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Abstract: In this study, an autonomous driving system of a patient-transfer robot is developed. The
developed autonomous driving system has a path-planning module and a motion-control module.
Since the developed autonomous driving system is applied to medical robots, such as patient-transfer
robots, the main purpose of this study is to generate an optimal path for the robot’s movement and to
ensure the patient on board moves comfortably in the PTR. In particular, for the patient’s comfortable
movement, a lower controller is needed to minimize the sway angle of the patient. In this paper, we
propose a hybrid path-planning algorithm that combines the A-STAR algorithm as a global path-
planning method and the AHP (Analytic Hierarchy Process)-based path-planning algorithm as a local
path-planning method. In addition, model-based controllers are designed to move patient-transport
robots along planned paths. In particular, the LQR controller with the Kalman filter is designed to
be robust to the uncertainty and disturbance of the model including the patient. The optimal path
generation and patient shaking angle reduction performance of the proposed autonomous driving
system have been demonstrated via a simulation on a map that mimics a hospital environment.

Keywords: patient-transfer robot; A-STAR; analytic hierarchy process; linear quadratic regulator;
Kalman filter; anti-sway control

1. Introduction

Autonomous driving technology is changing many aspects of our daily lives. Robot
taxis, shuttles, and delivery vehicles [1,2] with autonomous driving technology are nearing
commercialization and are being applied to various industries and service fields such as
logistics, heavy equipment, and medical care [3–5]. In this study, we focused on the au-
tonomous driving technology of a patient-transfer robot (PTR) applied to medical facilities,
one of the various application fields of autonomous driving technology. For the implemen-
tation of autonomous driving technology, it is necessary to have elements of environment
recognition through sensor information, workspace mapping, localization, path planning,
and motion control [6]. Among these, this study deals with the path planning of the robot
to move from the current position to the goal and the control of the robot to travel the
planned path under the assumption that the building of the work environment (also called
the map) and localization have been completed by SLAM technology.

The first issue, path planning, consists of global path planning and local path planning.
Global path planning is an offline route-planning method that creates a path based on
a global map of the workspace [7,8]. Recently, geofencing methods that generate paths
and avoid obstacles via a virtual fence of the obstacles were used in [9–11]. On the other
hand, local path planning is an online planning method, and based on limited information
obtained from robot sensors, it interacts with the surrounding environment and plans
a moving path [6,12]. In a static workspace where the workspace does not change, it is
possible to work with only global path planning. However, the general work environment
has a very dynamic nature. Therefore, local path planning is essential due to changes in the
spatial arrangement or dynamic obstacles such as other robots or workers (people). After
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all, securing navigation ability in a dynamic environment of a mobile robot is one of the
most important methods in mobile robot navigation, therefore several studies have been
conducted in this area [13–17].

There have been many studies to resolve the issue. The artificial potential field
(APF) [18] is a way to reach a destination through the sum of all vectors in which an
attraction vector is generated in the destination direction and a repulsive force vector is
generated in the direction of the destination. In the case of APF, the calculation load is
small, and the implementation is easy. On the other hand, there are disadvantages in that it
is difficult to avoid the local minima and difficult to tune the parameters of the algorithm.
Navigation based on the Genetic Algorithm [19] mimics the process of evolution occurring
in living organisms, and it is possible to derive a solution with a high level of accuracy, but
it is not suitable for application in a dynamic environment. Particle swarm optimization
(PSO) [20] is a navigation method that mimics the behavior observed in the migration of
migratory birds or schools of fish. PSO can implement algorithms at high speed but can
be exposed to local minima in complex environments. Ant colony optimization [21] is an
algorithm that simulates the phenomenon in which ants create an optimal path through
pheromones. It has the advantage of having a small number of parameters to be tuned to
implement the algorithm but has the weakness of long calculation time.

The global path-planning method, which plans the path of the robot assuming a static
working environment, has the advantage of being able to easily generate the optimal path to
the destination. However, in a real navigation environment, a reactive manner is essential
because it must move while responding to dynamically changing environments. Due to
the nature of the local path generation method, which generates a path with only limited
information, it is excellent for immediate obstacle avoidance but is not suitable for creating an
optimal path from a long-term perspective. Therefore, in this study, we propose an optimal
path-generation method in a dynamic environment via the convergence of the existing global
path-generation method, which is difficult to use in a dynamic environment, and the existing
local path-generation method, which has limitations in optimal path generation.

In this study, a hybrid path-planning algorithm is proposed to compensate for the
weaknesses of the existing path-planning methods introduced above, such as excessive
computational load, lack of the ability to overcome local minima, and having multiple
tuning parameters. In other words, we propose a new path-planning method that com-
pensates for the weaknesses of current methods through the convergence of two different
categories of path-planning methods. To this end, the A-STAR method is applied as a
global path planning method, and the Analytic hierarchy process (AHP) [22,23] method is
applied as a local path planning method. Through A-STAR, the optimality of the path and
short path planning time performance is secured. In addition, AHP-based path planning,
which has the characteristics of a multi-factor based decision-making method, enables a
function to prevent collisions with obstacles in a real-time dynamic environment and path
planning tailored to the navigation environment. In addition, since the mobile platform
dealt with in this study is a patient-transfer robot used in medical facilities, an anti-sway
control that minimizes the sway angle of the patient on board and a controller that enables
stable movement of the PTR are designed. In summary, there are two main contributions
of this paper. The first is proposing a new path-planning algorithm that compensates for
the limitations of existing navigation algorithms. Through this, optimal path generation,
avoidance of local minima, and short-time path generation were achieved. Secondly, we
applied the proposed path-planning algorithm to a patient-transfer robot and designed a
motion controller. The proposed controller tracks the reference path well and the patient’s
sway is successfully reduced. Furthermore, unmodeled uncertainty and noise are handled
via the Kalman filter. The simulation results support the contributions of this research.

The remainder of the paper is organized as follows: Section 2 specifies the issues
addressed in this study. The path-planning algorithm for autonomous driving is discussed
in Section 3, and the motion control of the PTR robot is addressed in Section 4. In Section 5,
the performance of the proposed autonomous driving system is demonstrated through
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numerical simulations through a hospital environment map. In Sections 6 and 7, discussions
and conclusions about the research results are presented, respectively.

2. Problem Formulation

In this study, an autonomous driving method is developed in which a patient-transfer
robot safely moves from one point to a designated point without collision with the external
environment while transferring the patient. To this end, the generation of an appropriate
movement path and motion control to move the robot along the corresponding path are
essential [24]. For autonomous driving of a mobile robot platform, a path planning module
that generates a path from the starting position to the goal position and a motion controller
to move a mobile robot to a desired location are essential, as shown in Figure 1.
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The path planner is also called the higher-level controller while the motion controller
is called the lower-level controller.

The path generation module includes global path planning and local path planning
capabilities as shown in Figure 1. Global path planning plans the robot’s travel path based
on a given (or known) map. Therefore, through this step, the optimal path for the robot to
move to the goal can be obtained on the given map.

Next, local path planning creates a path to the destination within a range that the
robot can recognize. Even though the optimal path from the location of the robot to the
destination is generated through global path planning, this is a path based on the initially
given map, which is when the environmental changes are not applied. However, in reality,
while the robot is moving toward its goal, environmental changes such as the appearance
of previously non-existent static or dynamic obstacles in the workspace or changes in the
workspace may occur.

Finally, the motion control level drives the robot to the goal position. Particularly, the
focus of this study is to move the mecanum-wheel-based patient-transfer robot (PTR) to the
desired position as well as to reduce the sway angle of the patient during the movement of
the PTR.

3. A Hybrid Path Planning for Autonomous Driving

This section deals with the details of path planning for autonomous driving of PTR. In
this study, a new path-planning method is proposed through the convergence of the two
different path-planning methods, which consist of global path planning based on the given
environment information and local path planning based on robot perception information.
The two functions are not only essential elements for autonomous driving of mobile
platforms but also enable complete autonomous driving through mutual complement.
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3.1. A-STAR-Based Global Path Planning

In the navigation of a mobile robot, global path planning is required to plan a path from
the robot’s current location to its destination. Global path planning is performed assuming
a situation in which map information for the workspace of a mobile platform is given or a
situation in which a workspace map is created through SLAM (Simultaneous Localization
and Mapping). In this study, one of the most widely used global path-generation methods,
the A-STAR algorithm, is applied [7].

The A-STAR algorithm is one of the graph search algorithms that finds the shortest
path from a given starting point to a goal point. This algorithm is similar to Dijkstra’s
algorithm [8], but the difference is that it uses a “heuristic estimation value”, which is a
ranking value that estimates the best path through the vertex for each vertex, as shown in
Equation (1).

f (n) = g(n) + h(n) (1)

where n represents the node in which the robot is located, g(n) is the cost from the starting
node to the current node n, and h(n) is a heuristic function for predicting the minimum cost
from n to the goal. In Algorithm 1, the detailed planning procedure of A-STAR is explained.

Algorithm 1 Pseudo code of the A-STAR algorithm

Input: Map
∀nodes, n.f =∞, n.g =∞,
list = empty, (create an empty list)
list←start.g = 0, start.f = h (start)
while (list 6= ∅)

current = min (n.f), and remove current from list
if current = goal node then

Success;
end

∀nodes N, (adjacent to current)
if (N.g > (current.g + cost of from N to current))

N.g = current.g + cost of from N to current
N.f = N.g + H(N)
N.parent = current
add N to list if isn’t there already

end
end

Figure 2 shows the result of global path planning based on A-STAR. The blue line
represents the movement path of the mobile robot and the black polygons are obstacles
that the robot cannot move, and it is assumed that the robot travels from the initial position
represented by the red circle to the target point represented by the blue circle. A-STAR has
been shown to generate the optimal path under given complex environments where the total
distances of travel are 176.69 m and 292.71 m. Map information about the mobile platform’s
workspace must be given for global path planning. In other words, it is necessary to assume
that the workspace is static without any change at the moment of establishing the global
path. However, in the field where the actual mobile platform is operated, unlike the initially
given spatial information, new obstacles or facilities may be placed at random places, or
moving obstacles such as other workers or mobile platforms may exist. The former case
is called a static environment. However, the actual working environment is a dynamic
environment. Therefore, the path must continuously regenerate as the environment changes.
For this, local path planning is essential. Local path planning has a function of immediately
generating a robot’s path in response to changes in the environment. The robustness in the
presence of these environmental changes consequently improves the performance of the
whole path planning.
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3.2. AHP-Based Local Path Planning

This section discusses local path planning strategy. In order for a robot to safely
move to its destination without colliding with other objects in a continuously changing
workspace, it is essential to generate a path considering the changing environment. In order
to tackle this requirement, the Analytic Hierarchy Process (AHP)-based [25] path-planning
algorithm is considered a local path-planning method. The AHP-based path-planning
method is an application of the AHP technique to the path-planning problem of a mobile
robot and has the following advantages of AHP decision making. First, decisions can be
made simultaneously by considering multiple criteria. Second, the user’s preference for the
importance of elements (elements considered important in mobile robots) can be reflected
in decision-making. Because of these advantages, AHP was used in mobile robot path
planning [22,23].

Figure 3 shows the general decision-making structure of the AHP. As shown in Figure 3,
the AHP-based decision-making structure consists of three layers: Final selection (decision),
consideration items (criteria), and candidates. That is, it is a decision-making process
that simultaneously considers multiple criteria in order to make a final selection (optimal
solution) among multiple candidates. In addition, since the relative preference of the user
(decision maker) for each criterion can be applied, it helps to decide what is suitable for the
conditions and environment of decision-making.

Actuators 2023, 12, 106 6 of 23 
 

 

 
Figure 3. AHP decision making structure. 

Figure 4a shows the AHP-based mobile robot path planning. The final selection, 
which is the first layer in the basic structure of AHP, represents the optimal position for 
the mobile robot to move. As the second layer, the distance to the goal (𝑂ଵ) for each 
position that the robot can move, the degree of collision safety (𝑂ଶ), and the amount of 
rotation to orient to the destination (𝑂ଷ)  were used as criteria to be considered for 
decision-making. As the last layer, the positions (𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௡) where the robot can move 
on the boundary of the region that can be sensed through the robot’s sensor are defined 
as the target group for decision-making. In addition, the relative importance of each 
criterion to be considered must be determined in order to make decisions suitable for the 
purpose of navigation. For example, in the case of navigation where the shortest-distance 
movement is important, the highest priority is given to 𝑂ଵ; in the case of navigation where 
collision safety is the top priority, the highest weight is given to 𝑂ଶ; and in situations 
where vibration or rapid movement of the transported object must be avoided, the 
maximum weight is given to 𝑂ଷ. For a more detailed description of AHP’s mobile robot 
path planning, it is recommended to refer to the following references [22,23,26]. Figure 4b 
shows a situation to explain local path planning through AHP. In the figure, the red dots 
are points to which the robot can move, and they become a set of candidates. Assuming 
that the robot moves to each point, the final decision is made after calculating the distance 
from each point to the destination, the degree of safety, and the amount of rotation to aim 
for the destination, reflecting the relative importance of each criterion. 

  
(a) (b) 

Figure 4. Structure of AHP-based mobile robot path planning: (a) AHP structure; (b) AHP decision 
making situation. 

Figure 5 shows the results of AHP path planning under the same conditions as the 
A-STAR-based path planning. The importance of each criterion of AHP was defined as 
𝑂ଵ = 0.70, 𝑂ଶ = 0.19, and 𝑂ଷ = 0.11, respectively. The total moving distances are 168.5 m 
and infinite, one is shorter than that of A-STAR. The first case is because A-STAR defines 
8 cells surrounding each cell as the moving position, while AHP defines the points at the 

Final selectionLevel 1 :
Decision

Objective 1Level 2 : 
Criteria Objective 2 Objective n. . .

Candidate 1Level 3 : 
Candidates Candidate 2 Candidate n. . .Candidate 3

Final position
(Optimal position to move)

Distance to 
the goal Safety Rotation to 

the goal

Position 1 Position 2 Position n. . .Position 3

goal

Mobile
robot 𝒑𝟏

𝒑𝟐

𝒑𝟑

𝒑𝒏

obstacle

Figure 3. AHP decision making structure.

Figure 4a shows the AHP-based mobile robot path planning. The final selection, which
is the first layer in the basic structure of AHP, represents the optimal position for the mobile
robot to move. As the second layer, the distance to the goal (O1) for each position that the
robot can move, the degree of collision safety (O2), and the amount of rotation to orient
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to the destination (O3) were used as criteria to be considered for decision-making. As the
last layer, the positions (p1, p2, · · · , pn) where the robot can move on the boundary of the
region that can be sensed through the robot’s sensor are defined as the target group for
decision-making. In addition, the relative importance of each criterion to be considered
must be determined in order to make decisions suitable for the purpose of navigation. For
example, in the case of navigation where the shortest-distance movement is important,
the highest priority is given to O1; in the case of navigation where collision safety is the
top priority, the highest weight is given to O2; and in situations where vibration or rapid
movement of the transported object must be avoided, the maximum weight is given to O3.
For a more detailed description of AHP’s mobile robot path planning, it is recommended
to refer to the following references [22,23,26]. Figure 4b shows a situation to explain local
path planning through AHP. In the figure, the red dots are points to which the robot can
move, and they become a set of candidates. Assuming that the robot moves to each point,
the final decision is made after calculating the distance from each point to the destination,
the degree of safety, and the amount of rotation to aim for the destination, reflecting the
relative importance of each criterion.
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Figure 5 shows the results of AHP path planning under the same conditions as the
A-STAR-based path planning. The importance of each criterion of AHP was defined as
O1 = 0.70, O2 = 0.19, and O3 = 0.11, respectively. The total moving distances are 168.5 m
and infinite, one is shorter than that of A-STAR. The first case is because A-STAR defines
8 cells surrounding each cell as the moving position, while AHP defines the points at the
boundary of the robot sensor as the moving position. In other words, it can be said to be
an improvement caused by a difference in resolution. The second is because of the local
minima. Due to this, the robot cannot get out of the same area and eventually cannot
reach the goal. This is a weak point of local path-planning methods such as AHP-based
path planning. That is, this problem arises because AHP, which relies only on robot sensor
information, cannot plan a path from a macroscopic point of view. To this end, we proposed
a new path-planning algorithm that combines A-STAR and AHP. The strength of AHP is
that it is a decision-making method that considers various factors simultaneously and that
it can reflect the user’s preference for each factor to be considered. To show this, as shown
in Table 1, the AHP-based navigation performance with three different weights applied
was compared. In the first row of Table 1, the travel distance of scenario 2 is ‘∞’; this means
the robot cannot reach its goal due to the ‘local minima phenomenon’.
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Table 1. Weighting for each objective for AHP-based path planning and results.

Scenario
(High Priority)

O1
(Travel

Distance)

O2
(Safety)

O3
(Rotation)

Travel Distance
(S1/S2)

1 (distance) 0.70 0.19 0.11 178.30/∞
2 (safety) 0.12 0.73 0.15 178.31/319.98

3 (rotation) 0.07 0.33 0.60 179.74/320.48

Figure 6 displays the different weighting-based path planning results. The simulation
results show different paths that reflect weighting for AHP decision-making. However, in
some cases, the local minima cannot be avoided, and this leads to an extreme increase in
planning time. Moreover, when the results are compared with A-STAR-based path planning
(Figure 2), path optimality cannot be guaranteed. In Figures 5 and 6, the advantages and
disadvantages of the local path-planning (AHP) method are observed. The advantage
of AHP-based path planning is that it is possible to generate a route based on the user’s
preference, and the disadvantage is that there is a risk of falling into conditions such as
local minima because it is impossible to generate an optimal path. Therefore, for effective
path planning, a hybrid path-planning method combining the advantages of existing global
route planning and local path-planning methods is required.
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3.3. A Hybrid Path Planning Algorithm

Despite the various advantages of AHP, as confirmed in the previous subsection, AHP
has limitations as a local path-planning method. Therefore, this leads to a limitation in that
optimal path generation cannot be guaranteed because the path is planned based on limited
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(field of view of the robot’s sensor) information rather than the entire map’s information.
To compensate for this, we proposed a novel path-planning algorithm that can actively
respond to dynamic environments while guaranteeing the optimality of path planning by
integrating the A-STAR-based global path-generation method and the AHP-based local
path-generation method.

Figure 7 is a schematic diagram of the proposed hybrid path-planning algorithm.
Firstly, a global path is generated by the A-STAR algorithm, and then a local path is created
through AHP using the result. In the existing AHP, the distance from the robot’s movable
position (decision candidates) to the goal was set as O1, but in the proposed algorithm,
the distance between the robot’s movable position and the closest A-STAR path is defined
as O1. That is, in generating the local path, the existing safety level and rotation of the
robot to aim for the goal are considered, and at the same time, the path is generated by
considering the distance from A-STAR, which is the optimal path. Later, after the robot
moves along the path planned by the motion control module, the distance to the path
A-STAR is measured, and if it is longer than the set distance, the process of regenerating
the path through A-STAR is repeated.
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Figure 8 shows the navigation results through the proposed hybrid path-planning
method. The simulation results are compared with A-STAR-based path planning and AHP-
based path planning. As can be seen in the two scenarios in Figure 8, it is confirmed that the
hybrid path planning represented by the blue line maintains the trend of the optimal path
(red line) of A-STAR and does not deviate from the characteristics of the AHP-based path
planning (black line). In particular, even when the goal could not be reached based on AHP
due to the occurrence of local minima, it also is confirmed that the proposed algorithm
successfully created a path while maintaining the unique characteristics of A-STAR and
AHP. Table 2 shows the traveling distance based on each path-planning method, and it is
shown that the proposed path-planning method shows the best performance in distance
and rotation of the robot showing a non-abrupt change in orientation.

Table 2. Travel distance of path-planning methods.

Scenario A-STAR AHP Hybrid

1 176.69 178.30 183.85
2 292.71 ∞ 285.33

Table 3 and Figure 9 demonstrate the results of the suggested path planning under
different AHP preferences. In particular, the distance of each strategy is investigated, and
the results depend on the preference of each objective and guarantee path optimality.
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Additionally, to measure the performance of the proposed algorithm, the complexity
of the algorithm is investigated in terms of time complexity. A commonly used metric for
examining complexity is Big-O notation. Figure 10 shows the commonly used functions in
Big-O notation.
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Firstly, we examine the time complexity of the proposed path-planning algorithm. The
proposed algorithm is a combination of the A-STAR algorithm and the AHP algorithm. It
plans a global path through A-STAR and moves to its destination while making decisions
that meet the requirements of navigation through AHP. In the case of dynamic obstacles
that appear in the process of moving to the destination, the global path is regenerated
through A-STAR and decision-making is performed through AHP. First of all, since A-STAR
uses heap sorting, its time complexity is given as [27,28]:

O(nlog(n)) (2)

In addition, AHP is an algorithm that requires calculations for three objectives at the
same time to evaluate each candidate and select the best candidate among candidates.

In the worst case, it moves to the destination in 4× n steps, which is three times the
node number. Therefore, the time complexity of the hybrid algorithm is given as

O(nlog(n)) + O(4n)→ O(nlog(n) + n) (3)

In order to compare the performance of the proposed algorithm, the time complexity
of the simplified PRM (sPRM) was also used. According to [29], the time complexity of
sPRM is O

(
n2). The comparison results are displayed in Figure 11.
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In summary, the proposed hybrid algorithm is somewhat less efficient than the con-
ventional A-STAR in terms of time complexity but more efficient than sPRM. Although it
does not outperform the existing methods, the proposed algorithm has the advantage of
being able to make decisions that meet the purpose of navigation.

4. Anti-Sway Control of the Patient Transfer Robot

In this study, we developed an autonomous driving architecture for a robot that
transports patients who cannot move on their own as shown in Figure 12. A patient-
transfer robot (PTR) is a robot that has the function of transporting a patient lying in bed
to a wheelchair, toilet, or other location. In the past, caregivers transported patients by
manpower, but with PTR, the risk of injury to caregivers can be reduced.
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robot, (c) simplified model of patient transfer robot [30].

4.1. Dynamic Model of a Patient Transfer Robot

In this section, we examine the dynamics model for PTR motion control to follow the
path in the higher-level controller, which is the hybrid path planner. That is, in the proposed
PTR navigation, a global path is generated through A-STAR, and a local path is generated
through an AHP-based algorithm. Afterward, the robot defines the generated path as a
reference path and tracks the proposed path following the control method by modeling
the system as a simple pendulum model. As shown in Figure 12a, the robot used in this
study has four mecanum wheels that can move in all directions as a driving mechanism. It
is possible to turn in place through omnidirectional movement, which allows the robot to
operate in a narrow space.

The system shown in Figure 12a,b is a manually controlled PTR that has been devel-
oped and is expected to carry out a service for transporting patients in a medical institution
through autonomous driving in the future. For this, it is essential to develop autonomous
driving functions for robots. Therefore, this study focuses on path planning and motion
control for autonomous driving of PTR in a hospital environment, and this section deals
with motion control of a mobile platform based on the mecanum wheel. Matters to be
considered in motion control for autonomous driving of the PTR are the position control of
the mobile platform and the minimization of the sway of the patient riding the PTR.

That is, it is essential for PTR motion control to follow the planned path well without
errors and to minimize the sway of the patient being transported. In this study, as shown
in Figure 12c, the patient is assumed to be a point mass hanging on the PTR, and the PTR
system on which the patient boarded is simplified as a 3D pendulum with omnidirectional
movement and can be modeled [31–33].

(M + m)
..
x + D

.
x + ml

..
θx = fx (4)

l
..
θx +

..
x + gθx = 0 (5)

(M + m)
..
y + D

.
y + ml

..
θy = fy (6)

l
..
θy +

..
y + gθy = 0 (7)

where x and y are the longitudinal and lateral directional movements of the PTR. θx and
θy is the sway angle of the patient in x and y direction. M and m represent the weight of
the PTR and the patient, respectively. fx and fy are the control inputs for driving the PTR
for x and y directional movement. D is the damping coefficient due to friction acting on
the wheel, and l and g are the lengths of the cable fixing the patient and the gravitational
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acceleration, respectively. In order to design an anti-sway control system, the PTR in 2D
plane Equations (4)–(7) are rewritten as

.
x
..
x
.
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..
y
.
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4.2. Patient-Transfer Robot Motion Controller Design

In this section, we propose a method to design a controller suitable for the characteristics
of the system by applying the overall system dynamics, as shown in Equations (8) and (9). The
dynamics model of the PTR is derived as a linear system as shown in Equations (8) and (9).
Given a system model, model-based control has excellent performance. However, various
uncertainties and noise of the dynamics system cannot be excluded in the process of
applying the actual controller. Therefore, in this study, we propose a method applying the
Kalman filter for the control of the derived model.

In this paper, a well-known LQR controller [1,34], the model-based control technique,
is used to control the PTR system. To apply LQR control, it is necessary to obtain the
equation of the state of the system to be controlled, define the performance measure of the
control system, and finally solve the Riccati differential equation about the given system.
As the performance measure, we utilized the following measure:

J =
∫ ∞

0

(
eTQe + UT RU

)
dt, (10)

where Q is the weighting on reference tracking error and R is the weighting on the control
input. Then the feedback control law that minimizes Equation (10) is

u = −Klqrx, (11)

where K is given by
Klqr = R−1BT P, (12)

And P is obtained from the continuous time algebraic Riccati equation:

AT P + PA− PBR−1BT P + Q = 0. (13)

The PTR system is modeled as a 2D movable pendulum system. It is well known
that the designed controller makes the system asymptotically stable [35]. More details are
derived in [35]. Despite the excellent performance of the LQR controller, the LQR controller
is a control method that can be used when the model of the system is accurate. However,
it is almost impossible to derive an accurate model due to system parameter uncertainty,
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sensor noise, and disturbance. Considering these aspects, this study responded to the
uncertainty of the system by designing an observer to which the Kalman filter [36] was
applied. Figure 13 displays the whole control structure of the PTR. In order to consider the
uncertainty of the system, process noise and sensing noise were added to the previously
given model as below:

.
x = Ax + Bu + Gw, (14)

y = Cx + Du + v (15)

where w and v denote the process noise and measurement noise, respectively.
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Assuming these terms are white noise and normal distribution, the Kalman filter has
the following state space model with the estimated state x̂,

.
x̂ = Ax̂ + Bu + Kt(y− Cx̂− Du) (16)[

ŷ
x̂

]
=

[
C
I

]
x̂ +

[
D
0

]
u (17)

where Kt is the Kalman filter gain that is obtained from the algebraic Riccati equation

Kt = PtCT
t R−1

t (18)

.
Pt = AtPt + Pt AT

t − KtRtKT
t (19)

where P0 is given.

4.3. Performance of Motion Controller

To demonstrate the performance of the proposed lower-level controller, control sim-
ulations are conducted for two scenarios: (a) Movement of the PTR to a specific point in
2D space and (b) sinusoidal movement of the PTR. In addition, sensor noise and model
uncertainty are added as in the real world to demonstrate the improvement of the Kalman
filter-based control. In the simulations, we primarily observed the desired trajectory track-
ing performance and the anti-sway capability of the suggested control scheme.

Point-to-Point Movement

The first simulation is the point-to-point movement case as shown in Figure 14. Basically,
the PTR is located in the origin (0, 0). When the target position is (1, 2) in 2D space, it is
shown that the suggested controller successfully moves the PTR to the desired position. In
the resulting figures, red, blue, and black lines represent LQR-based, Kalman filter (KF)-based,
and reference with LQR for the perfect model (when the model parameters are exactly known)
case, respectively. In Figure 14b,d, enlarged versions of (a) and (c) are presented to show
the performance of the KF-based controller better. When the sway angles are observed, in
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Figure 14c,d, it is shown that a large sway angle occurs at the beginning in both directions, x
and y, but it also can be observed that the sway angle converges to 0 over time.
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Figure 14. Point-to-point movement results: Longitudinal and lateral movement. (a) Overall view;
(b) enlarged view, longitudinal and lateral sway angles; (c) overall view; (d) enlarged, displacement
of the patient in 2D plane; (e) x and y directional movement; (f) patient movement in x-y plane.

In the 3D pendulum model, when the sway angles in the x and y directions are θx and
θy, respectively, the displacements in each direction from PTR’s frame are as follows [31]:

xm = lsinθx cos θy (20)
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ym = lsinθy (21)

Figure 14e shows the displacement of the patient in longitudinal and lateral directions
and Figure 14f displays the movement of the patient in the x-y plane. From the simulation
results, it is observed that the movement of the patient is displayed with a blue line and
shows movement in the x and y directions. The maximum displacement to each direction
is 11 cm in the x-direction and 23 cm in the y-direction, respectively. Figure 15 shows
the sinusoidal movement of the PTR x = cos 0.2t and y = sin 0.2t. Eventually, the PTR
movement is a circular motion. As shown in Figure 15a,b, by means of the proposed control
scheme, the PTR tracks the reference path well even in the case of following a circular
path. The sway reduction performance is displayed in Figure 15c. The patient’s sway
occurs in the process of moving the PTR to follow the path from zero speed, similar to the
point-to-point case. However, it shows that it follows the required path and, at the same
time, reduces the sway of the patient. In other words, after the transient response condition
passed, it showed the performance of transferring the patient minimizing the sway angle
well. Since θx and θy, which represent the patient’s way angle in x and y directions, are
measured, the movement of the patient on a two-dimensional plane can be calculated by
Equations (20) and (21) and are shown in Figure 15e. In the case of sinusoidal motion,
the maximum longitudinal displacement is 13 cm and the maximum displacement in the
lateral direction is 13 × 10−1. As a result, the performance of the system for controlling
the movement of the PTR and the sway angle reduction of the patient through the LQR
controller based on the Kalman filter is shown. In this Section, the performance of the
proposed PTR autonomous driving module is tested in a hospital environment layout
through numerical simulation.
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other equipment in the hospital environment. Figure 16b is an occupancy grid map 
(OGM) that simplifies the structure of the hospital environment for the robot to plan its 
path. In OGM, black represents a wall or an obstacle that a robot cannot pass through, and 
parts expressed in white represent the area where a robot can drive. 
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For simulation purposes, we assume a situation in which a patient in a bed (ⓐ) needs 
to be moved to another position (ⓒ) using the PTR. When there is a request for the transfer 
of a patient from a location (ⓐ) through the PTR, the robot moves from the current 
location (ⓑ) to (ⓐ) to lift the patient. After lifting the patient, it travels to the final 
destination (ⓒ) with the patient as shown in Figure 17. Moreover, ‘Autonomous driving’ 
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Figure 15. Sinusoidal movement results: Longitudinal and lateral movement. (a) Overall view;
(b) enlarged view, longitudinal and lateral sway angles; (c) overall view; (d) enlarged, displacement
of the patient in 2D plane; (e) x and y directional movement; (f) patient movement in x-y plane.

5. Simulation and Results

Figure 16 shows a hospital layout. In Figure 16a shows the arrangement of beds and
other equipment in the hospital environment. Figure 16b is an occupancy grid map (OGM)
that simplifies the structure of the hospital environment for the robot to plan its path. In
OGM, black represents a wall or an obstacle that a robot cannot pass through, and parts
expressed in white represent the area where a robot can drive.
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5.1. Performance of Path Planning

For simulation purposes, we assume a situation in which a patient in a bed ( a©) needs
to be moved to another position ( c©) using the PTR. When there is a request for the transfer
of a patient from a location ( a©) through the PTR, the robot moves from the current location
( b©) to ( a©) to lift the patient. After lifting the patient, it travels to the final destination ( c©)
with the patient as shown in Figure 17. Moreover, ‘Autonomous driving’ includes hybrid
path planning and motion control proposed in this study.



Actuators 2023, 12, 106 17 of 22Actuators 2023, 12, 106 18 of 23 
 

 

 
Figure 17. Simulation scenarios. 

Figure 18 displays the path-planning results of three path-planning methods, namely 
AHP, A-STAR, and hybrid path planning. Each method is colored black, red, and blue, 
respectively. Figure 18a represents the path from the robot’s initial location ⓑ to the 
patient’s location ⓑ and Figure 18b depicts the path from the patient’s location to the 
final destination ⓒ of the patient for treatment. 

  
(a) (b) 

Figure 18. Scenario-based path planning: (a) Path from ⓑ to ⓐ; (b) path from ⓐ to ⓒ. 

Table 4 shows the moving distance when each path-planning method is applied. In 
both scenarios, it was confirmed that the proposed hybrid algorithm showed the shortest 
distance driving performance. 

Table 4. Travel distance of path-planning methods. 

Scenario A-STAR AHP Hybrid 
B to A 165.04 165.0 160.71 
A to C 112.33 110.5 104.30 

5.2. Performance of Motion Controller 
To verify the performance of the proposed controller, motion control simulations are 

conducted in the same environment as the path-generation environment. For control, the 
path of the PTR generated by the path-generation module is defined as the reference path. 

Location ⓐ

Location ⓑ

Location ⓒ

Caregiver
Target 

location

PTR

Transfer task request

Autonomous driving

Autonomous driving

Figure 17. Simulation scenarios.

Figure 18 displays the path-planning results of three path-planning methods, namely
AHP, A-STAR, and hybrid path planning. Each method is colored black, red, and blue,
respectively. Figure 18a represents the path from the robot’s initial location b© to the
patient’s location b© and Figure 18b depicts the path from the patient’s location to the final
destination c© CIRCLED of the patient for treatment.
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Figure 18. Scenario-based path planning: (a) Path from b© to a©; ( b©) path from a© to c©.

Table 4 shows the moving distance when each path-planning method is applied. In
both scenarios, it was confirmed that the proposed hybrid algorithm showed the shortest
distance driving performance.

Table 4. Travel distance of path-planning methods.

Scenario A-STAR AHP Hybrid

B to A 165.04 165.0 160.71
A to C 112.33 110.5 104.30

5.2. Performance of Motion Controller

To verify the performance of the proposed controller, motion control simulations are
conducted in the same environment as the path-generation environment. For control, the
path of the PTR generated by the path-generation module is defined as the reference path.
In motion control, the PTR’s path-following performance and the patient’s sway angle are
observed. There are two scenarios in the path-planning simulations.
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The simulation results of the first scenario are shown in Figures 19 and 20. Figure 19a
shows the path following the performance of the PTR system expressed by Equation (6)
through the proposed controller. It can be seen that the controller causes the PTR to
successfully follow the planned path. Figure 19 shows the patient’s sway boundary on
a two-dimensional plane. The sway reduction performance is detailed in Figure 20a,b
showing the maximum longitudinal displacement of 1.0 cm and the maximum lateral
displacement of 11.3 cm. The second scenario results are displayed in Figures 21 and 22.
The reference path tracking performance is shown in Figure 21a. The PTR follows the
reference path well without collision with the environment.
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Figure 19. Motion control performance. (a) Reference path tracking performance. (b) Sway reduction
performance in 2D space.
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Figure 20. Motion control performance. (a) Sway angle reduction in x/y direction. (b) Displacement
of the patient in x/y direction.

Figure 22a,b display the sway angle and sway displacement of the patient. The
maximum displacement of the patient in the x direction is 20.4 cm and the maximum
displacement of the patient in the y direction is 2.0 cm. Overall, it can be confirmed that
path following and patient sway control are successfully conducted through the proposed
motion controller.
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Figure 21. Motion control performance. (a) Reference path tracking performance. (b) Sway reduction
performance in 2D space.
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Figure 22. Motion control performance. (a) Sway angle reduction in x/y direction. (b) Displacement
of the patient in x/y direction.

6. Discussion

The performances of the proposed path planning and motion control method are eval-
uated through Matlab simulation. The performance of the path planning is confirmed by
comparing the existing methods A-STAR and AHP. AHP generates the path by giving 70%
weight to the shortest distance, 19% weight to safety, and 11% weight to robot rotation. In both
simulation scenarios, it is confirmed that the hybrid method generates the shortest-distance
performance. This result is made possible by the application of the concept of interacting with
the robot’s work environment through the generation of the local path while maintaining
the trend of the optimal path through global path generation. Observing the path generation
results, it is also confirmed that although AHP is a local path-planning method, it shows
performance quite similar to A-STAR if only the local minima can be avoided. In addition, the
hybrid path-planning method shows path-shortening performances of 2.62% and 2.6%, respec-
tively, compared to A-STAR and AHP in the first scenario, and 7.15% and 5.61% compared to
each path-planning method in the second scenario.
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In addition, in the motion control performance, the given path is successfully followed
through the LQR controller to which the proposed KF is applied, and the patient’s sway
angle decreased and finally converged to zero. However, the sway of the patient may occur
via inertia caused by a sudden change in direction or rapid acceleration and deceleration of
the mobile platform. Therefore, if there is no additional actuator for sway control as in the
system proposed in this study, there is a limit in sway reduction control. Fortunately, the
moving speed of the PTR is limited due to the patient safety issue. However, for similar
applications, sway control using an additional actuator is required.

Considering the simulation results of the proposed method in an environment sim-
ilar to a real hospital, this study shows two major strengths: The first is environmental
robustness through the hybrid path-planning method. It is possible to move by actively
responding to changes in the navigation environment. The second strength is the control
performance through the application of the LQR controller to which the Kalman filter is
applied. When the proposed algorithm is applied, it can be confirmed that the required
path is successfully followed and the sway of the patient on board is also reduced. Through
this, it shows the feasibility of applying the proposed algorithm to the PTR system in the
hospital environment.

7. Conclusions

In this paper, a study is conducted on the operation of a PTR with autonomous driving
technology in a medical facility. Under the assumption of a static environment, a path
generated based on the map of the workspace may be optimal while the static environment
is maintained. However, in order to respond to the dynamic environment in which real
robots are operated, hybrid-type path planning is essential. Therefore, in this study, an
efficient path-planning method is proposed through the integration of A-STAR and AHP
path-planning algorithms. Furthermore, the movement control of the PTR moving in
the hospital and the sway angle reduction control of the patient are conducted by the
Kalman-filter-based LQR controller.

For the implementation of the proposed navigation method, the proposed algorithm
is designed in three levels as introduced in Figure 7. The first level is the global path
planning to generate an optimal path based on the map for the secured workspace. The
second level is local path planning, which helps to move to the final destination by actively
responding to the changing environment. The final level is the motion controller to follow
the predefined path and reduce the patient’s sway. In particular, for motion control, the
PTR including the patient is modeled as a pendulum moving on a two-dimensional plane,
and a Kalman filter is used to cope with modeling uncertainty and noise. When the hybrid
path-planning level generates a path, this path is defined as the reference path of the PTR
to follow. By applying the proposed KF LQR, the tracking path and sway reduction control
performance are confirmed.

Nevertheless, this study has a limitation in that motion control is performed based
on the mathematical model of the PTR hardware manufactured based on the project.
Current hardware platforms cannot implement autonomous driving due to the absence
of environmental sensors for autonomous driving. However, it is planning to develop a
hardware platform capable of indoor autonomous driving through the PTR performance
enhancement project. In addition, we plan to conduct hardware-based autonomous driving
research by applying the algorithm developed in this study.
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