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Abstract: Vibration mitigation is a prominent matter in several engineering fields. Several adverse
phenomena are related to vibrations, such as fatigue, noise, etc. The availability of smart materials
increases the solutions for both vibration damping and energy harvesting applications. Piezoelectric
materials seem to be the most promising for these applications. However, their positioning signif-
icantly affects their efficiency. Several studies were performed on the positioning of piezoelectric
actuators to dampen a target resonance in cantilever beams with constant cross-sections. Here, an
analytical model for the optimal voltage distribution on an array of piezoceramic (PZT) actuator pairs
is proposed in the case of tapered beams. The effect of tapering on the optimal voltage distribution
was investigated for several eigenmode excitations and tapering ratios. The model outcomes were
corroborated via FEM simulations and a fair agreement was found for each considered case.

Keywords: piezoelectric; vibration; damping; tapered beams

1. Introduction

Vibration in flexible and lightweight components represents one of the key issues for
mechanical and aeronautical designers since vibrations at resonance, if proper damping is
not provided, may accelerate the growth and propagation of cracks; thus, weakening the
structure. Vibration dampening systems are often adopted to improve the fatigue strength
of such structural components.

The recent growth of smart materials has facilitated the development of new passive
and active damping systems that can be implemented in many engineering applications.
Such materials provide an appealing capability to modulate their mechanical behaviour
through an external stimulus, which can be represented by an electric or magnetic field, a
strain, a temperature variation, etc.

Jacob et al. [1] proposed a hybrid damper, based on a combination of a magneto-
rheological (MR) Fluid (MRF) and Shape Memory Alloy (SMA), which can dissipate a
significant amount of shock energy. Wei et al. [2] presented a systematic methodology for
the optimal design of MR dampers. Park et al. [3] designed a passive launch–vibration
isolation system, based on shape memory alloy (SMA) technology to mitigate the dynamic
launch loads transmitted to small satellites.

The implementation of piezoelectric materials has been widely investigated in dif-
ferent applications, including the following: energy harvesting [4–6], turbomachinery
blade vibration [7–11], piezoelectric ultrasonic motors [12–14] and structural health mon-
itoring [15]. Goltz [16] used piezoelectric actuators to control the vibration in an axial
compressor. Choi [17,18] implemented an active device to dampen fan blade vibration.
Provenza [19] reported a wireless appliance to control piezoelectric elements in rotating
plates. In some applications, two eigenmodes of the structure may be simultaneously
excited. Such scenarios may occur in turbomachinery blades, where the unsteady aero-
dynamic loads, due to the interaction among the rotor and the stator and the presence of
mistuning, may lead to bi-modal excitation [19,20].
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Damping techniques, based on active piezoelectric systems, generally offer better
performance, compared to passive ones, and the opportunity to tunr the action of the
actuators at each resonance condition. Among piezoelectrics, the most commonly used in
vibration damping applications are piezoceramics such as lead zirconate titanate (PZT).

Nevertheless, the actuator placement greatly affects the efficiency of such active sys-
tems in the case of single and bi-modal excitations. Earlier studies on the best piezoelectric
actuators positioning to efficiently damp single mode excitation were performed by [21,22].
An analytical strategy for the placement optimisation of a single pair of PZT plates in
a cantilever beam for bi-modal placement optimisation was proposed in [23]. Recently,
such an approach has been enhanced by optimising the voltage distribution on each pair
of an array of PZT actuators couples mounted on cantilever beams [24]. This method
offers the highest efficiency, as all the actuator pairs are always activated, concurring to
achieve the highest feasible damping, while only the voltage phase is optimised, depending
on the excited mode. However, not all structures exhibit constant cross-section, such as
tapered beams, which can be embodied by blades from gas turbines, wind turbines and
helicopters [25–27]. For these structures, showing variable cross-sections, there is a gap in
the literature regarding the research of the optimal voltage distribution on PZT actuator
pairs. In particular, the effect of the tapering on the optimal voltage distribution, in the case
of eigenmode excitations, has never been investigated.

Although turbomachinery blades can be modelled, in the first approximation, as
cantilever beams, the typical blades show peculiar geometric characteristics, such as ta-
pering and twisting, which lead to errors in the evaluation of eigenfrequencies and modal
shapes, especially if the typical Euler–Bernoulli model of beams with constant cross-section
is considered.

This work aimed to investigate how tapering affected the optimal potential distribution
on an array of PZT actuators entirely covering a cantilever tapered beam. From the
dynamics of linearly tapered beams, a theoretical model was developed to find the optimal
voltage distribution (O.V.D) on pairs of PZT actuators. The theoretical model was verified
by means of FEM (Finite Element Method) analysis, which revealed a fair consistency
with the analytical data. Analytical findings showed that the tapering ratio modified the
position at which the driving voltage had to be phase shifted by 180 degrees with respect to
a traditional non-tapered cantilever beam. Finally, several cases of modal excitations were
reported on in order to provide a comprehensive set of instances that were used to check
the validity of the proposed method.

In what follows, the theoretical model for the detection of the optimal potential
distribution is presented in Section 2. The FEM model and corresponding outcomes are
described and discussed in Section 3.

2. Optimal Voltage Distribution on Piezoelectric Actuators Coupled with Cantilever
Tapered Beams

In this paper, a model for active vibration damping of tapered beams (extending a
model already presented in [24] for constant cross-section beams) using piezoelectric plates
is presented. A typical cantilever tapered beam is depicted in Figure 1:

(a)

Figure 1. Cont.
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(b)

Figure 1. Geometric characteristics of a tapered beam with linear tapering ratio c. (a) top view and
front view, (b) 3D view of the tapered beam. L, b, TbL , TbR are respectively the length, width, left-end
and right-end beam’s thickness.

A linearly tapered beam can be described with the following equation:

AR = AL(
1+c
)

IR = IL(
1+c
)3

A(x) = AL(
1+c x

L

)
I(x) = IL(

1+c x
L

)3

(1)

where AL, IL, AR and IR are the area and the inertia moment of the beam’s left-end and
right-end cross-sections [28], and c is the tapering ratio (with 0 ≤ c < ∞).

The equilibrium equation can be obtained by applying the principle of the
virtual works:

δLe = δLi + δL f + δLp (2)

where δLe, δLi, δL f and δLp represent, respectively, the virtual works of the elastic, inertial,
external and piezoelectric forces. Denoting with w the vertical displacement of the beam
section and the virtual quantities with a superimposed tilde, the first three terms can be
written in the form: 

δLe =

∫
L

0
Me(x, t)

∼
w
′′
(x, t)dx

δLi = −
∫

L

0
ρA(x)

..
w (x, t)

∼
w (x, t)dx

δL f =

∫
L

0
g(x, t)

∼
w (x, t)dx

(3)

where Me(x, t) = Eb I(x)w′′(x, t) is the internal elastic moment while g(x, t) is the external
load, varying in both space and time, which can be written as:

g(x, t) = G(x) sin(ωjt) (4)

with ωj being the angular frequency of the excited mode and G(x) represents how the
load is spatially distributed. For instance, in a turbomachinery blade vibration framework,
g(x, t) is represented by an aerodynamic load, which is proportional to the rotor speed and
matches one of the blade eigenmodes. Such loads can be calculated via computational fluid
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dynamics simulations, as reported in [29]. The calculation of δLp is done by considering
that the procedure requires the whole beam to be covered with piezoelectric plates and the
identification of the optimal potential distribution to maximise their damping effectiveness
was the aim of this work. Since it is not possible to obtain a variable potential distribution
on a single pair of actuators, the piezoelectric plates, both the lower and upper plates,
are segmented:

The expression of δLp can be obtained by considering that the stresses that each
piezoelectric plate applies to the beam are concentrated at the plate’s ends. Thereby,
considering the generic couple of plates (symmetrical with respect to the x-axis in both
position and voltage distribution) it is possible to model their mechanical action on the
beam by two bending moments concentrated at their ends, Figure 2. The expression of this
moment was evaluated by Crawley and de Luis for beams with constant cross-section [21].
Here, Crawley’s expression was extended to tapered beams, verifying its validity, for the
considered cases, by means of an FEM code (Figure 3):

Figure 2. Cantilever tapered beam coupled with n PZT actuator pairs (PPs). a denotes the axis of
symmetry, xi−1 and xi are, respectively, the left and right edges of the i-th PP. The step function γi

assumes +1 or −1 values and it is used to denote the two possible voltage distributions which can be
provided to the generic i-th PP in order to induce two bending moments in the beam.

FEM

Modified

Crawley

Figure 3. Comparison of the analytical (Equation (6)) and FEM bending moment exerted by the PPs
considering c = 5 and x̄ = x

L .

Therefore, denoting with: 
ψ(x) = EbTb(x)

EaTa

Λ(t) = d31
Ta

V(t)

(5)

the piezoelectric moment can be written as:

Mp(x, t) =
ψ(x)

6 + ψ(x)
EabTaTb(x)Λ(t) (6)
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so that:

δLp =
Np

∑
i=1

Mp(xi, t)
∼
w
′
(xi, t) (7)

Since the external and piezoelectric loads must act in phase opposition to achieve
vibration damping, given the same δL f , the maximum dampening effect can be obtained
by maximising δLp. In fact, δLp is a measure of the effectiveness of PZT actuators work:
the larger work they exert, the higher their damping effectiveness is. The maximum δLp
can be achieved by keeping all plates activated at all times. The search was focused on the
optimal potential distribution. For this purpose, a step distribution was considered (having
to keep the voltage amplitude V constant in order to compare different configurations with
each other), so that γi indicates a function that can have the value of, depending on the pair
of plates considered, +1 or −1 (see Figure 2) δLp will be:

δLp =
Np

∑
i=1

γi Mp(xi, t)
∼
w
′
(xi, t) (8)

This study considered external loads exciting the first eigenmodes of the structure,
thereby denoting with φj(x) the eigenmode of a cantilever tapered beam that must be
damped, δLp can be rewritten as:

δLp =
Np

∑
i=1

γi Mp(xi, t)φ′j(x) (9)

The analytical formula for calculating the eigenmodes and eigenfrequencies of a
tapered cantilever beam was proposed by Banerjee and Ananthapuvirajah [28]. In this
paper, a new model is proposed for identifying the optimal voltage distribution through
the introduction of the following function f j(x):

f j(x) =

∫
x

0

Mp(x)φ′′j dx (10)

It is possible to show that the effectiveness of the PPs is the highest if the driving
voltage sign is changed at each extremum of this function. Figures 4–6 show the f j(x̄) for
the first three eigenmodes. When the first mode was excited, the O.V.D. had no voltage
sign switch, because the minimum of f1(x̄) coincided with x̄ = 0 and the maximum was
located at the beam’s free-end, i.e., x̄ = 1, (Figure 4a). The same conclusion could be made
by analysing Figure 4b which shows the area subtended by the integrand function of f1(x̄),
i.e., Mp(x̄)φ′′1 (x̄). As the integrand had no negative values, the area always stayed above
the x-axis, sp no sign switch was entailed for the O.V.D. Conversely, when the second mode
was excited, the O.V.D. involved a sign switch at x̄ = 0.315, as the minimum of f2(x̄) was
achieved (Figure 5a). Equivalently, an analysis of Figure 5b shows that for 0 ≤ x̄ ≤ 0.315 the
area subtended by the function Mp(x̄)φ′′2 (x̄) was negative; this meant that the γ of the PPs
within that region must have had the opposite sign of the one supplied to the remaining
PPs. The O.V.D. in the case of the third eigenmode excitation entailed two voltage sign
changes. The function f3(x̄) had a local maximum at x̄ = 0.2 and a minimum at x̄ = 0.61,
and, thus, the voltage sign had to change at these values to obtain the O.V.D. (Figure 6a).
The same observation could be made by analysing the graph in Figure 6b. It can be seen
that the voltage distribution of the PPs within the region 0.2 ≤ x̄ ≤ 0.61 had to be the
opposite of the remaining zones. In this way, the areas all stood on the same side with
respect to the x-axis and the effectiveness of the PPs was maximised.
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(a)

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

0.25

0.30

Mp(x)ϕ1''(x)

(b)

Figure 4. (a) function f1(x̄), (b) graph of the integrand Mp(x̄)φ′′1 (x̄). The first mode excitation and
c = 5 were considered. The O.V.D. provided no voltage sign change, since the minimum of f1(x̄)
coincided with x̄ = 0, while the maximum was at x̄ = 1. The same result could be obtained by
observing the area subtended by Mp(x̄)φ′′1 (x̄). The area of this function was always above the x-axis,
so no voltage sign change was expected for the first mode.

(a)

Figure 5. Cont.
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0.2 0.4 0.6 0.8 1.0
x

-0.6

-0.4

-0.2

0.2

0.4

0.6

Mp(x)ϕ2''(x)

(b)

Figure 5. (a) function f2(x̄), (b) graph of the integrand Mp(x̄)φ′′2 (x̄). The second mode excitation
and c = 5 were considered. The O.V.D. provided one voltage sign change, since f2(x̄) included a
minimum at x̄ = 0.315, while the maximum was at x̄ = 1. The same result could be obtained by
observing the area subtended by Mp(x̄)φ′′2 (x̄). In this case, the area of this function was negative
(highlighted in red colour) within 0 ≤ x̄ ≤ 0.315, so by changing the voltage sign at x̄ = 0.315 it
was possible to enhance the system’s efficiency because the two areas would be on the same side of
the graph.

(a)

0.2 0.4 0.6 0.8 1.0
x

-0.5

0.5

1.0

Mp(x)ϕ3''(x)

(b)

Figure 6. (a) function f3(x̄), (b) graph of the integrand Mp(x̄)φ′′3 (x̄). The third mode excitation
and c = 5 were considered. The O.V.D. provided two voltage sign changes: f3(x̄) included a local
maximum at x̄ = 0.2, a minimum at x̄ = 0.61, and the absolute maximum was in x̄ = 1. The same
result could be obtained by observing the area subtended by Mp(x̄)φ′′3 (x̄).The area of this function
was negative (highlighted in red colour) within 0.2 ≤ x̄ ≤ 0.61, so, by changing the voltage sign both
at x̄ = 0.2 and x̄ = 0.61, it was possible to enhance the system’s efficiency, because the three areas
would be on the same side of the graph.
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The effect of the tapering ratio c on the optimal voltage distributions for the first three
eigenmodes could be gathered by analysing the corresponding fi1(x̄) functions shown in
Figures 7–9. It can be observed that, as the tapering ratio increased, the positions of the
extrema shift toward the beam’s free-end. In other terms, if c increased the voltage sign
change occurred closer to the beam’s tip.

c=0.5

c=1

c=3

c=5

Figure 7. Parametric plot of f1(x̄) considering the first flexural mode and several tapering ratios c.

c=0.5

c=1

c=3

c=5

Figure 8. Parametric plot of f2(x̄) considering the second flexural mode and several tapering ratios c.
The solid black line highlights the location of the minima of f2(x̄) as c varies.

c=0.5

c=1

c=3

c=5

Figure 9. Parametric plot of f3(x̄) considering the third flexural mode and several tapering ratios c.
The solid black lines highlight the location of the extrema of f3(x̄) as c varies.
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3. Numerical Model and Results

The analytical model outcomes were verified by means of numerical simulations using
commercial multiphysics FEM software. The geometric dimensions considered in the
analytical and numerical models are reported in Table 1:

Table 1. Tapered beam geometric specifications.

c L (m) b (m) TbL (m)

0.5 0.4 0.05 0.008
1 0.4 0.05 0.008
3 0.4 0.05 0.008
5 0.4 0.05 0.008

The tapered beams were coupled with thirteen PZT actuator pairs, and, hence, 213

voltage distributions (Table 2) were explored to find the optimal one. The PPs were
supplied with the same voltage amplitude in all the considered cases. The beam and PZT
actuator materials are reported in Table 3 and the thickness of each PZT actuator was set
to Ta = 0.4 mm. The tapered beam coupled with PZT actuators was modelled in a 2D
environment. The overall domain was meshed with 53,024 free-triangular elements and the
region close to the edges of each PZT actuator was refined to improve the accuracy of the
solution. In fact, the piezoelectric moment exerted by each PP was actually concentrated at
the edges of each actuator (Section 2). A numerical modal analysis was performed to find
the first three eigenmodes for each tapering ratio and the numerical results compared with
the analytical ones (Table 4). A fair agreement was found in every considered case.

For each c and eigenmode excitation, all the possible voltage distributions were
simulated and the O.V.D. was obtained by finding the configuration that maximised δLp.
In the case of cantilever beams, this configuration also corresponded to the maximum
displacement of the beam’s tip.

Table 2. Considered voltage distributions.

Configuration\PP 1 2 3 4 5 6 7 8 9 10 11 12 13

1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1

3 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1

4 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1

5 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1 +1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

213 = 8192 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Table 3. Material details of the beam and PZT actuators.

Component Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio d31 (10−12 C/N)

Beam Steel 7850 210 0.3 –

Actuator PZT-5A 7750 39 – 374

Figures 10–12 show the comparison between the analytical and numerical O.V.D. for
each the considered mode excitation as the tapering ratio was varied. Figure 10 shows
that, for the first eigenmode, the analytical and numerical O.V.D. were always coincident,
regardless of the tapering ratio. When the second mode was excited (Figure 5), the numeri-
cal optimal voltage distributions were reasonably close to the analytical ones (solid black
line) for every c. The same fair agreement appeared when the third eigenmode excitation
was considered (Figure 12) because the numerical voltage sign switches were close to the
analytical ones (solid black lines).
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Table 4. Comparison between analytical and numerical eigenfrequencies for the first three modes
and several tapering ratios. A = analytical result, N = FEM result.

c = 0.5 c = 1 c = 3 c = 5

Mode A (Hz) N (Hz) A (Hz) N (Hz) A (Hz) N (Hz) A (Hz) N (Hz)

1 42.79 45.23 44.36 46.47 48.45 50.39 50.88 51.91

2 227.71 238.31 212.50 221.66 187.75 201.83 179.28 193.49

3 607.25 642.64 548.32 590.23 449.83 495.8 412.71 456.31

Figure 10. Analytical and numerical optimal voltage distributions (O.V.D.) for the first eigenmode
excitation versus tapering ratio. The stars represent the numerical optimal voltage distribution for
each c value, calculated considering 13 PZT couples.

The error, due to the number of PPs used to validate the analytical model, was barely
meaningful. For example, the O.V.D. numerically obtained, in the case of the third mode
excitation and c = 3, differed from the analytical one because the analytical positions of
the voltage sign switches did not coincide with integer multiples of Lb/13 (Figure 13).
However, the total loss of piezoelectric work (e1 + e2) (Figure 13) always remained below
3%, with respect to the maximum analytical δLp.

Figures 14–16 show the damping efficacy of the O.V.D. activation when a resonance
was caused by an external load. Figure 14 illustrates the beam’s tip vertical displacement
versus time in the case of the first eigenmode excitation. When the O.V.D. for the first mode
was activated, the tip displacement rapidly decreased to about 8% of the tip displacement
due to the external load. Similar results could be achieved by activating the O.V.D in the
cases of the second Figure 15 and the third mode Figure 16 excitations.
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Figure 11. Analytical and numerical optimal voltage distributions (O.V.D.) for the second eigenmode
excitation versus tapering ratio. Black lines highlight the analytical location of the points beyond
which the voltage should be applied with the opposite phase with respect to the previous region. The
dashed lines identify the PZT couples that have to be supplied with the opposite voltage sign. The
stars represent the numerical optimal voltage distribution for each c value, calculated considering
13 PZT couples.

Figure 12. Analytical and numerical optimal voltage distributions (O.V.D.) for the third eigenmode
excitation versus tapering ratio. Black lines highlight the analytical location of the points beyond
which the voltage should be applied with the opposite phase with respect to the previous region. The
dashed lines identify the PZT couples that have to be supplied with the opposite voltage sign. The
stars represent the numerical optimal voltage distribution for each c value, calculated considering
13 PZT couples.
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Figure 13. Example of numerical error in the assessment of the O.V.D. for the third mode excitation
and c = 3. The gray points highlight the position of each PP edge (13 PP were considered). The blue
stars represent the FEM calculated O.V.D., the solid green line represents the function f3(x̄) for c = 3.
The values e1 and e2 represent the discrepancies among the analytical and numerical δLp. The total
error was always less than 3%.

Figure 14. Example of damping efficacy of the O.V.D. when the first eigenmode was excited by a
harmonic moment (amplitude = 1.8 Nm) concentrated at the tip. The dashed red line shows the
instant of O.V.D. activation.

The proposed model for the optimal voltage distribution on PPs may be relevant for
vibration damping and energy harvesting applications based on tapered cantilever beams.
For example, gas turbine blades often show variable cross-sections, and so the proposed
model may be applied to find the optimal voltage distributions to mitigate vibrations in
the case of resonance.



Actuators 2023, 12, 71 13 of 15

Figure 15. Example of damping efficacy of the O.V.D. when the second eigenmode was excited by
a harmonic moment (amplitude = 1.2 Nm) concentrated at the tip. The dashed red line shows the
instant of O.V.D. activation.

Figure 16. Example of damping efficacy of the O.V.D. when the third eigenmode was excited by
a harmonic moment (amplitude = 0.9 Nm) concentrated at the tip. The dashed red line shows the
instant of O.V.D. activation.

4. Conclusions

An analytical model for the identification of the optimal voltage distribution on ar-
rays of PZT actuator pairs, mounted on cantilever linearly tapered beams, was herein
presented. The model may be beneficial for active piezoelectric systems for vibration
damping or energy harvesting applications. For example, the electric power generation
of a piezoelectric-based energy harvester is affected by the mode shapes of the hosting
structure, and the proper positioning or electrode segmentation facilitates higher efficiency,
as reported in [30]. Knowledge of the optimal voltage distribution, for each excited eigen-
mode, is beneficial for the system’s efficiency maximisation. Numerical FEM simulations
were performed for several tapering ratios to validate the model predictions. It was found
that the voltage sign switches shifted towards the free-end with increasing tapering ratios.
Parametric plots of the function, needed to identify the optimal voltage distribution on PZT
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actuator pairs, were provided for several tapering ratios (0.5 ≤ c ≤ 5) and in the case of
the first three eigenmodes excitation of cantilever tapered beams. The numerical results
seemed to corroborate the proposed model outcomes for each considered case.
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the manuscript.
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Nomenclature
d31 piezoelectric coefficient
Ea Young’s modulus of the piezoelectric actuator
Eb Young’s modulus of the beam
L beam length
Mp piezoelectric bending moment
Ta piezoelectric actuator thickness
Tb(x) beam thickness
b beam width
c tapering ratio
w vertical displacement
∼
w virtual vertical displacement
φi(x) i-th flexural mode of the cantilever beam
x̄ dimensionless length of the beam: x

Lb

xi points where the potential changes its sign
′ derivative with respect to the x-axis
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