data, and analytical solutions, and the computational efficiency after using
a sub-structuring technique is higher than that of the original system [25]. The equations
of motion of the system as a whole can be formulated by using the interface conditions of
each substructure based on their low-frequency modes from each substructure [26] and the
physical elastic coordinate of the node can be obtained by the inverse modal transformation
when the modal dynamics model is solved. In general, since the equations of the motion
of the system are formulated according to the constrained definition of the interface con-
dition [27], the substructure CMS can be classified into four different types: free interface
methods, fixed interface methods, the mixed interface method comprising free and fixed
interface conditions [28], and the loaded interface method [1], in which the Craig–Bampton
(CB) matrix [29] is employed into the CMS based on the fixed interface conditions and the
original CB method [30] is improved to avoid the cumbersome process of identifying the
degrees of freedom of the substructure interface. This method is suitable for programming
when solving the dynamics model of complex multibody systems. Therefore, the CB ma-
trix [31] is commonly applied in popular commercial software, such as Adams, RecurDyn,
and Nastran.

In order to improve the simulation accuracy and computational efficiency of the CB
method, and especially expand its application area, many scholars are focusing on this topic.
Boo et al. [32] noted that the original CB method is incapable of simulating complicated
structural systems with many degrees of freedom; thereby, they used an algebraic sub-
structuring method and interface boundary reduction to improve computational accuracy
and efficiency. The effect of this method was proven by several large structural finite
element models. Gruber et al. [33] considered that the boundary degrees of freedom of the
substructures would still remain when many substructures are assembled, and the number
of the interface degrees of freedom is large; however, the structure of the system is still
complicated, especially larger structures which include many substructures [34]. Hence,
they provided a method to reduce the interface degrees of freedom and used numerical
analysis to validate its efficacy. Junge et al. [30] studied the low-frequency vibroacoustic
behavior of a fluid-structure coupled system using the CB method and the Rubin method
with large coupling interfaces. Rixen [35] proposed a novel CMS method to study the
dynamic analysis of a structure based on free interface vibration and residual flexibility
components. The computational efficiency of this new method was validated by numerical
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examples in a three-dimensional frame. Kim and Lee [36] provided an accurate error
estimator for the CB method; this error estimator could accurately predict the relative
eigenvalue errors in the finite element models reduced by the CB method. Kuether and
Allen [37] provided a new method for geometrically nonlinear finite element models
based on the CB method; this reduced model can be expressed as the cubic and quadratic
polynomials of the modal coordinates. Kim et al. [38] introduced a new CMS that is the
enhanced CB method. This new method considered the residual sub-structural modes
neglected in the original CB method and can be used to obtain a much more precise
construction. Kim and Lee [34] proposed a new CMS method to enhance the simulation
accuracy of the CB method, including the effect of residual sub-structural modes, which is
proven by several numerical examples. Carassale and Maurici [39] indicated two drawbacks
of the CB method when the number of the interface degree of freedom is large. First, the
reduction step of the modes may become extremely time-consuming. Additionally, after
reducing high-frequency modes, the model may still be complicated because the number
of original substructures of the system is large. Therefore, a simple interface-reduction
technique based on a preferential choice of interface modes was provided by a set of
orthogonal basis functions [40]. In order to accurately predict the maximum dynamic
response of the satellites in the case of a coupled dynamic load, Lim et al. [26] increased
the number of residual modes to reduce the predicted error from the dynamic response,
increasing the accuracy of the simulation compared to the original CB method. Kim
et al. [6] improved the precision of the original CB method by considering the higher-
order effect of the residual substructure modes through residual flexibility. The accuracy
of this new method was proven by numerical examples. Fang et al. [41] proposed an
adaptive numerical scheme based on the CB method to predict the dynamic response of
tall buildings. Because the distribution of nonlinear components is initially unknown due
to the randomness of earthquake inputs, the degrees of freedom of the linear substructures
in the dynamics model were reduced using the CB method. This numerical method was
validated by the numerical solution of a 20-story building.

However, the aforementioned studies all ignored an important concept, which is the
reference conditions. In the literature [13], Shabana and Wang emphasized the importance
of the reference conditions and demonstrated the difference between boundary conditions
and reference conditions. The reference conditions are applied to remove the rigid body
modes in the shape functions of the flexible component. The different basis deformation
vectors can be obtained when the different reference conditions are added to the shape
functions. However, the reference conditions do not impose any constraint on the multi-
body system structure and do not change the system topology. Conversely, the boundary
conditions are independent concepts regarding the reference conditions; they not only
eliminate degrees of freedom of the system to define the topology but also change the
frequency information of the flexible components. In general, the free-free modes are
obtained under the reference conditions (mean axis conditions). One of the most important
methods of the calculated free-free modes is the CB method [19,31]. However, the free-
free modes are incapable of all engineering applications [13]. The objective of this paper,
therefore, is to expand the application area of the CB method and to make this method
usable for any engineering application by adding the reference conditions to the original
CB matrix [42].

The contribution and novelty of this paper can be summarized as follows: (i) the
original Craig–Bampton method may result in the wrong solution, which is validated by
a simple example; (ii) the Craig–Bampton method is improved by imposing the reference
conditions on the original Craig–Bampton modal transformation matrix or the shape
functions; (iii) the correctness of the improved Craig–Bampton method is proved by statics
and dynamics models; and (iv) the improved CB method is shown to serve as a general-
purpose method suitable for all applications rather than restricted only to free-free modes.

This paper consists of the following sections: Section 1 describes the developed history
and research background of the CMS; the small deformation theory of flexible bodies is
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simply introduced based on FFR formulation in Section 2; the CB modal transformation
matrix is derived in Section 3; the limitation of the free-free modes is proven by a simple
two dimension beam in Section 4; the CB method is improved by two different methods in
Section 5; and Section 6 presents the conclusions of this investigation.

2. Small Deformation Theory of Floating Frame of Reference Formulation

The FFR formulation [10] based on the finite element method used to study the small
deformation of flexible multibody systems has a long history [43] and results in a highly
nonlinear inertia matrix that exhibits a strong inertial coupling between elastic deformation
and reference motion. The elastic deformation of the multibody system can be described as
a unique set of inertia-shape integrals that depend on the assumed displacement field [44].
However, the early FFR formulation was only suited for describing the dynamics of beams
and plates with simple shapes, not for the flexible body with discontinuous structures. The
main reason is that an infinitesimal rotation serves as one of the nodal coordinates of the FFR
elements, which restricts the dynamics model of systems with discontinuous structures.
In 1997, Shabana [44] introduced the intermediate coordinate system into the FFR to
effectively describe the deformation of the flexible multibody system with discontinuous
and complicated structures. Moreover, Shabana [13] first proposed the reference conditions,
which are distinct from the boundary conditions. The reference condition is necessary
in order to eliminate the rigid body modes in the shape functions, in order to eliminate
the redundant nodal coordinates in the element and define a unique displacement field.
Considering the example of a simple straight two-dimensional beam without discontinuous
structure, the transformation matrix between the intermediate coordinate system and body
coordinate system is the identity matrix. Thereby, the intermediate coordinate system is
not introduced into this system model. For more information, the interested reader can
refer to the literature [45].

2.1. Position Equation of an Arbitrary Point on the Flexible Body

In Figure 1, the position vector ri
p of the arbitrary point p of the element i in the global

coordinate system πg can be expressed as

ri
p = R0 + Aui

p (i = 1, 2, . . . n) (1)

where R0 is the position vector of the origin of the body coordinate system πl in the global
coordinate system πg, A is the transformation matrix between the body coordinate system
and the global coordinate system, in which the body coordinate system is the reference
frame of all elements and the deformation of the flexible body is defined in this coordinate
system. ui

p is the position vector of the arbitrary point p on the element in the body
coordinate system πl and n is the total number of the elements in the flexible body.
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In the deformed case, the coordinate vector of the node on the element of coordinate i
can be written as

ei = ei
0 + ei

f (2)

in which ei
0 is the coordinate vector of the node of element i in the un-deformed case and

ei
f is the deformation coordinate vector of the node of element i in the deformed case.

The displacement vector of an arbitrary point on the element i can be calculated based
on the nodal coordinate vector of the flexible body

ui = Siei (3)

where Si is the shape function matrix of element i.
Hence, the nodal coordinate vector of each element can be described using a Boolean

matrix and can be written as
ei = Bi

beb (4)

in which Bi
b is the Boolean matrix and eb is the nodal coordinate vector of the flexible body.

Likewise, the nodal coordinate vector of the flexible body can be rewritten as

eb = eb0 + eb f (5)

where eb0 is the nodal coordinate vector in the un-deformed state of the flexible body and
eb f is the nodal coordinate vector in the deformed state.

In order to eliminate the rigid body modes in the shape function matrix and elimi-
nate the redundant coordinates of the nodal deformation coordinate vector, the reference
conditions are imposed on the displacement field of the flexible body to define a unique
displacement field. Thus, a new nodal coordinate vector e f of the flexible body can be
defined as

eb f = Bre f (6)

where Br is a linear transformation that arises from imposing the reference conditions [45].
Thereby, the position vector of the arbitrary point p on the element i of the flexible

body in the body coordinate system πl can be expressed as

ui
p = SiBi

b

(
eb0 + Bre f

)
= ui

0 + ui
f (7)

Substituting Equation (7) into Equation (1), the position vector of an arbitrary point p
on element i of the flexible body in the global coordinate system πg can be expressed as

ri
p = Ri + A

(
ui

0 + ui
f

)
(8)

2.2. Equation of Motion of the Flexible Multibody System

According to the position equation of an arbitrary point on the flexible body in the
global coordinate system, the equation of motion of the flexible multibody system can be
obtained by the virtual work theory in order to clearly describe the coupling relationship
between rigid body coordinates and flexible body coordinates. The generalized coordinates
of the system are partitioned as reference coordinates and elastic coordinates. Hence, the
equation of motion of the flexible multibody system can be written as [45][

Mrr Mr f
M f r M f f

][ ..
qr..
q f

]
+

[
0 0
0 K f f

][
qr
q f

]
=

[
(Qe)r + (Qv)r
(Qe) f + (Qv) f

]
(9)

where Mrr is the mass matrix corresponding to the reference motion, Mr f = MT
f r is the mass

matrix representing the coupling between the reference motion and elastic deformation,
M f f is the mass matrix of a flexible body, qr is the reference coordinates, q f is the elastic
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coordinates, K f f is the stiffness matrix of the flexible body, Qe is the generalized external
forces, and Qv is the quadratic velocity including the centrifugal force and Coriolis force.

3. Orthogonal Craig–Bampton Modal Transformation Matrix

In general, since the displacement of a considerable number of finite elements in the
system needs to be calculated during durability analysis in engineering, there is a significant
computational cost [46]. Hence, the CMS is used to reduce the elastic coordinates in the
equation of motion in which the reduced model is constructed by synthesizing the domi-
nating substructural modes, which constitute a very small portion of the total substructural
modes and constraint modes [47]. The reduced model significantly reduces the compu-
tational cost of the flexible multibody system. In 1968, Craig and Bampton proposed
the well-known Craig–Bampton modal transformation matrix [31] which is applied to
durability analysis in practical engineering.

3.1. Component Mode Synthesis (Normal Mode Approach)

Based on Equation (9), the free vibration equation of the flexible body in the body
coordinate system can be written as

M f f
..
q f + K f f q f = 0 (10)

where M f f is the mass matrix corresponding to the flexible body.
The eigenvalue problem of this equation can be defined as[

K f f − ω2
j M f f

]
Aj = 0 (j = 1, 2, . . . m) (11)

The natural frequencies ωj and mode shapes Aj can be obtained by solving Equation
(11), where m is the number of modes.

The high-frequency modes, which have a negligible effect on the nodal displacement,
are truncated, and therefore only a few low-frequency modes are preserved so that the
degrees of freedom of the system are reduced. The remaining low-frequency modes
comprise the modal transformation matrix and can be expressed as

Φ =
[
A1 A2 . . . Aj

]
(12)

By this transformation matrix Φ, the elastic coordinates q f can be transformed into
the modal coordinates p, which can be written as

q f = Φp (13)

Based on Equation (13), Equation (9) can be rewritten asMrr
¯
Mr f

¯
M f r

¯
M f f

[ ..
qr..
p

]
+

[
0 0
0 K f f

][
qr
p

]
=

 (Qe)r + (Qv)r(¯
Qe

)
f
+

(¯
Qv

)
f

 (14)

in which 
¯
Mr f =

¯
M

T

f r = Mr f Φ,
¯
M f f = ΦTM f f Φ, K f f = ΦTK f f Φ(¯

Qe

)
f
= ΦT(Qe) f ,

(¯
Qv

)
f
= ΦT(Qv) f

(15)

The process from Equation (9) to Equation (15) describes how to transform the elastic
coordinates in the equation of motion to modal coordinates using the modal transformation
matrix. The dynamic response of the flexible body is approximated by a few low-frequency
modes, which significantly enhances computational efficiency and saves costs. This process
is called the normal mode approach [13].
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When a sufficient number of low-frequency modes remain, the normal mode approach
can be used for all applications, but the premise is that a set of appropriate reference
conditions are applied to the shape function matrix to define a unique displacement field
and eliminate the rigid body modes. The reference conditions must be used in the durability
analysis of the system. The reference conditions matrix Br in Equation (6) can be used to
obtain the different types of modes that are suited for all applications.

3.2. Craig–Bampton Modal Transformation Matrix

The CB matrix with orthogonal modes can be obtained by solving the eigenvalue
problem twice [36]. The first time, the eigenvalue is obtained for the normal modes in the
original CB matrix, and the second time, the eigenvalue analysis is solved for the orthogonal
modes in the CB matrix because the static correction modes in the first eigenvalue problem
solution affect the orthogonal characteristic of the original CB matrix. Therefore, the CB
matrix with orthogonal modes can be used to decouple the equation of the motion of the
system, which is the generalized form used in most commercial software [48].

In order to obtain the static correction modes and fixed interface modes in the original
CB matrix, the elastic coordinates q f in Equation (10) are rewritten as boundary coordinates(

q f

)
b

and internal coordinates
(

q f

)
i

using the matrix partition technique as

q f =

[(
q f

)T

b

(
q f

)T

i

]T
(16)

Therefore, Equation (10) can be rewritten based on Equation (16) as(M f f

)
bb

(
M f f

)
bi(

M f f

)
ib

(
M f f

)
ii

( ..
q f

)
b( ..

q f

)
i

+

(K f f

)
bb

(
K f f

)
bi(

K f f

)
ib

(
K f f

)
ii

(q f

)
b(

q f

)
i

 = 0 (17)

3.2.1. Static Correction Modes

The static correction modes can be obtained when the inertial force in the second
equation of Equation (17) is neglected(

K f f

)
ib

(
q f

)
b
+
(

K f f

)
ii

(
q f

)
i
= 0 (18)

The internal coordinates
(

q f

)
i

can be expressed using boundary coordinates
(

q f

)
b

when the matrix
(

K f f

)
ii

is a non-singularity matrix.

(
q f

)
i
= −

(
K f f

)−1

ii

(
K f f

)
ib

(
q f

)
b

(19)

in which the static correction modes can be obtained as

Φc = −
(

K f f

)−1

ii

(
K f f

)
ib

(20)

3.2.2. Fixed Interface Modes

To solve the fixed interface modes, the second equation in Equation (17) can be
expressed as the following by considering the free vibration of the internal nodes with
respect to the boundary nodes,(

M f f

)
ii

( ..
q f

)
i
+
(

K f f

)
ii

(
q f

)
i
= 0 (21)
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The eigenvalue is solved first to estimate the fixed interface modes[(
K f f

)
ii
− ω2

k

(
M f f

)
ii

]
AI

k = 0 (22)

where ωk is the natural frequency, AI
k is the mode shape (k = 1,2, . . . l), l is the total number

of modes, and I depicts the first eigenvalue.
After removing the high-frequency modes, the fixed interface modes are expressed as

Φ f =
[
AI

1 AI
2 . . . AI

k

]
(23)

3.2.3. Original CB Modal Transformation Matrix

Once the static correction modes and fixed interface modes are obtained, the original
non-orthogonal CB matrix can be assembled as

ΦCB =

[
I 0

Φc Φ f

]
(24)

The physical elastic coordinates of the flexible body can be written in terms of modal
coordinates using Equation (24) as

q f = ΦCBpI (25)

in which pI are the modal coordinates corresponding to the original CB matrix.

3.2.4. Orthogonal CB Modal Transformation Matrix

The static correction modes are not really normal modes due to solving the eigenvalue
of the flexible system, which results in the modal mass and stiffness matrices no longer
being diagonal matrices, and the decoupled nature of the original CB matrix is absent.
Hence, the second eigenvalue must be found to form the orthogonal CB matrix. Substituting
Equation (25) into Equation (10), one can write(

ΦT
CBM f f ΦCB

) ..
pI +

(
ΦT

CBK f f ΦCB

)
pI = 0 (26)

in which the modal mass matrix is
^

M f f = ΦT
CBM f f ΦCB, and the modal stiffness matrix is

^
K f f = ΦT

CBK f f ΦCB.
By the modal mass and stiffness matrices, the second eigenvalue solution can be

written as [
K̂ f f − ω2

h
^

M f f

]
AII

h = 0 (27)

in which, ωh is the natural frequency, AII
h is the mode shape (k = 1,2, . . . h), h is the total

number of modes, and II is the second time eigenvalue problem.
Likewise, the modal transformation matrix consists of the low-frequency modes after

truncating the high-frequency modes and can be expressed as

N =
[
AII

1 AII
2 . . . AII

h

]
(28)

The relationship between the first and second eigenvalue problems is expressed as

pI = NpII (29)

where pII can be obtained by solving the second eigenvalue problem.
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Substituting Equation (29) into Equation (25), one can write

q f = ΦCBNpII (30)

Consequently, the orthogonalized CB matrix is given by

ΦCB = ΦCBN (31)

This modal transformation matrix is the first time improved CB method.

4. Applied Limitation of the Free-Free Modes

Based on the literature [13], there is no set of reference conditions that are suited for all
applications. This section shows the limitation of the free-free modes again by considering
a simple planar beam and implements a comparison between the CB method, the normal
mode approach, and ANSYS. The normal mode approach is a general method, mainly
because it can be incorporated with any reference conditions to model all applications.
However, the CB method without any reference conditions is only used to derive the
free-free modes, which will result in the wrong solution for the special case in Figure 2b.
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As shown in Figure 2, beams with two different structures are considered; Figure 2a
shows a planar beam with two revolute joints at the end nodes and Figure 2b shows an
extended beam with two revolute joints, in which one revolute joint is at the left end of the
beam (point O), and the other revolute joint is at the ninth node (point A). The reference
conditions u0 = v0 = vA = 0 (where u is the axial deformation and v is the transverse
deformation) should be imposed on the constraint joints of the beam. Thus, the simply-
supported modes are selected by imposing the corresponding reference conditions. The
parameters of the planar beam in Figure 2 are listed in Table 1. However, in the CB method,
there are not any reference conditions or boundary conditions to impose, which leads to
free-free modes that include the rigid body modes, as shown in Tables 2 and 3.

Table 1. Structural parameters.

Parameters Value

Length 4.572 × 10−1 m
Mass 1.135 × 10−1 kg

Density 7.840 × 103 kg/m3

Young’s modulus 2.068 × 1011 Pa
Cross-section 3.167 × 10−5 m2

Second moment of the area 7.981 × 10−11 m4

Radius of cross-section 3.175 × 10−3 m
Modal damping coefficient 3.000 × 10−2

Number of elements 12
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Table 2. Comparative analysis of the frequencies from different methods (Hz).

CB Method Normal Mode Approach ANSYS

Free-Free Free-Free Simply-Supported Free-Free Simply-Supported

0 0 61.28 0 61.27

0 0 245.11 0 245.05

0 0 551.62 0 551.32

138.91 138.91 981.19 138.86 980.25

382.94 382.94 1534.85 382.69 1532.60

750.97 750.97 2214.60 750.12 2209.90

Table 3. Comparative analysis of the frequencies from different methods (Hz).

CB Method Normal Mode Approach ANSYS

Free-Free Free-Free Simply-Supported Free-Free Simply-Supported

0 0 88.64 0 88.62

0 0 209.40 0 209.36

0 0 606.26 0 605.88

138.91 138.91 1014.15 138.86 1012.70

382.94 382.94 1403.73 382.69 1401.80

750.97 750.97 2318.76 750.12 2313.40

The frequencies of the first six modes of the beam in Figure 2a are listed in Table 2,
and a comparative analysis of the CB method, the normal mode approach, and ANSYS
is implemented. There are two different cases, including free-free modes and simply-
supported modes, in which the frequencies based on the normal mode approach can
be verified by ANSYS. The frequencies of the free-free modes from the CB method are
validated by the normal mode approach and ANSYS. This conclusion can then be used to
validate the normal mode approach, which is a general-purpose method when imposing
the appropriate reference conditions based on the engineering structure. However, the CB
method can only be used to obtain the free-free modes in Table 2.

Similarly, in Table 3, the frequencies of the first six modes of the beam in Figure 2b,
corresponding to the free-free modes and simply-supported modes based on the normal
mode approach, are validated by ANSYS. The free-free modes from the CB method are
validated by ANSYS and the normal mode approach as well in the following content.
Moreover, the frequencies of the free-free modes of the beam in Figure 2a are the same as
the frequencies of the beam in Figure 2b, because the free-free modes are not affected by
constraints from joints. Hence, only if the physical parameters of the system are the same,
the frequencies of the free-free modes are the same, despite the fact that the constraints are
different, which is the physical meaning of the free-free modes. This conclusion has proven
again that the normal mode approach is the general-purpose method, and the CB method
is only suited for free-free modes in Table 3.

Since the frequencies of the free-free modes based on the normal mode approach
are the same compared to the frequencies obtained using the CB method, the frequencies
of the simply-supported modes based on the normal mode approach are identical to the
frequencies obtained from ANSYS. For brevity, the static analysis of the beam in Figure 2
is implemented using the CB method and ANSYS. The displacement of the middle node
of the beam in Figure 2a using the CB method is the same as that obtained using ANSYS,
which can be seen in Figure 3. The convergence value of both cases is −7.24 × 10−2 m. The
final deformed shape of the beam in Figure 2a under the case of constant load can be seen
in Figure 4. The deformed shape resulting from both methods is the same, which accounts
for the fact that the free-free modes derived from the CB method can be used to obtain the
exact displacement for the example of the beam in Figure 2a, and this result is verified by
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ANSYS, demonstrating that the free-free modes can be used in this simple beam example.
However, when considering the extended beam shown in Figure 2b, the displacement
of node 5 calculated using the CB method is very different from the ANSYS result, as
shown in Figure 5. The convergence value from the CB method corresponding to the
free-free modes is −7.12 × 10−3 m, but the convergence value from ANSYS corresponding
to simply-supported modes is −2.14 × 10−2 m. The displacement of the free end can be
seen in Figure 6 where the convergence value from the CB method is −7.17 × 10−3 m,
and the convergence value from ANSYS is 3.22 × 10−2 m. This conclusion proves that the
free-free modes from the CB method are not suited for the extended beam. Figure 7 shows
that the final deformed shape from the CB method does not match the result from ANSYS.
The maximum relative error between the CB method and ANSYS is 122.3%, which is not
acceptable. This is due to the fact that the free-free modes based on the CB method do not
impose the reference conditions to eliminate the rigid body modes from the shape function
in order to define the unique displacement field. This conclusion has also been shown
analytically in the literature [13].
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5. Improved Craig–Bampton Modal Transformation Matrix

As shown by the comparative analysis in Section 4, the free-free modes derived
from the CB method are not suitable for all engineering applications, even simple static
problems [13]. However, this conclusion does not imply that using the CB method only
derives free-free modes. Actually, the CB method has a flexible change form [49]. In
this section, the CB method will be improved by two different methods: (i) by imposing
the reference conditions into the original CB matrix and (ii) by imposing the reference
conditions on the shape function to satisfy the requirement of a unique displacement
field, which can be used to form mass and stiffness matrices. The difference between the
two methods lies in the fact that the improved CB matrix from the first method cannot
be orthogonalized; however, the improved CB matrix from the second method can be
orthogonalized. Regardless, the simulation results are the same when the improved CB
matrix from the above two methods is used for the durability analysis.

When adding the reference conditions, the CB method can be used for all applications
rather than only being suited for free-free modes. Similar to the normal mode approach,
the improved CB method can be treated as a general-purpose CMS. In addition, the CB
method has a clear physical meaning compared to the normal mode approach. Namely, the
information on the topology structure and constraints can be directly obtained from the CB
modal transformation matrix.

5.1. Imposing the Reference Conditions on the Original CB Matrix

Based on the constraint conditions of the extended beam in Figure 2b, the identity
matrix I in the original CB modal transformation matrix in Equation (24) corresponds to
the unit displacement of the boundary nodes, including the first node (point O) and the
ninth node (point A). The static correction modes Φc are obtained by assuming the unit
displacement on the boundary nodes corresponding to the constraint joints. The fixed
interface modes Φ f are obtained corresponding to the internal nodes of the extended
beam. The zero matrix 0 accounts for the fact that the internal nodes are free without any
constraints, which leads to the normal modes of the internal nodes that correspond to
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the fixed interface modes. By the aforementioned description, the topology structure and
constraint information of the extended beam can be clearly obtained from the CB modal
transformation matrix. The free-free modes will be obtained when using the original CB
method because there are no reference conditions in this matrix. In order to obtain the exact
nodal deformation of the flexible body, the reference conditions must be imposed on the
original CB modal transformation matrix.

Based on Figure 2b, the original CB modal transformation matrix can be rewritten as

ΦCB =





u1
v1

θ1
u9

v9
θ9

 0

Φc Φ f



I =



u1
v1

θ1
u9

v9
θ9



(32)

in which the unit displacement of the first node is u1 = v1 = θ1 = 1, and the unit
displacement of the ninth node is u9 = v9 = θ9 = 1.

However, to solve the simply-supported modes, the reference conditions (u1 =
v1 = v9 = 0) should be imposed on the boundary nodes in the structure, which can
be expressed as

Ir
CB = Br

CBI (33)

where the matrix Br
CB is the reference condition matrix, which can be written as

Br
CB =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 (34)

After that, the original CB matrix is given by

Φrc
CB =

[
Ir

CB 0
Φc Φ f

]
(35)

Substituting Equation (35) into Equation (26), the new modal mass and modal stiffness
matrices can be written as,

~
M f f = Φrc

CB
TM f f Φrc

CB
K̃ f f = Φrc

CB
TK f f Φrc

CB

}
(36)

Therefore, the simply-supported modes can be obtained by,[ ~
K f f − ω2

s
~

M f f

]
As = 0 (37)

where ωs is the natural frequency, As is the modal shape, and s is the total number of
modes. The process starting at Equation (32) to reach Equation (37) is referred to as the
first improved CB method. Similarly, any other modes can be obtained using the improved
CB method only if the reference conditions are exactly selected and imposed.



Actuators 2023, 12, 65 15 of 20

5.2. Imposing Reference Conditions Prior to Forming the Craig–Bampton Matrix

It must be stated that the mass and stiffness matrices corresponding to the CB method,
which can be written as MCB

f f and KCB
f f respectively, do not include any reference conditions.

Because the reference conditions must be added to the shape functions to remove the
rigid body modes, the mass and stiffness matrices are related to the shape functions.
Hence, the new mass and stiffness matrices corresponding to the elastic coordinates can be
expressed as {

MN = Br
f
TMCB

f f Br
f

KN = Br
f
TKCB

f f Br
f

(38)

in which Br
f is the reference conditions matrix. For example, in Figure 2b, in order to add

the simply-supported reference conditions, the identity matrix I39×39 must be changed,
such that all elements corresponding to the first, second, and twenty-sixth columns in the
reference conditions matrix Br

f are equal to zero.
According to the new mass and stiffness matrices a, Equation (17) is rewritten as

[(
MN)

bb

(
MN)

bi(
MN)

ib

(
MN)

ii

]( ..
q f

)
b( ..

q f

)
i

+

[(
KN)

bb

(
KN)

bi(
KN)

ib

(
KN)

ii

](q f

)
b(

q f

)
i

 = 0 (39)

Based on Equation (39), the static correction modes can be expressed as

ΦN
c = −

(
KN
)−1

ii

(
KN
)

ib
(40)

Similarly, the fixed interface modes can be obtained from the following equation(
MN

)
ii

( ..
q f

)
i
+
(

KN
)

ii

(
q f

)
i
= 0 (41)

Hence, the fixed interface modes are rewritten as ΦN
f .

After the static correction modes and fixed interface modes are obtained, the original
CB matrix after imposing the reference conditions can be expressed as,

ΦN
CB =

[
I 0

ΦN
c ΦN

f

]
(42)

The matrix in Equation (42) can be orthogonalized to generate the diagonal modal
mass and stiffness matrices; the orthogonalization process is the same as before described
between Equations (26)–(31). Thus, the improved CB matrix after orthogonalizing is
given by

Φ
N
CB = ΦN

CBNN (43)

where NN is the new modal transformation matrix from solving the second eigenvalue.
The process from Equations (38)–(43) is also referred to as the second improved CB method.
Similarly, any other modes can be obtained using this improved CB method only if the
reference conditions are exactly selected and imposed.

In Table 4, the comparison between the normal mode approach, CB matrix, improved
CB matrix, and ANSYS is provided. The results in Table 4 illuminate the fact that the
simply-supported modes can be obtained by the CB method after imposing the reference
conditions, and the results are validated by ANSYS. Moreover, the nodal displacement of
node 5 and the free end of the extended beam in Figure 2b are recalculated based on the
improved CB method. As shown in Figures 8 and 9, while the nodal displacements of node
5 and the free end of the extended beam from the original CB method are identical to the
results from the normal mode approach based on free-free modes, the nodal displacements
of node 5 and the free end of the extended beam using the improved CB methods are the
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same as ANSYS. Figure 10 shows the final deformed shape of the extended beam based
on the four different cases. The deformed shape from the original CB method is the same
compared to the normal mode approach based on free-free modes, and the deformed shape
from the improved CB method is identical to ANSYS. Hence, the improved CB method is
not only suited for free-free modes but also can be used to represent the simply-supported
modes if the appropriate reference conditions are imposed on the original CB modal
transformation matrix. Similarly, other types of modes, such as pinned-pinned modes
and fixed-free modes, can be obtained using the same procedure based on the CB method.
This investigation expands the scope of application of the CB method as a general-purpose
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6. Conclusions

In this paper, the floating frame of reference formulation applied to the flexible multi-
body system is discussed, and the necessity of imposed reference conditions during durabil-
ity analysis is described. The reference conditions must be used to eliminate the rigid body
modes from the shape functions and define a unique displacement field. The normal mode
approach is a general-purpose CMS in the durability analysis of the system. In general,
after imposing the appropriate reference conditions, this method is straightforward for
determining the deformation basis vectors which have been validated by ANSYS in the
static analysis. Hence, the normal mode approach is taken as a standard method to test
the correctness of the improved CB method from both improved methods in the dynamic
analysis. Moreover, the derived process of the CB matrix is specifically introduced, and
its limitation of the free-free modes is proven by the simple planar beam example so as to
explain the motivation for its modification. In addition to free-free modes, other modes
can be obtained using the improved CB matrix after imposing the appropriate reference
conditions. The main conclusions of this paper can be summarized as follows:

(1) The CB method only generates the free-free modes; however, the free-free modes can
lead to the wrong solution in some scenarios, as was demonstrated in this paper by
a simple planar beam example. If the CB method is to be used for many applications,
reference conditions must be imposed to improve the CB method. In this paper, two
different methods are proposed to improve the CB method. The first method is to
directly impose the reference condition on the unit matrix of the original CB matrix.
The second method is to impose the reference conditions on the shape functions to
calculate the new mass and stiffness matrices; subsequently, the improved CB matrix
can be derived from the new mass and stiffness matrices. Although these two different
methods are adopted to improve the CB matrix to make it suitable for all applications,
the simulation results from both methods in the durability analysis are the same.

(2) The CB method is not only used to derive the free-free modes but can be suited
for deriving the simply-supported modes (or other modes, such as pinned-pinned,
fixed-fixed, fixed-free, etc.) only if the appropriate reference conditions are imposed
on the original CB matrix or on the shape functions prior to forming the improved CB
matrix. Otherwise, the wrong solution will be obtained in some special cases, and it
may be difficult to determine the reasons that lead to the wrong solution. Hence, the
reference condition concept should be paid more attention to prior to implementing
the static or dynamic analysis of the flexible multibody systems. The application area
of the CB method is thus expanded from only free-free modes to any other mode.

(3) Although the normal mode approach is a more direct method to obtain the normal
modes compared to the improved CB method, the improved CB method has a much
clearer physical meaning compared to the normal mode approach. The topology
structure and constraint information of the flexible multibody system can be directly
obtained from the CB modal transformation matrix, which is better than the gen-
eralized normal mode approach. In addition, it is very convenient to impose the
reference conditions on the original CB modal transformation matrix or shape func-
tions; hence, the structure of the improved CB method is beneficial for programming
code during the durability analysis of the flexible multibody system so as to improve
computational efficiency.

In conclusion, the improved CB method should be treated as a general-purpose
method suitable for all applications rather than restricted only to free-free modes.
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