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Abstract: This paper proposes a new topology optimization formulation for obtaining shape memory
alloy actuators which are designed with prescribed two-way transforming shapes. The actuation
behaviors of shape memory alloy structures are governed by austenite-martensite phase transforma-
tions effected by thermal-mechanical loading processes; therefore, to realize the precise geometric
shape variations of shape memory alloy actuators, traditional methods involve iteration processes
including heuristic structural design, numerical predictions and experimental validation. Although
advanced structural optimization methods such as topology optimization have been used to design
three-dimensional (3D) shape memory alloy actuators, the maximization/minimization of quantities
such as structural compliance or inaccurate stroke distances has usually been selected as the opti-
mization objective to obtain feasible solutions. To bridge the gap between precise shape-morphing
requirements and efficient shape memory alloy actuator designs, this paper formulates optimization
criteria with quantitatively desired geometric shapes, and investigates the automatic designs of
two-way prescribed shape morphing shape memory alloy structures based on the proposed topology
optimization method. The super element method and adjoint method are used to derive the analytical
sensitivities of the objective functions with respect to the design variables. Numerical examples
demonstrate that the proposed method can obtain 3D actuator designs that have the desired two-way
transforming shapes.

Keywords: prescribed two-way shape morphing; shape memory alloy actuators; 3D structural
topology optimization

1. Introduction

The phenomenon of shape memory materials to produce reversible shape transfor-
mations under cyclical temperature variation is called Two-Way Shape Memory Effect
(TWSME). The transformation strain can produce larger structural deformations than
thermal expansions. Therefore, actuators that exhibit the TWSME have great applica-
tion potential in various fields, such as aeronautics [1,2], soft robotics [3], and medical
instruments [4] (see Figure 1). Among all the shape memory materials, shape memory
polymers [5,6] (SMPs) and shape memory alloys (SMAs) [7] are the most widely studied. To
obtain two-way shape-morphing SMPs with desired geometric patterns, researchers have
utilized various approaches [8], such as designing specific macro composite structures, ad-
justing the chemical composition of the transition material phase, or using 3D-printed micro
structural arrangements. The TWSME from SMP is limited to low actuation forces due to
its polymer nature. Shape memory alloys have high actuation forces, excellent superelastic,
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and shape memory performances, thus attract continuously growing attentions [9]. Due
to inherent martensite-austenite phase transitions, the shape-morphing precision of shape
memory effect is influenced by multiple factors like the SMA material composition, macro
structural configuration, and thermal–mechanical loading process, which vary from mate-
rial to material [10]. Therefore, the efficient development of SMA actuators with desired
two-way shape morphing requires investigations from both experimental and numerical
perspectives [11]. Material experiments have been conducted for desired morphing shapes,
such as laser processing [12], heat treatments [13], and “pre-training” [14]. Innovative
designs of active jet engine chevrons [11,15] and smart morphing wings [16–18] have also
been proposed.
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using SMA actuator [1]; (b) deploying solar panels by SMA mechanism [2]; (c) soft gripper printed
by SMP, and (d) SMA arterial stent [4].

Previous studies were based on heuristic arrangements of regular-geometry SMA
actuators and traditional elastic structures to obtain the required actuation deformation.
Numerically, the macroscopic [19–22] and microscopic [23–25] models have been studied
to theoretically predict the superelasticity, shape memory effects and “training” effects of
SMA materials and structures. Conventional SMA actuator configurations (such as beams,
springs, and strips) integrated with elastic structures have been optimized to achieve the
target shapes [26–28], resulting in limited actuation modes for smart morphing structures.
Nevertheless, topology optimization methods have been used to design shape memory
structures for preferred motion patterns. Maximization/minimization of quantities such
as structural compliance, energy dissipation or inaccurate stroke distances has usually
been selected as the optimization objectives [10,29–32]. Realizing topologically innovative
designs of 3D SMA devices for desired spatial actuation shapes is expected to broaden the
structural morphing functionality and application potentials, as complex-geometry SMA
actuators, like lattice structures, have been manufactured by 3D-printing technology [33].

This study investigated the topology optimization design of SMA actuators that
exhibit a predefined TWSME under prescribed thermal–mechanical conditions. Inherently,
actuation deformations are generated mainly due to the transformation strain of SMA
materials between the austenite phase and the martensite phase. By manipulating the
SMA material spatial distribution as well as the phase transformation region, desired
actuation shapes can be expected for optimized blueprint designs. To reduce the massive
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computational efforts for solving structural optimization problems with large-scale integer
variables, the modified Solid Isotropic Material with Penalty (SIMP) material interpolation
scheme has been introduced in the original SMA material constitutive model. Furthermore,
the Heaviside projection function and minimum length constraints were considered to
guarantee the geometrical regulations of SMA device designs [34]. Numerical examples
show that the proposed method could obtain the optimized SMA actuator designs with
desired two-way actuation shapes.

Following Section 1, which introduced the state of the art of smart material and
structures with TWSME, the rest of the paper is organized as follows. Section 2 explains
the basic ideas of constructing a new topology-optimization formulation for prescribed
two-way shape-morphing SMA actuator designs. The nonlinear finite element analysis
processes and analytical sensitivity derivation of the optimization responses are described
in Section 3. Numerical examples are presented in Section 4, and the conclusions are given
in Section 5.

2. Topology Optimization Method for Two-Way Shape-Morphing SMA Actuators
2.1. Material Constitutive Model for Shape Memory Alloys

The microscopic models [23,35], derived based on microscale theory, such as phase
transition kinetics and crystal growth theory, are suitable for predicting the behaviors of
SMA microstructures. The macroscopic models have few parameters and can represent
the SMA continuum behaviors well with only a few experimental calibrations. Thus, they
are computationally efficient for topology optimization of large-scale SMA actuators. In
this work, the ZM material model [19] was used with sets of state variables to simulate
the specific phenomena of SMA, including superelasticity, martensite orientation, and
shape memory effects. The state variables are the macroscopic strain tensor ε, temperature
T, local deformation strain tensors εA for austenite, local deformation strain tensors εM
for martensite, martensite volume fraction z, and local martensitic reorientation strain
εtr. Within the framework of generalized standards materials, the Helmholtz free-energy
density of SMA materials is defined as:

W = W(T, εA, εM, z, εtr)

= (1 − z)
(

1
2 εA : CA : εA

)
+ z

[
1
2 (εM − εtr) : CM : (εM − εtr) + H(T)

]
+G z2

2 + z
2 [αsz + βs(1 − z)]

( 2
3 εtr : εtr

) (1)

where CA and CM are the austenite elastic modulus and martensite elastic modulus tensors,
respectively. H(T) is heat density associated with the phase transformation and defined as
H(T) = ξs(T−Af

0) + k. Af
0 is the reverse phase transformation finish temperature; G, αs, βs,

ξs, and k are parameters relevant to material properties. In the aforementioned formulation,
(1−z)(1/2εA:CA:εA) is the free energy of austenite; z [1/2(εM−εtr):CM: (εM−εtr) + H(T)]
is the free energy of martensite; Gz2/2 + z/2[αsz + βs(1−z)](2/3εtr:εtr) represents the
interaction energy inside the SMA material. For the state variables ε, εA, εM, εtr, and z, the
following physical constraints must be satisfied:

z ≥ 0 and 1 − z ≥ 0 (2)

(1 − z)εA + zεM − ε = 0 (3)

ε0 −
√

2/3εtr : εtr ≥ 0 (4)

where ε0 denotes the maximum phase transformation strain. The Lagrange multipliers λ,
µ, v1, and v2 are introduced to include the physical constraints into the total Helmholtz free
energy L(W,Wcons):
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L(W, Wcons) = W + Wcons

= (1 − z)
(

1
2 εA : CA : εA

)
+ z

[
1
2 (εM − εtr) : CM : (εM − εtr) + H(T)

]
+G z2

2 + z
2 [αsz + βs(1 − z)]

( 2
3 εtr : εtr

)
−λ : [(1 − z)εA + zεM − ε]− µ

(
ε0 −

√
2/3εtr : εtr

)
− v1z − v2(1 − z)

(5)

Thus, the stress–strain relation of SMA can be mathematically derived from Lagrange
Equation (5):

σ =
∂L
∂ε

= Ceq : (ε − zεtr) (6)

where σ is the Cauchy stress tensor. A large deformation–small strain formulation is used
to account for the evident shape morphing effects. Thermal strain is neglected here, con-
sidering its insignificant magnitude compared with that of the SMA phase transformation
strain εtr.

The equivalent elastic modulus tensor Ceq is computed as SMA austenite–martensite
mixture:

Ceq =
[
(1 − z)C−1

A + zC−1
M

]−1
(7)

Thermodynamic forces Az and Atr, which determine the evolution process of the
martensite phase transformation and reorientation, can be derived from the Lagrangian
L(W,Wcons):

Az = − ∂L
∂z = 1

2 [εA : CA : εA − (εM − εtr) : CM : (εM − εtr)]− H(T)
−Gz − [(αs − βs)z +

βs
2 ]

( 2
3 εtr : εtr

)
− λ : (εA − εM)

(8)

Atr = − ∂L
∂εtr

= z
{

CM : (εM − εtr)− 2
3 [αsz + βs(1 − z)]εtr

}
− 2µ

3
εtr√

2/3(εtr :εtr)

(9)

The pseudopotential D is defined as a function of the evolution ratio of martensite
volume fraction z and martensite orientation strain εtr:

D = D(
.
z,

.
εtr)

= [a(1− z)+bz]
∣∣ .
z
∣∣+ z2Y

√
2/3(

.
εtr :

.
εtr)

(10)

where a, b, and Y are parameters relevant to the material properties. The thermodynamic
forces Az and Atr are sub-gradients of the pseudopotential of dissipation D according to the
theory of generalized standard materials. The yield functions associated with the forward
phase transformation Fz

1, reverse phase transformation Fz
2, and martensite orientation Ftr

can be defined as

F1
z = Az − a(1 − z)− bz

=
{

1
3 ElMAσ2

VM + 1
2

(
1
3 ElMA + PMA

)
(trσ)2 − H(T)

}
+σ : εtr − (G + b)z − a(1 − z)−

[
(αs − βs)z +

βs
2

]( 2
3 εtr : εtr

)
≤ 0

(11)

F2
z = −Az − a(1 − z)− bz

= −
{

1
3 ElMAσ2

VM + 1
2

(
1
3 ElMA + PMA

)
(trσ)2 − H(T)

}
−σ : εtr + (G − b)z − a(1 − z) +

[
(αs − βs)z +

βs
2

]( 2
3 εtr : εtr

)
≤ 0

(12)

Fori =
Ftr
z =

|Atr|VM
z − zY = ∥X∥VM − zY ≤ 0

with X = σ − 2
3 [αsz + βs(1 − z)]εtr − 2µ εtr

3z
√

2
3 εtr:εtr

(13)

where Fz
1 and Fz

2 represent the forward transformation yield function (from austenite to
martensite) and reverse transformation yield function (from martensite to austenite); Fori
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governs the detwinning process of twinned martensite, Y denotes the initiation yield stress
of twinned martensite; ||X||VM is the von Mises equivalent of the thermodynamic force
X; ElMA, PMA, αs, βs, a, b, and G are material parameters defining the superelastic hysteresis
loops in the work of Zaki et al. [19]. The evolution laws of state variables z and εtr can be
derived as

F1
Z ≤ 0,

.
z ≥ 0, F1

Z
.
z = 0 (14)

F2
Z ≤ 0,

.
z ≤ 0, F2

Z
.
z = 0 (15)

εtr =
3
2

η
X

∥X∥VM
= ηN, Fori ≤ 0, η ≥ 0, Ftrη = 0 (16)

where η is a non-negative value related to the Kuhn–Tucker condition. N indicates the
direction of the orientation strain rate in strain space. When simultaneously solving
Equations (11)–(13) for predicting superelastic behaviors of SMAs, the coupling of multiple
yield surfaces may lead to convergence difficulties and extensive computational efforts. To
simplify numerical integration, martensite is assumed to be fully oriented by the applied
stress as soon as the phase transformation from austenite to martensite takes place [36].
Therefore, the equivalent magnitude of the martensite transformation strain εtr is related to
the martensite volume fraction z by the following equation:

∥εtr∥ = zε0; ∥εtr∥ =

√
2/3(εtr : εtr) (17)

The above material constitutive relations are solved using the classic plastic trial and
correction method.

As shown in Figure 2, the Two-Way Shape Memory Effect (TWSME) can be found when
SMA actuators go through temperature variations. When the SMA material temperature
TL is higher than the austenite finish temperature Af

0, the forward transformation and
martensite orientation processes occur under external mechanical loading, resulting in a
large transformation deformation along load path (1). If the external mechanical loading is
kept constant and SMA device is heated uniformly to a higher material temperature TH,
the large transformation deformation would vanish when detwinned martensite recovers
to austenite phase via load path (2). Consequently, evident reversible structural shape
transformations can be obtained via material temperature variations.
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Figure 2. Stress–temperature diagram of SMA materials.

During the thermal-mechanical loading processes of TWSME, forward and martensite
orientation transformations are associated with equations Fz

1 = 0 and Fori = 0. Reverse
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transformation is associated with equation Fz
2 = 0. The material constitutive relations are

solved using the subroutine [19] at each numerical integration point of finite elements.
Parameter values of SMA Material is provided in Table 1.

Table 1. Parameter values using data from Shaw and Kyriakides [37].

Material Parameter Material Parameter

CA 61,500 MPa a 6.8920 MPa
CM 24,000 MPa b 6.9091 MPa
v 0.3 ε0 4%
Y 110 MPa G 4.6556 MPa
αs 2750 MPa βs 5500 MPa
ξs 0.4381 MPa/◦C k 2.4920 MPa

Af
0 40 ◦C T Material temperature

This study considers SMA material states related with following temperature conditions:

T = {TL, TH} (18)

where temperatures TL and TH denote the low and high material temperatures, respectively.
The temperature-sensitive superelastic behaviors of shape memory alloys are of great
interest during applications.

2.2. Material Interpolation Model for SMA

In the popular Solid Isotropic Material with Penalty (SIMP) topology optimization
method, the pseudo-density variable ρi = {0, 1} determines the existence or absence of
design material inside finite element i. When ρi equals 1, the solid SMA material should be
put inside finite element i. When ρi equals 0, this means void material should be put inside
finite element i. Normally, large-scale integer optimization problem requires enormous
computational efforts to find a desired solution. For ease of the design problem, continuous
pseudo-density variables were used here. In this work, the desired shape control was
considered for the starting and ending temperature points. Only the Young’s moduli
of austenite and martensite are interpolated with density variables. The influences of
other parameters were proven to be negligible numerically, given that the optimization
process sought to obtain “black and white” designs without intermediate density variables.
Following the idea of Sigmund et al. [38,39], we interpolated the elastic moduli of austenite
and martensite with the SMA material pseudo-density ρi, as expressed in Equation (19).

CA(ρi) = C0
A · P(ρi)

CM(ρi) = C0
M · P(ρi)

P(ρi) =Cmin + ρpe(C0 − Cmin)
(19)

Here, CA and CA
0 denote the designed and solid Young’s moduli of the SMA austenite

phase. CM and CM
0 denote the designed and solid Young’s moduli of the SMA martensite

phase. P(·) is the material interpolation function, with pe being the stiffness penalty factor.
C0 and Cmin represent the unit value 1 and a small value greater than 0. It should be noted
that intermediate density variables introduced artificial simulation responses to the analysis
results (see Figure 3). Hence, the three-field scheme proposed by Wang et al. [40] was used
in the following proposed topology optimization method. ρi denotes the Heaviside filtered
density, which was the physical density for the finite element analysis.
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When the pseudo-density variable ρi was close to zero, the constitutive curve became
highly distorted, as shown in Figure 3. To accelerate the nonlinear analysis process, the
constitutive material models for low density elements were simplified as linear elastic mod-
els. Meanwhile, the super-element technique [41] was adopted to alleviate the geometry
distortions of low-density finite elements caused by large deformation.

2.3. Definition of the Shape Error Function

As shown in Figure 4, the deviations between the actual computed shape and desired
target shape can be defined as follows:

Er(x′, y′) =
m
∑

i=1
w0,i

[
(xi − xi

′)2 + (yi − yi
′)2

]
= (x − x′)TW0(x − x′) + ( f (x)− y′)TW0( f (x)− y′)

(20)

where w0,i is the weighting factor of the ith observation point given by the designer. Er is the
shape error function between target and actual shapes. W0 is the weight factor coefficient
matrix. m is the total number of observation points. x and y are the coordinate vectors for
target positions of the observation points. x′ and y′ represent the coordinate vectors for
actual computed positions of the observation points. The shape error functions at different
material temperatures {TL, TH} can be calculated as

ErL =
(
xL − x′L

)TW0
(
xL − x′L

)
+

(
fL(xL)− y′

L
)TW0

(
fL(xL)− y′

L
)

(21)

ErH =
(
xH − x′H

)TW0
(
xH − x′H

)
+

(
fH(xH)− y′

H
)TW0

(
fH(xH)− y′

H
)

(22)

where f L(·) denotes the mathematical function for desired structural target shape at the
lower material temperature TL. f H(·) denotes the mathematical function for desired struc-
tural target shape at the higher material temperature TH. For the three-dimensional shape
error calculation, Equations (20)–(22) can be easily extended with the third coordinate item.
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2.4. Topology Optimization Model for Prescribed Two-Way Shape-Morphing SMA Actuators

The topology optimization model for the prescribed two-way shape-morphing SMA
actuators is defined mathematically as follows:

Find : ρi, i = 1, 2, . . . , N;
Minimize : ErL
Subjectto : ErH ≤ δ;

Vf ra ≤ V0;
gs ≤ δs; gv ≤ δv;

0 ≤ ρi ≤ 1 ;

(23)

Minimizing the shape error function ErL is chosen as the optimization objective. At
the same time, the shape error function ErH is constrained below a small value δ. N denotes
the total number of density design variables. The allowed material volume fraction Vfra
of the design domain was set below V0. The geometric minimum length scale constraints
gs and gv [34,42] for both the solid and void material were introduced into the topology
optimization model to obtain “black and white” designs. δs and δv represent the upper-
bound values. The globally convergent method of moving asymptotes (GCMMA) [43] is
applied to solve the above optimization problem, which requires the derivative information
of structural responses with respect to the design variables.

3. Nonlinear Finite Element Analysis and Optimization Response Sensitivity Analysis
3.1. Nonlinear Finite Element Analysis

In the SIMP topology optimization framework, fictitious regions [38], which are com-
posed of finite elements with very low Young’s moduli, exist to imitate void regions. The
fictitious regions enable different optimized topologies to be obtained using the fixed finite
element mesh. When elements in low density areas have relatively large deformations,
geometric distortions may occur and cause divergence of nonlinear analysis process. Var-
ious methods such as revising convergence criteria in the void regions [44], the additive
hyperelasticity method [45], the energy interpolation method [46], and the super element
method [41] have been proposed to alleviate the convergence difficulties. Here, the su-
per element method was adopted to alleviate the numerical instabilities caused by weak
elements of the topologically optimized SMA actuators.

A finite element equilibrium, accounting for the temperature-dependent superelastic
behaviors of shape memory alloys, was found universally since we considered quasi-static
deformations:

R1(u) = fext − fint = 0 (24)

Equation (24) was solved using the Newton–Raphson method, expressed as follows:{
ut+1 = ut + ∆ut+1

KT
t∆ut+1 = ∆R1

t (25)
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KT is the structural tangent stiffness matrix, which was computed by Equation (26).

KT =
N

∑
e=1

Ke
T; Ke

T =
∫

Ωe

BTCTBdv (26)

Ke
T denotes the elemental tangent matrix of the eth element. B is the elemental

geometric matrix.CT represents the consistent tangent moduli of the SMA material. KT is
composed of several parts. As shown in Figure 5, the finite element model of the optimized
SMA actuator can be divided into part p1 and part p2 by the pseudo-density threshold Dth.
p1 is discretized with finite elements considering SMA material nonlinearity and geometric
nonlinearity. p2 is modeled by linear elasticity material model and low-density elements,
and their finite element degrees of freedom were suppressed in the total nonlinear iteration
loop. Equation (25) can be further unfolded as follows:[

Kp1
ss Kp1

sb
Kp1

bs Kp1
bb + K

][
∆us
∆ub

]
=

[
∆R1,s
∆R1,b

]
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Lx and Ly are binary matrices to extract desired output displacement vectors from the 
global displacement vector u. Since λ is the Lagrange multiplier, which can take an arbi-
trary value, a particular value is selected according to Equation (31) so that the sensitivity 
of shape error function can be analytically computed: 
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x2

x

y

o

p2:Void 
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Boundary node set : nb
Solid node set        : ns

Figure 5. Illustration for super element definition and finite element treatment.

According to the division of solid part p1 and void part p2, all nodes were divided
into three groups (see Figure 5). Node type ns represented all the nodes surrounded by
solid elements; node type nv represented all the nodes surrounded by void elements. Node
type nb represented the nodes on the shared boundary of the solid elements and void
elements. The block matrices Kss, Ksb, Kbb are stiffness matrices between nodes ns-ns, ns-nb,
and nb-nb, respectively. denoted the additional stiffness brought to the boundary nodes
nb by the void nodes nv in fictitious regions. It was calculated at the very beginning of
nonlinear analysis on the undeformed configuration and remained unchanged during the
iterations. The Newton–Raphson method in common finite element software is used to
solve the material and geometrical nonlinear problem. Umat subroutine is programmed to
capture the constitutive behaviors of SMA materials at each integration point of the finite
element analysis.

3.2. Sensitivity Analysis of the Shape Error Optimization Response

The tangent stiffness matrix KT is also defined as

KT = −∂R1
t/∂ut (28)

The detailed calculation procedure for nonlinear equilibrium can be found in the
study of Zienkiewicz et al. [47] and is not stated here. By introducing the zero-valued item
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λ1
TR1, the sensitivity of the shape error function with respect to projected density ρi can be

expressed as

∂(Er+λ1
TR1)

∂ρi
= ∂( f (x)−y′)TW0( f (x)−y′)

∂ρi
+ λ1

T
(

∂R1
∂u

∂u
∂ρi

+ ∂R1
∂ρi

)
= 2( f (x)− y′)TW0

∂( f (x)−y′)
∂ρi

− λ1
TKT

∂u
∂ρi

+ λ1
T ∂R1

∂ρi

(29)

The item ∂( f (x)− y′)/∂ρi can be further written as Equation (30).

∂( f (x)− y′)/∂ρi = ∂ f (x)/∂ρi − ∂y′/∂ρi

= ∂ f (x)
∂x

∂x
∂ρi

− ∂y′
∂ρi

=
(

∂ f (x)
∂x Lx − Ly

)
∂u
∂ρi

(30)

Lx and Lyare binary matrices to extract desired output displacement vectors from the
global displacement vector u. Since λ is the Lagrange multiplier, which can take an arbitrary
value, a particular value is selected according to Equation (31) so that the sensitivity of
shape error function can be analytically computed:

2
(

f (x)− y′)TW0
∂ f (x)

∂x
Lx − 2

(
f (x)− y′)TW0Ly = λ1

TKT = FT
adj (31)

By substituting Equations (30) and (31) into Equation (29), the analytical sensitivity
information of shape error response with respect to density design variables is obtained:

∂Er
∂ρi

= λ1
T ∂R1

∂ρi

= λ1
T ∂(fext−fint)

∂ρi

= λ1
T
(

∂fext
∂ρi

− ∂P(ρi)
∂ρi

fint
P(ρi)

) (32)

4. Numerical Examples

In this section, two kinds of SMA actuators are optimized with the proposed topology
optimization method for desired two-way shape morphing. There are several aspects that
need to be addressed:

(i) The desired target shapes should be compatible with the structural configurations
and mechanical boundary conditions.

(ii) The relative deformations between two target shapes are in compliance with the
magnitudes of transformation strain and structural dimensions.

(iii) The thermal–mechanical loading processes facilitated the forward and reverse
transformations between martensite and austenite material phases of the SMA actuators.

The flowchart for the topology optimization of two-way shape-morphing SMA ac-
tuators is depicted in Figure 6. The convergence criterion for the topology optimization
procedure is selected as: the maximum variation of the design variables between two
adjacent iteration steps, which was less than 1 percent. The smoothed Heaviside projection
factor β was increased gradually from 1 to 64 by a multiplying factor of 1.5 every 20 steps.
The geometric minimum constraints are added to the optimization process when the dis-
creteness of Heaviside filtered density ρ are below 10% [34]. The penalty factor pe was
chosen as a constant value of 3. The pseudo-density threshold Dth was chosen as 0.1. Since
the modified SIMP interpolation scheme was used, Cmin corresponding to void space was
set one millionth of C0 = 1. To afford the computational effort, the reduced-integration 3D
element is used. All numerical examples were run on a computer equipped with four-core
CPU (clock speed 4.0 GHz) and 16 GB of RAM.
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4.1. Topology Optimization of SMA Cantilever Beam for Prescribed Two-Way Shape Morphing

In this subsection, the topology optimization of an SMA cantilever beam is considered.
Figure 7 shows the information of the detailed geometry and boundary condition. The
SMA cantilever structure was discretized with finite elements with an average length scale
of 8 mm. A total of 4215 3D solid finite elements with 8568 nodes were generated and
arranged in one single plane. The upper-bound values δs and δv of geometric minimum
length constraints were 1.0 × 10−5. The basic morphing shapes were defined as straight
lines with different slopes. Their target shapes at two material temperatures {TL, TH} are
given as follows:

yL = −0.1x; TL= 300K (33)

yH = −0.05x; TH= 400K (34)
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Figure 7. Geometric configuration and boundary conditions of SMA cantilever beam (thickness of
cantilever beam: 8 mm).
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The material parameters are listed in Table 2. The external mechanical load has a
magnitude of 32 kN and is distributed uniformly in an area of 24 mm × 8 mm. Material
volume fraction upper bound V0 was set as 50%; the density filter radius Rfilter was chosen
as four times the average size of the finite elements. In total, 25 × 2 observation points
were located equidistantly on the upper surface. To normalize the values of shape error
functions, the weighting factor w0,i was chosen as the reciprocal of the desired displacement
magnitude at the ith observation point. The shape error function ErH at the material
temperature TH was constrained below δ = 0.1.

Table 2. Material parameters of SMA from the work of Gu et al. [36].

Material Parameter Material Parameter

CA 30,340 MPa a 5.16 MPa
CM 18,000 MPa b 6.36 MPa
v 0.3 ε0 4%
Y 30 MPa G 13.17 MPa
αs 500 MPa βs 1250 MPa
ξs 0.2 MPa/K κ 4.16 MPa

A0
f 300 K T Material temperature

Figure 8 illustrates the topology evolution history of the SMA cantilever beam as the
proposed optimization algorithm proceeded. The whole topology-optimization process
for SMA cantilever beam took approximately 40 h. After 430 iterations, the topology
optimization algorithm found a reasonable local optimum. The iteration history is plotted
in Figure 9. The optimized SMA cantilever had a well-defined topological configuration
and distinct material boundary, and satisfied the imposed minimum length and scale
geometric constraints. The upper part of the fixed root was designed to be weak, and a
massive amount of material was gathered in the middle part. This design scheme facilitated
the desired slope deformation under the mechanical load.
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Figure 8. Topological designs of SMA cantilever beam at (a) Iteration 20, (b) Iteration 100, (c) Iteration
240, and (d) Iteration 430 (final design).

As shown in Figure 9, the value of objective function ErL decreased from 19.950 to
0.079, while the value of the shape error constraint ErH evolved from 82.730 to 0.100,
satisfying the prescribed upper-bound value δ. The final values of the shape error functions
ErL and ErH were only 0.4% and 0.1% of the initial values, respectively. The optimization
process only oscillated for a few iteration steps when the geometric minimum length
constraints were strengthened.
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Figure 9. Shape error iteration history of two-way shape morphing design for SMA cantilever beam.

The two-way shape-morphing patterns, martensite phase transformation regions, and
structural stress distributions are depicted in Figure 10. As shown in Figure 10a,d, the
upper surface of the topology-optimized SMA cantilever beam transformed precisely into
the preferred slope configurations at material temperatures TL and TH, thus fulfilling the
desired two-way shape morphing effect.

The internal mechanical principles are explained in the following. Under the condi-
tions of the lower material temperature TL and the external mechanical load, the SMA
material at the root of the cantilever beam detwinned from austenite to martensite (see
Figure 10b,e), resulting in a reversible martensite transformation strain εtr. Meanwhile, the
loaded upper surface approached the slope shape defined in Equation (33). According to
Equation (17), there was a positive correlation between the transformation strain εtr and
martensitic material volume fraction. As shown in Figures 10b and 11(i), the complete
martensite detwinning process occurred in the locations where the martensite volume frac-
tion z equaled 1. Therein, the magnitude of the martensite transformation strain ||εtr||
reached ε0. The total mechanical strain ε comprised austenite elastic strain εA, marten-
site transformation strain εtr, and detwinned martensite elastic strain εM. As shown in
zone (ii) of Figure 10b, a partial martensite detwinning process occurred in the locations
where the martensite volume fraction z was in the internal of (0,1). Here, the magnitude of
martensite transformation strain ||εtr|| was less than ε0, and the total mechanical strain ε
comprised the austenite elastic strain εA and the partial martensite transformation strain εtr.
As shown in zone (iii) of Figure 10b, the SMA material remained austenite in the locations
where martensite volume fraction z equaled 0. Therein, the total mechanical strain ε only
represented the austenite elastic strain εA.
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Figure 10. Simulated deformation, phase transformation, and structural stress contours of optimized
SMA cantilever at different material temperatures. TL = 300 K. (a) Vertical displacement contour
(Min: −98.34 mm). (b) Martensite volume fraction z contour (max: 1.0). (c) Von Mises stress contour
(max: 941.10 MPa). TH = 400 K. (d) Vertical displacement contour (Min: −53.63 mm). (e) Martensite
volume fraction z contour (max: 0.36). (f) Von Mises stress contour (max: 737.30 MPa).
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Under the constant external load, when the SMA material was heated to a higher
temperature TH, detwinned martensite in zones (i) and (ii) transformed reversely to the
austenite phase (see Figures 2 and 10e). The transformation strain εtr, which was propor-
tional to the martensite volume fraction z, vanished. From a macroscopic point of view, the
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optimized SMA cantilever overcame the external load and produced actuation deformation,
reaching the slope shape defined in Equation (34).

Figure 12 shows the topology-optimized results when we set minimizing compliance
as the optimization objective. After 247 iterations, the algorithm evolved to a local optimum.
In contrast to the cantilever design in Figure 8d, the SMA cantilever design in Figure 12a
had a robust root near the fixture. The loaded upper surface deformed into an arbitrary
curve shape, distorting the original geometric shape. A few areas of the SMA material
detwinned into the martensite material phase. The maximizing stiffness optimization
method was more likely to obtain SMA actuator designs that suppressed the forward
transformation from austenite to martensite. The topology-optimization process converged
stably, and the compliance iteration history of the optimized SMA cantilever is plotted in
Figure 13.
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Figure 12. Minimizing compliance design of SMA cantilever beam (T = 300 K). (a) Optimized topology
configuration. Simulation contours of (b) vertical displacement (Min: −51.91 mm), (c) martensite
volume fraction z (max: 0.49), and (d) Von Mises stress (max: 379.50 MPa).

The choice of the upper-bound value δ of ErH affected the topology optimization
results, showing the necessity of considering shape error constraints in the prescribed
material temperature TH. Figure 14 depicts a set of topology-optimized configurations
when we selected different upper-bound values δ of ErH as the optimization criterion.
When δ of ErH was set as a relatively large value of 1, the SMA cantilever design with
the minimal value of shape error function ErL (about 0.0033) was obtained, as shown
in Figure 14, design scheme I. This shows that the upper surface of the SMA cantilever
design I approached the expected slope shape yL precisely, while it diverged from the
slope shape yH with ErH of 0.7260. As the upper bound δ of ErH decreased from 1 to 0.01
(see designs II, III, IV and V), the SMA material redistributed from the left-side fixture
region to the right-side loading region, to satisfy the strict shape error constraint ErH. As a
consequence, the shape error function ErL at the material temperature TL increased from
0.0033 to 0.1330. The above results showed that minimizing the values of both shape error
functions ErH and ErL was contradictory. Hence, a precision compromise is necessary
for two-way shape-morphing designs when the uniform heating/cooling control strategy
is adopted.
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4.2. Topology Optimization of SMA Curved Wing for Prescribed Two-Way Shape Morphing

Here, an SMA curved wing design problem for prescribed two-way shape morphing
was considered. The material parameters are listed in Table 3. The detailed geometric
information of the curved wing structure is depicted in Figure 15. The curved wing
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structure was discretized with finite elements of averaged 5 mm length scale. A total of
15,556 3D solid finite elements with 60,375 nodes were generated. The upper-bound values
δs and δv for geometric minimum length constraints were 9.0 × 10−5. The bottom surface
of the curved wing structure was the non-design zone with uniform pressure load P = 0.4
N/mm2. Its thickness is 5 mm. A total of 80 observation points were selected according to
Figure 15b. All the weighting factors are chosen as unit value 1. The density filter radius
Rfilter = 10 was set as two times the average length of the finite elements.

Table 3. SMA material parameters [21].

Material Parameter Material Parameter

CA 45,200 MPa a 0.24 MPa
CM 26,400 MPa b 0.096 MPa
v 0.3 ε0 0.8%
Y 30 MPa G 1.92 MPa
αs 2500 MPa βs 6250 MPa
ξs 0.0145 MPa/K κ 0.038 MPa

A0
f 300 K T Material temperature

Actuators 2024, 13, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 14. Relationship between shape error values of ErH and ErL for optimized SMA cantilever 
beams. 

4.2. Topology Optimization of SMA Curved Wing for Prescribed Two-Way Shape Morphing 
Here, an SMA curved wing design problem for prescribed two-way shape morphing 

was considered. The material parameters are listed in Table 3. The detailed geometric in-
formation of the curved wing structure is depicted in Figure 15. The curved wing structure 
was discretized with finite elements of averaged 5 mm length scale. A total of 15,556 3D 
solid finite elements with 60,375 nodes were generated. The upper-bound values δs and 
δv for geometric minimum length constraints were 9.0 × 10−5. The bottom surface of the 
curved wing structure was the non-design zone with uniform pressure load P = 0.4 
N/mm2. Its thickness is 5 mm. A total of 80 observation points were selected according to 
Figure 15b. All the weighting factors are chosen as unit value 1. The density filter radius 
Rfilter = 10 was set as two times the average length of the finite elements. 

 
(a) 

Actuators 2024, 13, x FOR PEER REVIEW 19 of 25 
 

 

 

 

(b) (c) 

Figure 15. Illustrations of SMA curved wing structure design problem from (a) axonometric view, 
(b) bottom view, and (c) front view. 

Table 3. SMA material parameters [21]. 

Material Parameter  Material Parameter  
CA 45,200 MPa a 0.24 MPa 
CM 26,400 MPa b 0.096 MPa 
v 0.3 ε0 0.8% 
Y 30 MPa G 1.92 MPa 
αs 2500 MPa βs 6250 MPa 
ξs 0.0145 MPa/K κ 0.038 MPa 
A0f 300 K T Material temperature 

From Figure 16a,b, we found that, for the SMA curved wing structure, with the com-
pliance minimization design scheme, the central ribs were sandwiched with two side pan-
els. This configuration enhanced the out-of-plane stiffness to the greatest extent, thus re-
ducing the structural compliance. Based on the displacement contour in Figure 16c, the 
tip of the wing had a significant twisting geometric distortion while withstanding a uni-
form pressure load. The martensite volume fraction contour in Figure 16d shows that this 
design scheme minimized the austenite–martensite transformation region. The maximum 
Von Mises stress was about 180 MPa, as depicted in Figure 16e. 

 
 

(a) (b) 

Figure 15. Illustrations of SMA curved wing structure design problem from (a) axonometric view,
(b) bottom view, and (c) front view.

From Figure 16a,b, we found that, for the SMA curved wing structure, with the
compliance minimization design scheme, the central ribs were sandwiched with two side
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panels. This configuration enhanced the out-of-plane stiffness to the greatest extent, thus
reducing the structural compliance. Based on the displacement contour in Figure 16c, the
tip of the wing had a significant twisting geometric distortion while withstanding a uniform
pressure load. The martensite volume fraction contour in Figure 16d shows that this design
scheme minimized the austenite–martensite transformation region. The maximum Von
Mises stress was about 180 MPa, as depicted in Figure 16e.
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Figure 16. Minimizing compliance design of SMA curved wing structure. Topology-optimized
design from (a) axonometric view (depicted with non-design zone) and (b) bottom view (depicted
without non-design zone). Simulation contours of (c) displacement magnitude (max: 37.99 mm),
(d) martensite volume fraction z (max: 0.76), and (e) Von Mises stress (max: 179.80 MPa).

The upper-bound value δ for the shape error function ErH was set as 100 mm2. At
material temperatures {TL, TH}, the expected geometric shapes of the bottom wing surface
were defined as follows:

yL = 0.0; TL= 310K (35)

yH = −1.754 × 10−4x2; TH= 400K (36)
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Compared with the topology optimization results in Figure 16, the proposed topology
optimization method, which considered plane–parabolic shape morphing, obtained differ-
ent structural designs, as depicted in Figure 17. The enforcement structure was spatially
distributed with span-wise, chord-wise ribs and material concentrations near the fixture.
The whole topology-optimization process for the SMA wing structure took around 103 h.
After 313 optimization iterations, the values of the shape error functions {ErL, ErH} de-
creased from {93,072.47 mm2, 53,608.01 mm2} to {120.30 mm2, 97.88 mm2}, only 0.13% and
0.18% of the initial values, respectively. Figure 18 shows that the topology-optimization
process converged stably. The shape comparison in Figure 19 illustrates that the optimized
SMA curved wing design precisely approached the prescribed plane and parabolic shapes
under the conditions of pre-defined material temperatures and the constant pressure load.
Below, detailed explanations of the topology-optimized design in Figure 17 are given with
the simulation results in Figure 20.
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Figure 17. Topology-optimized curved wing design for prescribed two-way shape morphing from
(a) axonometric view (depicted with non-design domain) and (b) bottom view (depicted without
non-design domain).
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Figure 18. Topology optimization iteration history of SMA curved wing structure.
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Figure 19. Comparison between computed shape and desired target shape of curved wing structure
at (a) material temperature TL and (b) material temperature TH.
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Figure 20. Simulated deformation, phase transformation, and structural stress contours of optimized
SMA curved wing structure at different material temperatures. For TL = 310 K: (a) displacement
contour (max: 76.09 mm), (b) martensite volume fraction z contour (max: 1.0), and (c) Von Mises stress
contour (max: 316.90 MPa). For TH = 400 K: (d) displacement contour (max: 54.08 mm), (e) martensite
volume fraction z contour (max:0.77), and (f) Von Mises stress (max: 284.20 MPa).



Actuators 2024, 13, 65 21 of 23

According to the displacement contours in Figure 20a,d, this particular designed
enforcement structure compensated for the imbalance of the curved wing geometry config-
uration and external pressure distribution, resulting in normalized and expected structural
deformations. As shown in Figure 20b,e, stress-induced local martensite phase transforma-
tion facilitated the deformation of the curved wing structure into the expected plane shape
at the material temperature TL. Assuming that the external pressure load was unchanged,
the SMA wing bent into the target parabolic shape upon heating the structure to a higher
material temperature TH. This was due to the transformation of detwinned martensite to
austenite material phase, resulting in a reversible actuation deformation. Although the
maximum martensite transformation strain was only 0.8%, the actuation displacement
of the wing tip was about 22 mm, which was 1.1 times the total thickness of the curved
wing structure.

5. Conclusions

This study aimed to resolve the automatic design problems of SMA actuators for pre-
scribed two-way transforming shapes; we established a new topology-optimization formu-
lation. To constrain the geometric distortions of SMA devices bearing external mechanical
loads, the proposed topology optimization method formulated optimization criteria with
desired target shapes instead of total structural compliance. When the topology-optimized
SMA actuators withstood external mechanical loads, the key surfaces reached the desired
two-way transforming shapes at the predefined material temperatures. Although the
numerical examples demonstrated that minimizing both the shape error functions ErL
and ErH was contradictory, feasible optimization results could be obtained for two-way
shape-morphing designs by allowing reasonable tolerances. In this study, the macroscopic
topology configurations of SMA were optimized to satisfy the desired shape morphing
requirements. The simultaneous design of SMA macro material layouts and microstruc-
tures are expected to increase the availability of shape transformation mechanisms in
future works.
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