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Abstract: This paper presents a novel approach to address the challenges associated with the trajectory
tracking control of wheeled mobile robots (WMRs). The proposed control approach is based on an
indirect adaptive control PID using a neural network and discrete extended Kalman filter (IAPIDNN-
DEKF). The proposed IAPIDNN-DEKF scheme uses the NN to identify the system Jacobian, which
is used for tuning the PID gains using the stochastic gradient descent algorithm (SGD). The DEKF
is proposed for state estimation (localization), and the NN adaptation improves the tracking error
performance. By augmenting the state vector, the NN captures higher-order dynamics, enabling more
accurate estimations, which improves trajectory tracking. Simulation studies in which a WMR is used
in different scenarios are conducted to evaluate the effectiveness of the IAPIDNN-DEKF control. In
order to demonstrate the effectiveness of the IAPIDNN-DEKF control, its performance is compared
with direct adaptive NN (DA-NN) control, backstepping control (BSC) and an adaptive PID. On
lemniscate, IAPIDNN-DEKF achieves RMSE values of 0.078769, 0.12086 and 0.1672. On sinusoidal
trajectories, the method yields RMSE values of 0.01233, 0.015138 and 0.088707, and on sinusoidal
with perturbation, RMSE values are 0.021495, 0.016504 and 0.090142 in x, y and θ, respectively. These
results demonstrate the superior performance of IAPIDNN-DEKF for achieving accurate control and
state estimation. The proposed IAPIDNN-DEKF offers advantages in terms of accurate estimation,
adaptability to dynamic environments and computational efficiency. This research contributes to the
advancement of robust control techniques for WMRs and showcases the potential of IAPIDNN-DEKF
to enhance trajectory tracking and state estimation capabilities in real-world applications.

Keywords: wheeled mobile robots; trajectory tracking; neural network; indirect adaptive control;
indirect adaptive PID

1. Introduction
1.1. Motivations

In recent years, the widespread utilization of wheeled mobile robots (WMRs) has be-
come prevalent across various industries and has found significant application in challeng-
ing and hazardous environments [1]. These environments include space exploration [2],
military operations [3], natural disaster response and nuclear areas [4] among others [5]. De-
spite advances in the field of intelligent WMRs, the ability to autonomously track planned
paths and perform tasks in such demanding environments remains a key challenge for
researchers. An area of extensive research focus has been trajectory tracking control, where
the primary objective is to develop effective control strategies for WMRs. Many of these
strategies employ a kinematic model, which generates a reference velocity based on po-
sitional errors [6–10]. The navigation of a WMR involves the regulation of its movement
from an initial point to a designated target within a specified environment, necessitating
the incorporation of obstacle avoidance capabilities and collision prevention mechanisms.
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Environments can be broadly categorized as structured (known), semi-structured or un-
structured (unknown). Navigating through an unknown environment, with its inherent
uncertainties, necessitates a comprehensive approach to address the challenges posed. In
the realm of WMR motion control, various methodologies have been published, offering
strategies tailored to specific needs. Some methods focus on kinematic or dynamic control,
precisely addressing tracking control issues, while others provide broader solutions for
generalized navigation problems. To delve deeper into the intricacies of trajectory-tracking
control techniques, it is essential to examine previous works that have laid the groundwork
for understanding and refining these specific aspects of WMR motion control.

1.2. State of the Art

Numerous methods have been introduced to address motion control challenges in
WMR. Some of these approaches suggest kinematic or dynamic control strategies specifi-
cally for tracking-control problems, while others aim to tackle broader navigation issues.
This section provides a concise overview of existing research on WMR motion control, en-
compassing recent methodologies involving artificial intelligence (AI) [11], neural networks
(NNs) [12], fuzzy logic control (FLC) [13], classical approaches and so on.

The primary goal of a tracking controller is to guide a WMR to trace a predefined
reference path. This involves regulating both linear and angular velocities or accelerations
to minimize the deviation between the desired path and the actual trajectory. Inherent
challenges such as slippage, disturbances and noise contribute to unavoidable errors in the
tracking process. Several tracking control strategies have been developed in the literature.

Conventional control methods such as PID control and sliding mode control (SMC)
play a fundamental role in addressing the challenges of WMR trajectory tracking. PID
controllers offer a classic and widely used approach that leverages proportional, integral
and derivative terms to achieve stable and accurate trajectory tracking [14]. On the other
hand, SMC introduces a sliding surface to guide the system along the desired trajectory
and demonstrates robust performance against disturbances and uncertainties [15]. These
conventional control techniques have been pivotal for addressing the challenges of mobile
robot trajectory tracking and for providing stable and effective solutions in diverse scenar-
ios. Hence, Liu et al. [16] investigated the trajectory tracking control problem for WMRs
in two scenarios: without and with kinematic disturbances. In the absence of kinematic
disturbances, the study introduces a tracking controller grounded in cascaded system
theory, which ensures asymptotic tracking of the WMR to the reference trajectory. However,
when kinematic disturbances are present, a two-tiered controller approach is employed.
Initially, a PID tracking controller is proposed to address these disturbances. Subsequently,
the design incorporates generalized proportional-integral observers (GPIOs) to estimate
kinematic disturbances. This estimation forms the basis for a comprehensive GPIO-based
composite tracking controller that seamlessly integrates disturbance estimates with a track-
ing controller initially designed for disturbance-free scenarios. Comparative simulations
demonstrate that with accurate disturbance estimations and compensations provided by
the GPIOs, the GPIO-based composite controller exhibits superior performance at trajectory
tracking for WMRs experiencing kinematic disturbances when compared to the other two
controllers. Wang et al. [17] introduced an innovative trajectory tracking control algorithm
for WMRs that combines reinforcement learning with PID. Utilizing Q-learning and PID,
the method is designed to guide the WMR along a specified trajectory while reducing
the computational complexity of the Q-learning reward function and enhancing tracking
accuracy. Simulation tests validate the effectiveness of the proposed algorithm, showcasing
its potential for real-world applications.

Classic approaches have been widely employed but may encounter challenges when
handling nonlinearities and disturbances. Recent advancements, however, have seen a shift
towards more adaptive and learning-based tuning techniques. Strategies like stochastic
gradient descent (SGD), gradient approximation (GA) and perturbation stochastic ap-
proximation (SPSA) algorithms offer dynamic parameter adjustments based on real-time
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feedback, enhancing the adaptability of classic controllers. Furthermore, the exploration
of PID and FOPID controllers presents a promising avenue that allows additional control
parameters at the derivative and integral parts for improved response and robustness. The
integration of these advanced tuning methods reflects a concerted effort to address the
evolving demands of trajectory tracking for WMRs, ensuring optimal performance in the
face of uncertainties and dynamic environmental conditions. Hence, Mok et al. [18] address
a critical challenge in the realm of automatic voltage regulation (AVR) systems, where
uncertainty in load conditions poses a significant engineering problem. In their study, they
emphasize the pivotal role of PID-based controllers for maintaining optimal AVR system
performance. Recognizing the limitations of traditional PID controllers, the authors delve
into the application of fractional-order proportional-integral-derivative (FOPID) controllers,
which offer additional control parameters at the derivative and integral parts. This aug-
mentation allows for improved output response and robustness compared to conventional
PID controllers. To enhance the tuning process of FOPID controllers, the authors propose a
modified smoothed function algorithm (MSFA) method, which mitigates the computational
burdens associated with existing optimization tools. The MSFA-based approach not only
requires fewer function evaluations per iteration but also addresses the unstable conver-
gence issue present in the original smoothed function algorithm (SFA). Through extensive
simulations, including step response analysis, Bode plot analysis, trajectory tracking analy-
sis, disturbance rejection analysis and parameter variation analysis, results demonstrate
the effectiveness of their proposed MSFA-FOPID controller for AVR systems. The results
underscore the method’s significant improvements over other existing FOPID controllers
and contribute to the advancement of control strategies in the context of AVR systems.
Kong et al. [19] introduced an innovative approach to enhance the PID-type control sys-
tems widely applied in industrial settings. Recognizing the need for optimal controller
parameters, the conventional methods for PID parameter optimization were acknowledged
as cumbersome, time-consuming and reliant on experience. In their work, a refined PID
parameter sequential optimization technique grounded in the SPSA algorithm is developed.
This novel method strategically perturbs all parameters simultaneously and iteratively
searches for the direction that enhances control performance directly. The efficacy of this
approach was demonstrated through implementation on a dual-tank liquid-level control
system encompassing both simulated and experimental evaluations. The results substanti-
ated the effectiveness of the proposed method for improving the performance of PID-type
control systems, offering a more efficient alternative to traditional optimization approaches.
Wang et al. [20] proposed a novel approach in the realm of deep neural network (DNN)
training and recognized the pivotal role played by the learning rate. In their study, they
introduced an incremental PID controller, a well-established tool in automatic control sys-
tems, to function as a learning rate scheduler for SGD. The key innovation lies in leveraging
feedback control to dynamically calculate the current learning rate, resulting in incremental
PID learning rates, specifically PID-Base and PID-Warmup. These novel schedulers aim to
mitigate dependence on the initial learning rate and achieve heightened accuracy. Through
extensive comparisons with established methods such as multistep learning rates (MSLRs),
cyclical learning rates (CLRs) and SGD with warm restarts (SGDR), incremental PID learn-
ing rates, guided by feedback control, demonstrated superior accuracy on the CIFAR-10,
CIFAR-100 and Tiny-ImageNet-200 datasets. The proposed approach offers a promising
avenue for improving the performance of SGD with DNN training. Cui et al. [21] intro-
duced adaptive sliding mode control (ASMC) to address the challenges associated with
the uncertain nonlinear kinematic model of differential-driving WMRs. The proposed
controller is specifically designed for trajectory tracking in the presence of unknown pa-
rameter variations and external disturbances. Online estimation of total uncertainties is
achieved using an improved linear extended state observer (ESO), which incorporates an
error-compensating term. The developed ASMC, featuring real-time adjustable switching
gain, is formulated by selecting a PID-type sliding surface. The theoretical substantiation of
the convergence of tracking errors for WMRs is established through the Lyapunov stability
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theory. Simulation and real experimental results collectively affirm the effectiveness and
superiority of the ASMC method, particularly when compared to traditional SMC and
backstepping control (BSC) techniques.

The use of NNs for WMR trajectory tracking is a common and effective approach
in the field of robotics. NNs can be employed to learn complex mappings between sen-
sor inputs and control outputs, allowing a robot to navigate and follow trajectories in
diverse environments [22]. Hence, Hassan et al. [23] proposed a novel hybrid approach for
trajectory tracking in WMRs. Their system integrates an NN-based kinematic controller
with a model reference adaptive control to dynamically adapt parameters online for swift
convergence to the desired trajectory. Leveraging the Lyapunov stability method ensures
stability amid uncertainties. Comparative analysis, including PID, kinematic and adaptive
dynamic controllers, reveals superior tracking accuracy and fast convergence in simula-
tions. Real-world experiments confirm the effectiveness of their proposed controller by
demonstrating enhanced tracking accuracy, minimized control effort and robustness against
uncertainties. However, in recent research, the integration of NNs with conventional con-
trollers has garnered significant attention. This hybrid approach seeks to capitalize on the
respective strengths of both methodologies: combining the interpretability and stability of
conventional controllers, such as PID and sliding mode approaches, with the adaptabil-
ity and learning capabilities of NNs [24]. This integration holds promise for enhancing
control system performance, particularly in scenarios characterized by uncertainties and
nonlinearities. For instance, Nguyen et al. [25] proposed an adaptive sliding mode con-
trol (ASMC) method for tracking a WMR confronted with unknown wheel slips, model
uncertainties and unknown bounded disturbances. The method incorporates self-recurrent
wavelet neural networks (SRWNNs) to approximate unknown nonlinear functions arising
from these uncertainties and disturbances to effectively compensate for their adverse ef-
fects. The control strategy ensures desired tracking performance, with position tracking
errors converging to a small neighborhood of the origin independent of their initial values.
The stability of the closed-loop system is guaranteed through the Lyapunov theory and
LaSalle extension. Notably, offline training of neural network weights is unnecessary, as
they can be easily initiated. Online tuning algorithms are employed for weight training.
The validity and efficiency of the proposed control method are demonstrated through
computer simulations.

On the other hand, FLC has been integrated with diverse techniques, showcasing
its versatility at handling uncertainties [26]. FLC has been successfully combined with
conventional controllers like PID and SMC in order to provide stability and well-defined
control strategies. This adaptability extends to behavior-based systems, where FLC aids
with coordinating and blending different behaviors for effective navigation. These hybrid
approaches reflect the multifaceted nature of FLC and offer robust and adaptive solutions
for WMR trajectory tracking in complex and dynamic environments. FLC uses linguistic
information based on human expertise; as a result, FLC has several advantages: robustness,
no models are required (free model), the use of expert knowledge and the the IF-THEN rules
algorithm [27]. Thus, FLC has attracted more attention in mobile robot control research.
Hence, Hsu et al. [28] introduced a novel approach for the design and implementation of a
wheeled bipedal robot (WBR), which combines the mobility of WMRs with the dexterity
of legged robots. The design of this WBR incorporates additional knee joints, enhancing
body balance on uneven terrain. Given the robot’s highly nonlinear, dynamic, unstable
and under-actuated nature, the study introduces an intelligent motion and balance con-
troller (IMBC) based on an FLC approach. Notably, the IMBC system eliminates the need
for prior knowledge of system dynamics, and its controller parameters are tuned using
qualitative aspects of human knowledge. The implementation involves utilizing a 32-bit
microcontroller with memory, programmable I/O peripherals and a processor core. The
proposed IMBC system undergoes testing across various scenarios, including moving,
rotating, height-changing, posture-keeping and ’one leg on slope’ movements, effectively
demonstrating its feasibility. Experimental results highlight that the WBR, employing the
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IMBC system, effectively maintains balance and mobility on both flat ground and com-
plex terrain and showcases the capability to extend each leg independently for enhanced
body balance.

On the other hand, drawing inspiration from the cooperative behaviors seen in social
insects, swarm intelligence algorithms have become valuable tools in the world of WMR tra-
jectory tracking. These algorithms, like ant colony optimization (ACO) [29], particle swarm
optimization (PSO) [30], grey wolf optimizer [31], black widow optimization (BWO) [32]
and the bat algorithm (BA) [33], mimic the natural ways of ants, birds, wolfs, spiders and
bats, respectively, to help robots navigate. The use of these decentralized approaches can op-
timize how robots move and follow desired paths. This collective approach makes WMRs
more efficient and adaptable in changing environments, offering a promising solution for
complex navigation tasks. For instance, Castillo et al. [34] proposed an approach based on
ant colony optimization (ACO), a population-based meta-heuristic inspired by the foraging
behavior of real ants. This approach aims to avoid or slow down full convergence by
dynamically varying a specific parameter. The study assesses the performance of different
ACO variants to identify a suitable foundation for the proposed method. Subsequently, a
convergence FLC is developed with the objective of maintaining diversity at a specified
level to mitigate premature convergence. Encouraging results are presented through ap-
plication of the proposed method to various instances of the traveling salesman problem,
along with its utilization for optimizing membership functions for trajectory control of
a unicycle mobile robot. Saleh et al. [35] proposed an optimized fractional order PID
(FOPID) controller using PSO to enhance trajectory tracking for wheeled mobile robots
(WMRs). The objective is to minimize the disparity between the actual trajectory and a
desired reference velocity, with the aim of achieving zero distance and deviation angle. For
precise trajectory tracking, two FOPID controllers are employed—one for velocity control
and another for azimuth control. The implementation involves path planning and path
tracking methodologies and enables diverse desired tracking trajectories. The PSO algo-
rithm is applied to determine the optimal parameters for the FOPID controllers. Kinematic
and dynamic models of the wheeled mobile robot are simulated in Simulink–MATLAB
for desired trajectory tracking using the PSO algorithm. Simulation results demonstrate
that the proposed optimal FOPID controllers exhibit superior effectiveness and improved
dynamic performance compared to conventional methods.

Traditional PID tuning methods, while widely applied, may fall short at capturing
the intricate nonlinearities and uncertainties prevalent in real-world scenarios. The SGD
algorithm, known for its versatility and effectiveness at optimizing complex systems,
is strategically employed to enhance the adaptability and learning capabilities of PID
controllers. Unlike conventional methods, SGD facilitates dynamic adjustment of PID
parameters based on real-time feedback, allowing the controller to continually refine its
performance in response to changing conditions. This choice is motivated by the need
for a comprehensive approach that goes beyond the limitations of static tuning methods
in order to ensure robust trajectory tracking in the face of the uncertainties, disturbances
and nonlinearities inherent in wheeled mobile robot dynamics. Therefore, integration
of the SGD algorithm serves as a pivotal component for achieving a PID controller that
can dynamically adapt and optimize its parameters and thereby enhance the overall
performance for challenging navigation tasks.

In order to address the challenges associated with WMR trajectory tracking, an in-
novative approach is proposed that integrates an NN and DEKF alongside PID tuning,
departing from the conventional method of tuning a PID directly using the SGD algorithm.
The motivation for this novel strategy lies in the limitations of PID tuning alone when
confronted with complex, nonlinear system dynamics and uncertainties. The NN facilitates
the learning of intricate mappings between sensor inputs and control outputs, enhanc-
ing adaptability to nonlinearities and uncertainties. Simultaneously, the DEKF ensures
real-time adaptation of NN weights and accurate state estimation, guiding the learning
process with precise feedback. This combined methodology aims to leverage the stability
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of a PID alongside the adaptability and learning capabilities of an NN to provide a com-
prehensive and effective solution for robust trajectory tracking in diverse and challenging
WMR environments.

1.3. Contributions

This paper focuses on implementing adaptive control based on a neural network to
improve the tracking performance for WMRs. The main contributions of the proposed
control scheme are summarized as follows:

1. We successfully applied the discrete extended Kalman filter (DEKF) for neural network
(control or identification) weight adaptation and state estimation (localization).

2. We designed an adaptive control strategy based on a neural network for mobile robot
trajectory tracking.

3. Simulations were conducted to verify the proposed adaptive control strategy’s
performance.

1.4. Structure Overview

The subsequent sections of this paper are structured as follows. Section 2 provides an
introduction to the kinematics model of the WMR. Following that, Section 3 outlines the
control structure. Section 4 delves into the simulation results and conclusions.

2. Kinematics Model

A kinematics model of a unicycle mobile robot serves as a fundamental basis for
various types of nonholonomic wheeled mobile robots (WMRs). This particular model
has garnered significant theoretical attention from researchers due to its relevance and
applicability [36]. Unicycle WMRs typically consist of two driving wheels, with one
mounted on each side of the robot’s center, along with a free-rolling wheel that supports the
mechanical structure. These driving wheels possess the same radius, denoted as r, and are
separated by a distance of 2R. The motion and orientation of the robot are controlled by two
electrical actuators, while the free-rolling wheel functions as a self-adjusting support [37].

In the analysis, the mobile robot is considered to be composed of a rigid frame and
non-deformable wheels and to move within a two-dimensional horizontal plane defined
by the global coordinate frame (O, X, Y). The robot configuration is represented by a
vector of coordinates, denoted as q = [x, y, θ]. Here, x and y correspond to the position
coordinates of the WMR center in the fixed coordinate frame OXY, while θ represents the
orientation angle, as depicted in Figure 1. The linear velocity of the wheels is denoted as v,
and the angular velocity of the mobile robot is denoted as w. With these considerations, the
kinematics model, also referred to as the equation of motion, for the mobile robot can be
expressed as follows [38]: 

ẋ

ẏ

θ̇

 =

 v · cos(θ)
v · sin(θ)

w

 (1)

This kinematics model forms the basis for understanding and analyzing the motion
and behavior of unicycle mobile robots. By studying this model, researchers gain valuable
insights into the robot’s trajectory, velocity and orientation, enabling the development of
advanced control and planning algorithms for improved robot performance and navigation
in various environments.
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Figure 1. The mobile robot tracking error.

In order to address a trajectory tracking issue, it is necessary to generate a reference
trajectory. This reference trajectory serves as a benchmark or target against which the actual
trajectory can be compared. The reference trajectory is given as follows [38]:

ẋr

ẏr

θ̇r

 =

 v · cos(θr)
v · sin(θr)

wr

 (2)

where the error coordinates are represented by the world coordinates, which are given as
follows [39]:

qr − q =

 xr − x
yr − y
wr − w

 (3)

From the perspective of moving coordinates, the error coordinates undergo a transfor-
mation, with the results as follows [39]:

xe

ye

θe

 =

 cos(θ) sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ·

 xr − x
yr − y
θr − θ

 (4)

3. Indirect Adaptive Control

In this section, an indirect adaptive PID controller based on an NN for WMR trajectory
tracking is introduced, as illustrated in Figure 2. The distinctive feature of the indirect
adaptive controller lies in its capacity for online identification of the system parameters. The
identification process is facilitated by the NN, which assumes a pivotal role in extracting
system parameters. This dynamic learning mechanism enables the tuning of PID param-
eters through the SGD algorithm [40]. Moreover, in order to underscore the significance
of this integration, adaptability to complex and nonlinear dynamics is offered by the NN,
allowing the trajectory tracking system to effectively navigate uncertainties. Concurrently,
a crucial role in real-time weight adaptation for the NN is played by the DEKF, ensuring
that the learning process is guided by precise feedback. This deliberate integration of an
NN and DEKF enhances the adaptability, learning capabilities and overall robustness of
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the trajectory tracking system, making it well-suited for navigating challenging dynamics
and uncertainties.

Figure 2. Control scheme for indirect adaptive control based on NN.

3.1. PID Control Technique

A proportional-integral-derivative (PID) controller is a widely used feedback control
mechanism employed in various engineering applications to regulate and stabilize dynamic
systems [41]. A PID controller combines three fundamental control actions—proportional,
integral and derivative—to achieve good system performance. The proportional term (P)
responds to the present error, the integral term (I) accounts for past accumulated errors, and
the derivative term (D) anticipates future error trends. The controller output is determined
by summing these three terms, with each multiplied by its respective tuning constant. The
PID controller equation can be expressed mathematically as follows [42]:

uad(t) = Kpe(t) + Ki

∫ t

0
e(τ) dτ + Kd

de(t)
dt

(5)

where uad(t) is the controller output; e(t) is the error signal (difference between the de-
sired setpoint and the actual process variable); and Kp, Ki and Kd are the proportional,
integral and derivative tuning constants, respectively. The proportional term determines
the response based on the current error, the integral term eliminates any steady-state error,
and the derivative term anticipates future error changes, contributing to system stabil-
ity. The appropriate tuning of these constants is crucial for achieving the desired system
performance. In this context, the input error for this controller is defined as follows:

xe

ye

θe

 =

 cos(θ) sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ·

 xr − x
yr − y
θr − θ

 = Teer = Te(qr − q) =


e1

e2

e3

 = e (6)

where [x; y; θ] is the state vector and [xr; yr; θr] is the reference vector. By using Equations (5) and (6),
the PID controller equation for a WMR is given as follows [43]:

u =

(
v

w

)
=

 Kpvex(t) + Kiv
∫ t

0 ex(τ)dτ + Kdv
dex(t)

dt

Kpw(eθ(t) + ey(t)) + Kiw
∫ t

0 (eθ(τ) + ey(τ))dτ + Kdw
d(eθ(t)+ey(t))

dt

 (7)

where Kpv,iv,dv and Kpw,iw,dw represent the proportional, integral and derivative constants
for linear and angular velocities, respectively.
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3.2. PID Gain Adaptation

The gain adaptation algorithm enhances PID controller stability and tunes the gains
according to the reference trajectory. To describe this algorithm, a cost function is defined
as follows [44]:

F =
1
2
(α1e2

1 + α2e2
2 + α3e2

3) (8)

where α1,2,3 are positive constants associated with the squared error terms, and e1,2,3 are
the error signals. The PID controller gains are considered part of the cost function (8)
and are optimized and updated according to the SGD. The kinematic controller gains are
represented by the vector K = (Kpv, Kiv, Kdv, Kpw, Kiw, Kdw). The updated gains based on
the SGD are given by the following equation [45]:

K(t + 1) = K(t)− µ
∂F
∂K

(9)

Therefore, the updated gains for the PID controller using the SGD are given as follows:

Kp,i,d(t + 1) = Kp,i,d(t)− µp,i,d
∂F

∂Kp,i,d
(10)

where µp,i,d ∈ (0, 1) is the learning rate of the SGD. The partial derivative of the cost
function with respect to Kp,i,d is given as follows:

∂F
∂K

= α1e1
∂e1

∂K
+ α2e2

∂e2

∂K
+ α3e3

∂e3

∂K
= eT

(
Γ

∂e
∂K

)
(11)

where Γ =

 α1 0 0
0 α2 0
0 0 α3


Therefore, by substituting Equation (6) into Equation (11), the expression can be

as follows:
∂F
∂K = eT

(
Γ ∂Te(qr−q)

∂K

)
= −eTΓTe

∂q
∂K = −eTΓTe

∂q
∂u

∂u
∂K (12)

where the derivative ∂q/∂u is defined as the Jacobian matrix with respect to the system
velocity inputs. The Jacobian matrix and the derivative of ∂u/∂k are given as follows [46]:

∂q
∂u = J =


∂x
∂v

∂x
∂w

∂y
∂v

∂y
∂w

∂θ
∂v

∂θ
∂w

 (13)

∂u
∂k =

 ∂v
∂Kpv

∂v
∂Kiv

∂v
∂Kdv

∂v
∂Kpw

∂v
∂Kiw

∂v
∂Kdw

∂w
∂Kpv

∂w
∂Kiv

∂w
∂Kdv

∂w
∂Kpw

∂w
∂Kiw

∂w
∂Kdw

 (14)

Using Equations (5) and (14), the the derivative of ∂u/∂k can be calculated as follows:

∂u
∂k =

 ex(t)
∫ t

0 ex(τ)dτ
dex(t)

dt 0 0 0

0 0 0 (eθ(t) + ey(t))
∫ t

0 (eθ(τ) + ey(τ))dτ
d(eθ(t)+ey(t))

dt

 (15)

Therefore, by substituting Equations (13) and (14) into Equation (12), the expression
can be as follows:

∂q
∂k = J

 ex(t)
∫ t

0 ex(τ)dτ
dex(t)

dt 0 0 0

0 0 0 (eθ(t) + ey(t))
∫ t

0 (eθ(τ) + ey(τ))dτ
d(eθ(t)+ey(t))

dt

 (16)
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The derivative of the cost function with respect to the controller gains in Equation (11)
can be written as follows:

∂F
∂K

= −eTΓTe J

 ex(t)
∫ t

0 ex(τ)dτ
dex(t)

dt 0 0 0

0 0 0 (eθ(t) + ey(t))
∫ t

0 (eθ(τ) + ey(τ))dτ
d(eθ(t)+ey(t))

dt

 (17)

The critical aspect of the derivation in Equation (17) involves computation of the
Jacobian matrix J for the system. In the suggested control framework, this matrix can be
effectively computed through utilization of the NN identification model.

3.3. Jacobian Calculation Using the NN Model

The neural network (NN) serves the purpose of recognizing and approximating the
robot system. Illustrated in Figure 3, the NN identification topology comprises a single
hidden layer, an input layer with two inputs and an output layer with three outputs. The
neural network’s inputs, denoted as u = [v; w], correspond to the linear and angular
velocity components, while its output is the predicted state of the mobile robot. The
determination of the NN outputs is outlined as follows:

zi =
Nh

∑
j=1

(
wi,jhj + bw,i

)
(18)

hj = σ

(
Ni

∑
k=1

vj,kuk + bv,j

)
(19)

where z = q̂ =
[

x̂ ŷ θ̂
]T is the output of the NN, hj is the output of the hidden layer

of the neural network, and σ is the activation function.

Figure 3. NN application for WMR identification in indirect adaptive control.

The Jacobian matrix can be calculated from the NN identification formulas of
Equations (18) and (19) by performing the following derivations:

Ĵ = ∂z
∂u = ∂q̂

∂u =


∂x̂
∂v

∂x̂
∂w

∂ŷ
∂v

∂ŷ
∂w

∂θ̂
∂v

∂θ̂
∂w

 (20)
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Applying the chain rule [47], the derivative for computing the Jacobian matrix is
expressed as follows:

∂z
∂u

=
∂z
∂h

∂h
∂u

(21)

where the derivatives of Equation (21) previous can be calculated as follows:

∂zi
∂hj

= wi,j

Nh

∑
j=1

(
wi,jhj

)
(22)

∂hj

∂uk
= vj,kσ

(
Ni

∑
k=1

vj,kuk

)
(23)

Therefore, using Equations (22) and (23), Equation (21) is given as follows:

∂zi
∂uk

=
∂zi
∂hj

∂hj

∂uk
= wi,j

(
Nh

∑
j=1

(
wi,jhj

))
vj,kσ

(
Ni

∑
k=1

vj,kuk

)
(24)

Online updating of the Jacobian matrix estimation is employed to dynamically adjust
the gains of the PID controller. Simultaneously, the NN weights undergo online tuning
through a backpropagation algorithm (BPA) as described in [48]. This iterative tuning
enhances the accuracy of the system’s Jacobian approximation, consequently improving
the performance of the tracking control.

3.4. Discrete Extended Kalman Filter for NN Adaptation

The discrete extended Kalman filter (DEKF) is widely recognized as an algorithm for
NN parameter estimation, as evidenced in prior studies [49]. Its appeal is attributed to its
ease of implementation and computationally efficient calculations, which are particularly
beneficial for nonlinear systems and practical applications [50]. For adaptive NN control
based on DEKF, the weights of the NN are considered as the states that Kalman filter
attempts to estimate, and the outputs of the NN are the optimal control signals of the WMR,
as shown in Figure 2. The discrete nonlinear system for the NN adaptation process is given
as follows [50]:

θk = f (θk−1) (25)

zk = h(θk, xk) + vk (26)

where θk denotes the state vector encompassing all the NN weight parameters. The output
of the NN is represented by zk, while vk denotes an unknown bounded error. The input
vector of the NN is denoted as xk, and h() signifies the function of the NN. The algorithm
for adapting the NN using the Kalman filter can be succinctly summarized as follows:

• State estimate propagation:

θ̂k|k−1 = f
(

θ̂k−1|k−1

)
(27)

Pk|k−1 = AkPk−1|k−1 Ak
T + Qk−1 (28)

• The updated equations of the Kalman filter (or correction) are given as follows:

Kk = Pk|k−1Hk
T
(

HkPk|k−1Hk
T + R

)−1
(29)

θ̂k|k = θ̂k|k−1 + Kk

(
dk − h

(
θ̂k|k−1 , 0

) )
(30)

Pk|k = (I − Kk Hk)Pk|k−1 (31)
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where dk in Equation (30) represents the reference or the desired control signal. Many
variables affect the DEKF learning algorithm’s performance. These variables are matrices
that must be correctly initialized; otherwise, the DEKF algorithm can exhibit poor learning
performance and can exhibit negative impacts on the stability of the system. These matrices
are the covariance matrix P, the covariance matrix learning rate R and the additional
process noise matrix Q.

3.4.1. Stochastic Stability Analysis

Consider a nonlinear control system represented as follows:

θk+1 = f (θk) (32)

zk = h(θk, xk) + vk (33)

where θk ∈ Rn denotes the state of the system, zk represents the output of the system,
vk is unknown noise, and xk are the inputs of the NN; f and h are continuously differ-
entiable at θ̂k|k and θ̂k|k−1, respectively. Developing Equations (32) and (33) using Taylor
expansion gives [51]:

f (θk)− f
(

θ̂k|k

)
= Ak

(
θk − θ̂k|k

)
+ ϕ(θk, θ̂k|k) (34)

h(θk, xk)− h
(

θ̂k|k−1, xk

)
= Hk

(
θk − θ̂k|k−1, xk

)
+ χ(θk, θ̂k|k, xk) (35)

where ϕ and χ denote the residue terms. Therefore, the estimation errors are defined
as follows:

ek+1|k = θk+1 − θ̂k+1|k (36)

ek+1|k+1 = θk+1 − θ̂k+1|k+1 (37)

According to Equations (36) and (37), the derivative can be calculated as follows:

ek+1|k+1 = f (θk)− f
(

θ̂k|k

)
− kk

(
h(θk+1)− h

(
θ̂k+1|k

))
=Ak(θk − θ̂k|k) + ϕ(θk, θ̂k|k)− Kk Hk(θk+1 − θ̂k+1|k)− Kkχ(θk+1, θ̂k+1|k)

=(I − kk Hk)ek+1|k + ϕ(θk, θ̂k|k)− Kkχ(θk+1, θ̂k+1|k)

(38)

ek+1|k=Ak(I − Kk Hk)ek|k−1 + rk + sk (39)

where
rk = ϕ(θk, θ̂k|k)− Kkχ(θk+1, θ̂k+1|k) (40)

sk = −Kvvk (41)

Definition 1. The estimation error ek|k is exponentially bounded if there are real numbers η, v > 0
and 0 < γ < 1 such that:

E
[∥∥∥ek|k

∥∥∥2
]
≤ η

∥∥∥e0|0

∥∥∥2
γ + v (42)

In addition, the stochastic process is bounded if sup
∥∥∥ek|k

∥∥∥ < ∞, k ≥ 0.

3.4.2. Boundedness of the Estimation Error

This section demonstrates that the estimation error produced by the extended Kalman
filter remains bounded if the following assumption holds:
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Assumption 1. There are real constants a, h, p, p, q, r > 0 such that:

∥Ak∥ ≤ a,∥Hk∥ ≤ c,pIn ≤ Pk ≤ pIn

qIn ≤ Qk,rIn ≤ Rk
(43)

Assumption 2. The nonlinear functions φ and χ are bounded if there are real numbers ϵφ, ϵχ, κφ, κχ ≥ 0
such that: ∥∥∥ϕ(θk, θ̂k|k)

∥∥∥ ≤ κφ

∥∥∥θk − θ̂k|k

∥∥∥2
(44)∥∥∥χ(θk+1, θ̂k+1|k)

∥∥∥ ≤ κχ

∥∥∥θk+1 − θ̂k+1|k

∥∥∥2
(45)

for
∥∥∥θk − θ̂k|k

∥∥∥ ≤ ϵφ and
∥∥∥θk+1 − θ̂k+1|k

∥∥∥ ≤ ϵχ

Lemma 1. Suppose there is stochastic process Vk(ek|k−1) and positive real numbers v, v, µ > 0
and 0 < β ≤ 1 such that:

v
∥∥∥Vk(ek|k−1)

∥∥∥2
≤ Vk(ek|k−1) ≤ v

∥∥∥Vk(ek|k−1)
∥∥∥2

(46)

E
[
Vk+1(ek+1|k)

]
− Vk(ek|k−1) ≤ −βVk(ek|k−1) + µ (47)

Equations (46) and (47) guarantee the boundedness of the estimation error.

Lemma 2. Under Assumption 1, assume there is a real positive number 0 < α < 1 and Πk = Pk
−1

that satisfies the inequality:

(Ak(I − Kk Hk))
TΠk+1(Ak(I − Kk Hk)) ≤ (1 − α)Πk (48)

where 1 − α = 1

/(
1 +

q

p
(

a+apc2
/

r
)2

)

Lemma 3. Under Assumption 2, by defining Πk = Pk
−1, there are real numbers ϵ, κmax > 0

such that:
rk

TΠk

[
2(Ak − Kk Hk)

(
θk − θ̂k|k

)
+ rk

]
≤ κmax

∥∥∥θk − θ̂k|k

∥∥∥3
(49)

holds for
∥∥∥θk − θ̂k|k

∥∥∥ ≤ ϵ, where ϵ = min
(
ϵφ, ϵχ

)
.

Lemma 4. Let Assumption 1 hold, and let Πk = Pk
−1 and Kk, sk be defined as in (41); therefore,

there are positive real numbers κnoise, δ > 0 such that:

E[skΠk+1sk] ≤ κnoiseδ (50)

Theorem 1. Consider the nonlinear stochastic system given by (32) and (33). Let Assumption 1
hold. Then the estimation error Vk(ek|k) is exponentially bounded by the mean square provided that
the initial estimation error satisfies: ∥∥∥V0(e0|0)

∥∥∥ ≤ ϵ (51)

where ϵ > 0.

Proof. By choosing
Vk(ek|k−1) = ek|k−1

TΠkek|k−1, (52)
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with Πk = Pk
−1, therefore

v
∥∥∥Vk(ek|k−1)

∥∥∥2
≤ Vk(ek|k−1) ≤ v

∥∥∥Vk(ek|k−1)
∥∥∥2

(53)

where v = 1
p and v = 1

p .

To satisfy the requirements for the application of Lemma 2, an upper bound is needed
on E

[
Vk+1(ek+1|k)

]
. From Equation (39), the upper bound becomes as follows:

Vk+1(ek+1|k) = ek+1|k
TΠk+1ek+1|k

=
[
Ak(I − Kk Hk)ek|k−1 + rk + sk

]T
Πk+1

[
Ak(I − Kk Hk)ek|k−1 + rk + sk

]
=
(

Ak(I − Kk Hk)ek|k−1

)T
Πk+1

(
Ak(I − Kk Hk)ek|k−1

)
+
(

Ak(I − Kk Hk)ek|k−1

)T
Πk+1(rk + sk)

+ (rk + sk)
TΠk+1

(
Ak(I − Kk Hk)ek|k−1

)
+ (rk + sk)

TΠk+1(rk + sk)

=ek|k−1
T(Ak(I − Kk Hk))

TΠk+1(Ak(I − Kk Hk))ek|k−1

+(rk + sk)
TΠk+1

[
2Ak(I − Kk Hk)ek|k−1 + rk + sk

]
+ 2sk

TΠk+1

[
Ak(I − Kk Hk)ek|k−1 + rk + sk

]
+ sk

TΠk+1sk

(54)

Applying Lemma 1 in (52), the equation becomes as follows:

Vk+1(ek+1|k) = (1 − α)Vk(ek|k−1)+(rk + sk)
TΠk+1

[
2Ak(I − Kk Hk)ek|k−1 + rk + sk

]
+ 2sk

TΠk+1

[
Ak(I − Kk Hk)ek|k−1 + rk + sk

]
+ sk

TΠk+1sk
(55)

Taking the conditional expectation E
[
Vk+1(ek+1|k)

]
and considering the white noise

property, the remaining terms are estimated via Lemmas 2 and 3, yielding:

E
[
Vk+1(ek+1|k)

]
− Vk(ek|k−1) ≤ −αVk(ek|k−1) + κmax

∥∥∥ek|k−1

∥∥∥3
+ κnoiseδ (56)

for
∥∥∥ek|k−1

∥∥∥ ≤ ϵ′ defining:

ϵ = min
(

ϵ′,
α

2pκmax

)
(57)

with (52) and (52) for
∥∥∥ek|k−1

∥∥∥ ≤ ϵ

κmax

∥∥∥ek|k−1

∥∥∥∥∥∥ek|k−1

∥∥∥2
≤ α

2p

∥∥∥ek|k−1

∥∥∥2
≤ α

2
Vk(ek|k−1) (58)

Inserting into (57) yields:

E
[
Vk+1(ek+1|k)

]
− Vk(ek|k−1) ≤ −α

2
Vk(ek|k−1) + κnoiseδ (59)

for
∥∥∥ek|k−1

∥∥∥ ≤ ϵ. Therefore, by applying Lemma 2 with
∥∥∥e0|0

∥∥∥ ≤ ϵ, v = 1
p and µ = κnoiseδ.

However, by taking care that for ϵ̃ ≤
∥∥∥ek|k−1

∥∥∥ ≤ ϵ with some ϵ̃ ≤ ϵ, the supermartingale
inequality is as follows:

E
[
Vk+1(ek+1|k)

]
− Vk(ek|k−1) ≤ −α

2
Vk(ek|k−1) + κnoiseδ ≤ 0 (60)
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To guarantee the boundedness of the estimation error, we choose:

δ =
α

2p̄κnoise
ϵ̃2 (61)

with ϵ̃; therefore, for
∥∥∥ek|k−1

∥∥∥ ≥ ϵ̃

κnoiseδ ≤ α

2p

∥∥∥ek|k−1

∥∥∥2
≤ α

2
Vk(ek|k−1) (62)

It is concluded that the estimation error is bounded if the initial error and the noise
terms are verified and bounded by (51) and (43). In this section, it is demonstrated that the
estimation error produced by the extended Kalman filter remains bounded if the initial
error and the noise terms are bounded.

4. Results and Discussion

The primary objective of this research is to demonstrate the effectiveness of the pro-
posed IAPID-NN-DEKF control strategy for tracking the trajectory of a WMR. This study is
based on the implementation of adaptive control schemes, which are represented in the
IAPID-NN-DEKF as NN adaptation and state estimation and are compared to DA-NN,
BSC and the adaptive PID control techniques. The proposed schemes are tested, analyzed
and compared under the same operating conditions, the same reference trajectory and the
same initial robot posture to prove their effectiveness for WMR trajectory tracking. The
learning rates are set to µp,i,d = 0.9 for linear and angular velocities. Hence, the parameters
for DEKF for the IAPID-NN-DEKF are chosen as follows:

P0 = Ins,ns × 1000

Q = Ins,ns × 10−5

R =

 1000 0 0
0 1000 0
0 0 1000

 (63)

Evaluation of the root mean square error (RMSE) is undertaken as a performance
criterion, with the RMSE calculated according to the following equation:

RMSE =

√
1
n

n

∑
i=1

(X(i)− Xr(i))
2 (64)

where X(i), Xr(i) are vectors representing the actual and reference values at the i-th data
point, respectively, and n denotes the total number of data points.

Figure 4 shows the lemniscate and the sinusoidal reference paths with the real tracked
paths of the WMR using the proposed controllers. The inherent complexity of the lem-
niscate trajectory provides a challenging test for the control system: assessing its ability
to navigate intricate paths and adapt to dynamic changes. By incorporating continuous
variations in curvature, the lemniscate demands the control system to handle maneuvers
with different turning radii: offering insights into its versatility. This choice is motivated by
a desire to evaluate the robustness of the control system, as the lemniscate shape introduces
complexities that simulate real-world uncertainties and disturbances. Moreover, using a
lemniscate reflects a commitment to realism, as trajectories in practical scenarios rarely con-
form to perfect circles or straight lines. Benchmarking the performance of the control system
against the lemniscate allows for a quantitative assessment, with metrics like root mean
square error (RMSE) providing a measure of how closely the WMR follows the desired
trajectory. Ultimately, the lemniscate serves as a comprehensive and challenging reference
path that aids with assessing the adaptability, robustness and real-world applicability of
the proposed control strategies. The dashed green line represents the reference trajectory;
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hence, the solid blue, yellowish, red and pink lines represent the trajectories followed by
the mobile robot for the proposed schemes. According to this figure, it can be noted that
the IAPID-IN-DEIF controller has more precise tracking performance compared to DA-NN,
BSC and the adaptive PID, even when applying perturbation from t = 15 s to t = 20 s. The
IAPID-NN-DEKF tracking performance confirms the effectiveness of the adaptive control
scheme: using adaptive NN-DEKF and the good performance of DEKF for NN weight
adaptation. Further, the RMSE indexes in Tables 1–3 show that the tracking performance of
the mobile robot is slightly improved when using IAPID-NN-DEKF instead of conventional
DA-NN, BSC and the adaptive PID control techniques over the three proposed trajectories.
Further, it is clearly noted from this table that IAPID-NN-DEKF shows highly reduced
trajectory error and has a smaller RMSE compared to the other schemes. This note shows
the high superiority of the IAPID-NN-DEKF structure for mobile robot trajectory tracking.

Figure 4. Tracking response of the WMR for initial positions X0 = [0;−0.7; π/2] for the lemniscate
and X0 = [0; 0; 0] for the sinusoidal trajectories: (a) lemniscate, (b) sinusoidal, and (c) sinusoidal
with perturbation.
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In Figures 5–7, the mobile robot’s position coordinates (x, y and θ) are depicted as the
reference coordinates for the lemniscate trajectory. In addition, Figures 8–10 illustrate the
tracking errors for xe, ye and θe for different trajectories. Analysis of these figures reveals
the efficacy of the implemented control scheme: IAPID-NN-DEKF achieved stable speed
and high accuracy during mobile robot trajectory tracking.

Figure 5. The position coordinates for lemniscate trajectory.
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Figure 6. The position coordinates for sinusoidal trajectory.

Table 1. Root mean squared error (RMSE) for different control strategies (lemniscate).

Control Strategy RMSE of x RMSE of y RMSE of θ

Indirect PID-NN-DEKF 0.078769 0.12086 0.1672
Backstepping 0.1139 0.2066 0.3409
Adaptive NN 0.1041 0.1832 0.2973
Adaptive PID 0.0917 0.1523 0.2375
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Table 2. Root mean squared error (RMSE) for different control strategies (sinusoidal).

Control Strategy RMSE of x RMSE of y RMSE of θ

Indirect PID-NN-DEKF 0.01233 0.015138 0.088707
Backstepping 0.0475 0.0563 0.1586
Adaptive NN 0.0319 0.0380 0.1134
Adaptive PID 0.0384 0.0453 0.1326

Figure 7. The position coordinates for sinusoidal trajectory with perturbation.
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Table 3. Root mean squared error (RMSE) for different control strategies (sinusoidal with perturbation).

Control Strategy RMSE of x RMSE of y RMSE of θ

Indirect PID-NN-DEKF 0.021495 0.016504 0.090142
Backstepping 0.0908 0.1076 0.1794
Adaptive NN 0.0617 0.0739 0.12512
Adaptive PID 0.0583 0.0415 0.1252

Figure 8. Tracking errors for (a) xe, (b) ye and (c) θe for lemniscate trajectory.
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Figure 9. Tracking errors for xe, ye and θe for sinusoidal trajectory.



Actuators 2024, 13, 51 22 of 25

Figure 10. Tracking errors for xe, ye and θe for sinusoidal trajectory with perturbation.

5. Conclusions

This research paper introduced and evaluated an adaptive control scheme,
IAPID-NN-DEKF, for addressing the challenges associated with the trajectory tracking
and state estimation of wheeled mobile robots (WMRs). The proposed scheme leverages an
adaptive indirect control proportional-integral-derivative (PID) controller using a neural
network (NN) and discrete extended Kalman filter (DEKF).

The simulation results demonstrate the efficacy of the IAPID-NN-DEKF controller
for achieving precise trajectory tracking. A lemniscate reference path was followed with
superior accuracy; the controller outperformed the conventional DA-NN, backstepping
(BSC) and adaptive PID control techniques. IAPID-NN-DEKF exhibited a more stable and
accurate trajectory, as evidenced by the tracking errors depicted in the results.
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Quantitative analysis further supports the superior performance of the
IAPID-NN-DEKF scheme. The root mean squared error (RMSE) values for differ-
ent control strategies indicate a noticeable reduction in trajectory tracking error:
emphasizing the enhanced accuracy achieved by the proposed controller. IAPID-NN-DEKF
outperforms DA-NN, BSC and the adaptive PID control strategies in terms of RMSE,
showcasing its effectiveness at achieving accurate control and state estimation. In
conclusion, the IAPID-NN-DEKF scheme demonstrates a high level of superiority for
mobile robot trajectory tracking. The integration of adaptive control through an NN and
DEKF contributes to the scheme’s adaptability to dynamic environments, computational
efficiency and improved accuracy in state estimation. This research significantly advances
the field of robust control techniques for WMRs and provides valuable insights into the
potential of the proposed IAPID-NN-DEKF approach for real-world applications.
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DEKF Discrete Extended Kalman Filter
WMR Wheeled Mobile Robot
DA-NN Direct Adaptive Neural Network
BSC Backstepping Control
RMSE Root Mean Squared Error
IAPID-NN-DEKF Indirect Adaptive PID using an NN and DEKF
NN Neural Network
DEKF Discrete Extended Kalman Filter
SGD Stochastic Gradient Descent
GA Gradient Approximation
SPSA Perturbation Stochastic Approximation
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y Robot’s Position Coordinate in the Y-axis
θ Robot’s Orientation
ex Tracking Error in the X-axis
ey Tracking Error in the Y-axis
eθ Tracking Error in Orientation
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