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Abstract: When using electric linear drives for vertical positioning of workloads, a constant force
both during movement and at standstill must be supplied to compensate gravity. Compensating
stationary forces by the use of passive components reduces the power consumption of the employed
actuator and permits smaller dimensioning. In this article, we present a novel integrative actuator
design which combines the inherent advantages of a permanent magnetic weight compensation with
a two-phase linear direct drive. We illustrate how to design permanent magnetic force compensation
to realize a constant compensating force over a desired actuator stroke. Analytical solutions for both
the design of the direct drive and the design of the permanent magnetic weight compensation are
derived and validated by simulation and experiment. The innovative actuator design is compared to
a conventional, non-compensated drive, and we aim to provide the reader with insights into specific
applications where the use of the weight-compensated actuator proves particularly effective.

Keywords: magnetic weight compensation; miniaturized linear drive; two-phase direct drive

1. Introduction

To compensate the gravitational forces of the workload when using electric linear
direct drives for single-axis vertical positioning, a constant force both during movement
and at standstill must be supplied. Unlike active force control technology, such as mag-
netic bearings which necessitate additional sensors, demanding control algorithms, and
sophisticated hardware configurations [1], the integration of passive components reduces
the power consumption of the electric actuator and permits smaller dimensioning without
significantly increasing system complexity and cost. Various passive gravity compensation
mechanisms exist, with commonplace solutions including counterweights or mechanical
frameworks employing diverse combinations of springs, sliders, and beam structures [2–7].
Despite the wide variety of options, these structures frequently encounter limitations
such as challenges related to compactness within constrained design spaces, restricted
constant-force stroke ranges, pronounced output errors, or demanding manufacturing
requirements [6].

Beyond the conventional mechanical approaches, permanent magnetic springs consti-
tute another alternative for weight compensation. Magnetic springs are widely employed
in various applications including vibration compensation springs [8–10], torsion magnetic
springs [11,12] and linear magnetic springs [13,14]. Through careful design considerations
of both soft magnetic and permanent magnetic elements, magnetic spring systems can
achieve a consistent force output across arbitrary process strokes, regardless of the position
of the actuator’s slider [13,14]. Next to the large constant-force stroke, the inherent advan-
tage of magnetic weight compensation lies in its suitability for deployment in constrained
design spaces. This feature positions magnetic weight compensation as a viable alternative
to traditional mechanical frameworks for weight compensation applications.

In this paper, we propose an innovative, integrative design of a two-phase linear direct
drive incorporating permanent magnetic weight compensation. The schematic design
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concept of the novel actuator is illustrated in Figure 1. The two-phase linear drive forms
the active part, generating dynamic force Fdy, while the weight compensation constitutes
the passive part, compensating constant gravity force Fwc. Neglecting frictional forces
and other dissipative disturbances, the differential equation of the actuator is given by xs
denotes the position of the slider, m is the load mass and g represents gravity. The weight
compensation is designed to compensate static force Fst, while the linear drive is intended
to generate dynamic force Fdy to accelerate the workload:

m
..
xs + mg = Fwc + Fdy. (1)

Fwc
!
= Fst = mg, and

Fld
!
= Fdy = m

..
xs.

(2)

To provide a measure of effectiveness of the weight compensation, we define the ratio
of the static and dynamic force by introducing compensation factor V:

V =
|Fst|∣∣∣Fdy

∣∣∣ . (3)

For a harmonic excitation of the workload with frequency ω and amplitude x̂a, com-
pensation factor V is calculated as

V =
g

ω2 x̂a
(4)

The larger the compensation factor V, the more the passive compensation offloads
the active actuator part and the greater the benefit of an integrated magnetic weight
compensation. Given a factor of V = 1, for example, the needed force for the weight
compensation equals that for dynamic acceleration.
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Figure 1. Schematic structure of the integrative actuator design of a two-phase linear direct drive
with permanent magnetic weight compensation.

In this article, we present the analytical, numerical, and experimental investigation of
the presented actuator. The paper is divided into two main chapters. In the first, the focus
is placed on the analytical design of permanent magnetic weight compensation. A general
analytical solution for the resultant force dependent on specified design parameters is de-
rived and validated numerically. Based on this, the integration of the weight compensation
into a two-phase linear direct drive is presented. In the second part, a weight-compensated
actuator is designed, realized, and experimentally characterized for a selected use case.
In the concluding discussion, an evaluation is given of the applications for which the
integration of weight compensation is particularly effective.
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2. Analytic Modeling of a Weight-Compensated Linear Direct Drive
2.1. Analytic Modeling of Magnetic Weight Compensation

The objective of weight compensation is to generate constant force Fwc to equalize
static load Fst, independent of slider position xs. The general working principle of a
permanent magnetic weight compensation is illustrated in Figure 1. The diametrically
magnetized permanent magnet (slider) seeks the energy minimum and strives into the
soft magnetic stator, thereby generating compensating force Fwc. To analytically derive the
weight compensating force in dependence of the design parameters, the total magnetic
energy of magnetized matter Um in the weight compensating system in dependence on
slider position xs is required. The reluctance force can then be calculated using the variation
of energy:

Fwc = −dUm(xs)

dxs
. (5)

To calculate Um of the regarded system illustrated, the magnetic field distribution
needs to be determined. To find an approximate analytic solution, we impose the following
restrictive assumptions on the system:

- neglect axial magnetic flux,
- assume constant diametrical magnetization of the permanent magnet,
- regard the soft magnetic material as an ideal magnetic conductor,
- neglect saturation effects.

The total energy of weight compensation Uwc is derived in Appendix A. The energy is
dependent on the magnetization of permanent magnet Mpm, the cross-sections of perma-
nent magnet Apm and of soft magnetic stators Asm, A and Asm, B (Figure A1b) as well as on
axial position xs and length l0 of the permanent magnet,

Uwc = µ0
Mpm

2

4
Apm

((
1 −

Apm

Asm, A

)
xs −

(
1 −

Apm

Asm, B

)
(l0 − xs)

)
. (6)

The compensating force follows to

Fwc = −dUwc

dxs
= µ0

Mpm
2

4
Apm

(
Apm

Asm, A
−

Apm

Asm, B

)
. (7)

Derived force Fwc of the magnetic weight compensation is independent of the slider po-
sition and depends solely on the magnetization and the geometric cross-section parameters
of the stator and the slider. For the sample parameters,

Mpm = BRem
µ0

= 1.28T
4π10−7 ≈ 1.02 × 106 A

m ,
Rpm = 1 mm

(8)

and in dependence of air gaps dA and dB between the permanent magnet and the soft
magnetic stator in the two cross-sections,

dA = Rsm,A − Rpm and dB = Rsm,B − Rpm, (9)

the weight compensating forces are plotted in Figure 2. The plot displays the strong
dependence of force on the air gap widths. To obtain maximum force density, the air gap in
cross-section A should be minimized and maximized in cross-section B.
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In order to derive an analytical formula for the compensating force, we make some
assumptions to simplify the regarded system. By neglecting axial magnetic flux, the derived
force is completely independent of the slider position and the axial length of the weight
compensation. In the following, we validate the analytical solution with a numerical FEM
simulation for an example set of parameters. Next to (8), we specify

rsm, A = 1.1 mm, lpm = 30 mm. (10)

The analytic and numeric solutions of the compensating force and magnetic energy
are illustrated in Figure 3. The FEM simulation reveals that the compensating force is not
independent of the slider position. Especially in the range in which the permanent magnet
enters and exits the soft magnetic stator, axial flux linkage has a significant influence on the
compensating force. Consequently, when designing permanent magnetic weight compen-
sation, axial range should be considered, in which the analytical force is not matched. For
most of the actuator stroke, the analytical solution offers a very accurate approximation of
the compensating force.
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2.2. Analytic Modeling and Integration of the Two-Phase Linear Drive

To generate dynamic forces, passive weight compensation needs to integrated into an
active linear drive. In this work, we combine weight compensation with a two-phase linear
direct drive, which is illustrated in Figure 4. The two-phase linear direct drive generates
high force density, which renders it particularly suitable for actuators characterized by
stringent spatial constraints, as demonstrated in reference [15]. The axially magnetized
permanent magnets in the slider generate a magnetic field which permeates the stator coils
in radial direction. An axial Lorentz force is thus generated by energizing stator coils α
and β in dependence of slider position xs. A detailed derivation of the analytical modeling
and the electric control of the two-phase linear drive is given in [15]. The actuator force
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amplitude, FL, is proportional to the current amplitude of the excitation, î, and the force
constant, km:

FL = km î with km =
p
λ

Brem Apm,a2πN . (11)

Analytically derived force constant km increases linearly to the number of axial per-
manent magnets p in the slider (four in Figure 4). Brem is the remanent flux density of the
permanent magnets, λ is the wavelength of the radial magnetic flux density distribution,
Apm,a is the cross-section area of the axial magnetized magnet and N offers the number of
windings of each coil package.
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the force constant, mk :  

L m
ˆF k i=  with m rem pm,a 2 .pk B A Nπ

λ
=  (11) 

Analytically derived force constant mk  increases linearly to the number of axial per-
manent magnets p  in the slider (four in Figure 4). remB  is the remanent flux density of 
the permanent magnets, λ  is the wavelength of the radial magnetic flux density distri-
bution, pm,aA  is the cross-section area of the axial magnetized magnet and N  offers the 
number of windings of each coil package. 

 
Figure 4. Linear direct drive equipped with a two-phase coil winding and axially magnetized mag-
nets inside the slider. 

Generally, the passive magnetic weight compensation and active linear drives as pre-
sented can be conceived and developed as separate entities. However, when integrating 
these components, it is imperative to assess the influence exerted by the diametrically 
magnetized permanent magnet inherent to the weight compensation slider upon its en-
gagement with the active linear drive. The integration of the permanent magnetic weight 
compensation into the linear drive is visualized in Figure 5. The diametrically magnetized, 

Figure 4. Linear direct drive equipped with a two-phase coil winding and axially magnetized magnets
inside the slider.

Generally, the passive magnetic weight compensation and active linear drives as
presented can be conceived and developed as separate entities. However, when integrating
these components, it is imperative to assess the influence exerted by the diametrically
magnetized permanent magnet inherent to the weight compensation slider upon its en-
gagement with the active linear drive. The integration of the permanent magnetic weight
compensation into the linear drive is visualized in Figure 5. The diametrically magnetized,
weight compensating permanent magnet enters the current-carrying stator coils of the lin-
ear actuator without generating an interfering axial Lorentz force (middle part in Figure 5).
Due to the divergence-free nature of magnetic flux density, it permeates the stator coils in
equal parts in positive and negative radial directions. The resulting Lorentz forces cancel
and thus do not generate any disturbing force on the slider.
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3. Design and Experimental Validation

In this chapter, a linear actuator with integrated weight compensation is realized
following the design concept developed in Section 2.

3.1. Application for a Weight-Compensated Linear Drive—Automated Electrical
Discharge Machining

The presented actuator concept is particularly effective when the introduced com-
pensation factor V is sufficiently large. In this chapter, we design a weight-compensated
actuator for a suitably selected problem with comparatively large compensation factor. The
objective of the developed linear direct drive is the vertical positioning of a tool electrode
in the die-sinking electrical discharge machining (EDM) process which enables precise
machining of hard materials with complex shapes and structure [16]. According to the
current state of the art, a countersunk head of the workpiece is manufactured at high cost
using traditional mechanical processing methods [16,17]. To dynamically adapt the geom-
etry of the countersink electrode to the complex geometries of the workpiece, a discrete
tool electrode assembly must be developed [18]. As illustrated in Figure 6, this assembly
demands the vertical positioning of multiple 20 g electrode rods to automatically create a
discrete negative geometry of a desired workpiece. Since the width of the square electrode
segments is wE = 5 mm, the miniaturized linear drive must dispose an outer diameter of
do ≤ 5 mm. Furthermore, a static process stroke of s ≥ 25 mm is required to dynamically
generate complex depth profiles for highly adaptable tool geometries. The major challenge
in designing the actuator is to ensure sufficient force supply for robust control dynamics
despite the small installation space. To reduce the load on the actuator and thereby permit
smaller dimensioning, the permanent magnetic weight compensation is integrated to pas-
sively counterbalance the electrode mass. Application-related, the actuator is demanded
to generate a harmonic oscillation of the electrode, for which the actuator is required to
operate at a frequency of ω ≤ 5 Hz with an amplitude of x̂a = 1000 µm [18]. Accordingly,
the static-to-dynamic force amplitude ratio V for the presented application results in

V =
Fstatic

Fdynamic,amp
=

mg
mω2 x̂a

≈ 0.2 N
0.02 N

≈ 10. (12)

The gravitational force of the 20 g electrode exceeds the dynamic force amplitude
for acceleration by a factor of 10. This makes the weight-compensated actuator a perfect
solution for the presented application. Under the negligence of friction forces, the dynamic
part of the actuator can be dimensioned 10 times smaller due to the integrated passive
weight compensation.
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electrical discharge machining.

3.2. Design of the Weight-Compensated Linear Drive for the EDM Process

The designed and realized weight-compensated linear drive is illustrated in Figure 7.
The soft magnetic stator within the actuator serves as a magnetic isolator, effectively
preventing magnetic flux leakage from escaping the actuator. Radius Rsm, B of cross-section
area Asm, B of the weight compensation is predefined by the design of the two-phase linear
drive, which is predefined by the limited outer diameter of the actuator, as illustrated in
Figure 7:

Asm, B = Rsm, B
2π = (2.4 mm)2π. (13)

Parameters Rsm, A and Rpm of magnetic weight compensation are adaptable design pa-
rameters to obtain the desired compensation force of 0.2 N for the 20 g electrode. Following
(7), we obtain

Fwc = −dU
dx

= µ0
Mpm

2

4
Apm

(
Apm

Asm, A
−

Apm

Asm, B

)
!
= 0.2 N. (14)

Since the permanent magnet is considerably more expensive than soft magnetic ma-
terial, it is reasonable to dimension the permanent magnet preferably small. We choose a
permanent magnet with the following parameters:

Rpm = 1 mm, BRem = 1.2 T, Mpm =
BRem

µ0
. (15)

Solving (14) for the inner radius, Rsm, A, results in

Rsm, A = 1.2 mm. (16)

The parameters of the two-phase linear drive are chosen to be

p = 8, λ = 8 mm, Apm,a = 4.15 mm2,
Brem = 1.1 T and N = 8,

(17)

which results in a force constant of

km =
p
λ

BRem Apm,l2πN = 0.208
N
A

. (18)

The saturation current amplitude is chosen to be

îsat = 2.5 A, (19)
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which corresponds to a current density of

j ≈ 7
A

mm2 . (20)

Considering the required dynamic force, it is evident that the dynamic part of the
actuator is oversized. This is due to the fact that the dynamic part must compensate for any
friction and other disturbing forces next to the acceleration force, which is investigated in
the next section. To control the actuator and to locate the slider position, a Hall sensor is
implemented into the actuator (more details on the measurement process are given in [19]).
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3.3. Experimental Characterization of Weight-Compensated Linear Drive

The experimental setup for the characterization of the actuator is illustrated in Figure 8.
We use an external linear drive to position the actuator slider while measuring the weight
compensating force as well as the friction on the slider. Since the maximum actuator
velocity at the desired amplitude and frequency is sufficiently small, we neglect the effect of
velocity on friction in this consideration. The friction effects on the slider are approximated
by a Coulomb friction model:

FR(xs) = µrFN(xs). (21)

µr is the friction coefficient and FN(xs) is the normal force on the slider. The normal
force mainly arises due to the reluctance force between the soft magnetic stator and the
permanent magnets in the slider of the actuator. Under ideal symmetry, the slider is in an
unstable equilibrium in the middle of the stator. Manufacturing inaccuracies of the stator
and slider violate this ideal symmetry and cause the friction-generating normal force on the
slider. This effect is enhanced by inhomogenities of the soft and hard magnetic materials
and production-related asymmetries of the soft magnetic stator. In order to mitigate friction,
polytetrafluoroethylene (PTFE) is employed as the material for the sliding bearing.
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Figure 8. Experimental setup for the characterization of the weight-compensated actuator.

The measured weight compensating force of the actuator is shown in Figure 9a.
As illustrated, the analytically designed weight compensation builds a very accurate
approximation of the measured force profile. The mean of the measured compensating
force deviates from the analytical solution by <5%.
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Figure 9. (a) Position-dependent force of weight compensation; (b) Position-dependent friction of
the actuator.

For the designed actuator, friction has a very large influence on the system behavior.
The position-dependent friction of the slider is determined by measuring the force–position
hysteresis when sweeping the actuator stroke at constant speed. The friction is illustrated
in Figure 9b and is approximated by the measured mean:

FR = 0.21 sgn(
.
xs) N. (22)

Accordingly, the frictional force exceeds the required dynamic force amplitude for
mere acceleration of the electrode by a factor of 10. The adapted differential equation of the
actuator considering the examined friction results in

ml
..
xs − mlg = Fwc + kmi + FR. (23)

All emerging dissipating forces must be compensated by the dynamic actuator part.
Taking friction into account, the adapted compensating factor Ṽ shifts significantly:

Ṽ = |Fstatic|
|Fdynamic| =

mg
mω2 x̂a+FR

= 0.2 N
0.02 N+0.21 N ≈ 0.9 .

(24)

The friction force reduces the effectiveness of the weight compensation to a significant
extent. The magnitude of friction in the designed actuator depends on various parameters
which make it difficult to generalize the impact of friction on the compensation factor before
manufacturing a desired actuator. First, the ratio of actuator stroke to actuator diameter
of the linear drive needs to be considered. The friction force increases proportionally to
the length of the weight compensating permanent magnet, which linearly depends on the
actuator stroke. For the regarded application, the ratio is exceedingly large, leading to
high friction and thus a strong decrease from V to Ṽ. Moreover, the considered actuator
is miniaturized (da ≤ 5 mm), which causes absolute manufacturing inaccuracies to have
a greater influence on asymmetries in relation to the size of the actuator as for larger
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actuators. In general, friction depends on manufacturing inaccuracies as well as on material
inhomogeneity, which makes it difficult to estimate its impact beforehand. However, an
estimate on the frictional forces is required to be considered when designing an actuator. For
the application under consideration, the adapted compensation factor Ṽ is approximately
one, allowing for the active actuator part to be dimensioned half the size of that without
the implemented weight compensation. This is still a significant reduction in dimension
which justifies the manufacturing expense of weight compensation.

To validate the force coefficient km of the active actuator part, we consider the dynamic
force for different current amplitudes î, as illustrated in Figure 10. In the linear range, force
factor km is approximated by

km ≈ 0.16
N
A

. (25)
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Figure 10. Force of the two-phase linear drive in dependence of position and current amplitude.

At current amplitudes higher than î ≈ 1.5 A, saturation of the force starts to emerge
as the force no longer increases linearly in dependence of the current amplitude. An ex-
planation for this effect resides in the influence of the magnetic field of the coil currents,
which cause magnetic saturation in the soft magnetic stator. The position-dependent force
variations are related to imperfections of the harmonic winding design of the two-phase
coil current, as well as manufacturing and material inhomogeneities. In the derivation
of analytical force factor km in [15], simplifications of the system are applied. The differ-
ence of the analytic (18) and measured (25) force factors is attributable to the neglect of
demagnetization effects of axial permanent magnets.

Summarizing, the actuator is characterized by the following differential equation of
lumped parameters:

m
..
xs − mg = Fwc + km î + FR

m = 0.02 kg, Fwc = 0.2 N, km = 0.16 N
A ,

FR = 0.21 sgn(
.
xs) N.

(26)

The objective of this article is not to examine the design of a controller, but to verify
the effectiveness of the weight compensation for the desired excitation profile. In [15], we
presented the implementation of an extended state controller to control a similar actua-
tor, applied here, too. A sinusoidal excitation with frequency ω = 5 Hz and amplitude
x̂a = 1000 µm of the controlled actuator is illustrated in Figure 11a. The high-frequency vari-
ation of the control signal clearly displays the non-linear influence of friction on the system.

The determining factor illustrating the effectiveness of the weight compensation is
represented by the DC current component of the control signal, which is approximately
zero (Figure 11a). The amplitude of the Root Mean Square (RMS) value of the current is
îRMS = 1 A. To illustrate the effectiveness of the integrated weight compensation into the
two-phase drive, the same linear drive without magnetic weight compensation is realized
and comparatively evaluated. Figure 11b illustrates the position control of the linear drive
without integrated weight compensation. The DC current component of the current, which
is needed to compensate the static weight of the electrode, is îDC = 1.4 A. The maximum
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current amplitude of the linear drive is restricted to îmax = 2.5 A due to thermal limitation.
This leaves a small current and force margin, which is necessary to maintain robust and
high control performance for the actuator in the absence of passive weight compensation
due to the allocation of resources towards static gravity compensation. Following, the
control error of the actuator without passive weight compensations is significantly larger
than the one with integrated compensation. Moreover, the RMS value (îRMS = 1.6 A) is
significantly larger, illustrating the effectiveness of weight compensation.
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Figure 11. (a) Measurement results of the position and the current amplitude for a sinusoidal
reference of the weight-compensated actuator; (b) measurement results of the position and the
current amplitude for a sinusoidal reference of the actuator without weight compensation.

3.4. Discussion—Weight-Compensated Actuator for Automated EDM Process

By integrating passive permanent magnetic weight compensation into an active two-
phase linear drive, it was possible to passively counterbalance the static gravity force and
thereby reduce the actuator dimension. Without the integration of weight compensation, an
additional dynamic force amplitude of Fdyn = 0.2 N would have been required to realize a
comparatively high control quality. The actuator would have needed a significantly higher
force factor km, which could have only been realized by increasing the number of axial
permanent magnet p within the slider of the active actuator, as elaborated in more detail
in [15]. As illustrated in Figure 4, increasing the number of magnets in the slider increases
the size and manufacturing effort of the two-phase linear drive decisively.

Finally, we briefly consider the influence of the positioning mass regarding the use
of a weight-compensated actuator in the automated EDM process. The electrode rods
under consideration are made of copper which possesses a density of 8.96 g

cm2 . However,
graphite is also used as an electrode material for spark erosion sinking. The density of
graphite is about one-fourth of that of copper, which equally reduces the positioning mass.
Compensating factor Ṽg for the reduced mass of a graphite electrode shrinks to

Ṽg =
mcg

mcω2 x̂a + FR
=

0.05 N
0.005 N + 0.21 N

≈ 0.23. (27)

The reduced positioning mass increases the relative influence of the friction and
thereby significantly decreases compensating factor Ṽ. A compensating factor of <25%
does not justify the extra effort of manufacturing integrative passive weight compensation.
Therefore, for the spark erosion process with graphite electrodes, the module consisting of
25 actuators does not need integrated weight compensation. The realized bundled electrode
module for the EDM process with graphite electrodes is illustrated in Figure 12. This
example conclusively illustrates the influence of the positioning mass on the effectiveness
of magnetic weight compensation.
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4. Summary

In this paper, we introduced a novel actuator concept of a two-phase linear direct
drive with an integrated permanent magnetic weight compensation. The objective of
passive compensation was to relieve the active actuator part and thereby enable reduced
dimensioning. In this context, compensation factor V was introduced, which defines
the ratio of the static to dynamic load and thus offers a measure of the effectiveness
of passive compensation. An analytical formula for the design of force calculation of
a rotationally symmetric, permanent magnetic weight compensation was derived and
numerically validated. Furthermore, the analytical modeling of a two-phase linear drive
and its integration with the passive compensation was illustrated. In Section 3, a weight-
compensated actuator for the automated EDM process was designed, following the derived
design schemes from Section 2. In this context, the influence of system parameters as
positioning mass, friction, and excitation dynamics on the effectiveness of the novel actuator
concept were investigated and discussed.
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Appendix A

To calculate magnetic energy, we first only consider the magnetic field of the diametri-
cally magnetized permanent magnet with constant magnetization M . Neglecting axial flux
is equivalent to assuming the magnet to be infinitely long, which reduces the differential
equation to a two-dimensional system. The static Maxwell equations for the magnetic field
B of the permanent magnet are given by
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1
µ0

∇× B = ∇× M, (A1)

∇·B = 0. (A2)

Using the dependence of magnetic field strength H to magnetic field B,

B = µ0(H + M), (A3)

we reformulate (A1) and (A3) and solve for H:

∇× H = 0, (A4)

∇·H = ∇·M. (A5)

Comparing (A5) with Gauss’ law for electric charge, ∇·M may be interpreted as
fictitious magnetic charge density ρm representing the source for magnetic field strength H:

∇·H = ∇·M = ρm. (A6)

We use this analogy as a tool to solve the partial differential equation. Since the
rotation of H is zero (A4), magnetic field strength H may be expressed by a potential, which
we call ϕm:

H = ∇·ϕm. (A7)

Inserting (A6) and (A7) in (A5), we obtain the Laplace equation:

∆ϕm = ρm. (A8)

As shown in [20], the Laplace equation for magnetized matter can be solved using

H(r) = −(M·∇)ε(r), (A9)

where ε(r) represents the magnetic field strength produced by the same object with a
constant but fictitious magnetic charge density ρM = 1. As illustrated in [20], we use the
integral form of Gauss’ law to solve for ε(r):

ε(r) =

{
r
2 r < Rpm
rApm
2πr2 r < Rpm.

(A10)

Rpm is the radius and Apm the cross-section area of the permanent magnet as shown
in Figure A1a. Inserting (A10) into (A9), the magnetic field strength of a cylindrical,
diametrical magnetized permanent magnet calculates to

Hpm(r) =

−Mpm
2 r < Rpm

Apm
2π

{
2(r·Mpm)r

r4 − Mpm
r2

}
r > Rpm.

(A11)

The analytic solution of the magnetic field strength for an exemplary magnetization
is illustrated in Figure A1a. Next, we consider the analytic solution for a cross-section
including the soft magnetic stator (Figure A1c). Given the assumption of an ideal magnetic
conductor, we seek for a solution of the partial differential equation in which the magnetic
field strength within the soft magnetic stator vanishes. The boundary condition at the inner
soft magnetic surface is given by

n × H(rsm) = 0 with |rsm| = Rsm. (A12)
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Figure A1. (a) Magnetic field strength of a diametrically magnetized permanent magnet. (b) Resultant
magnetic field strength of the soft magnetic stator. (c) Magnetic field of the actuator cross-section of
magnetic weight compensation.

In other words, the superposition of the permanent magnetic field strength (Figure A1a)
and the soft magnetic field strength (Figure A1b) cancels out in the soft magnetic stator. We
propose the distribution of the magnetic field of soft iron Hsm as follows:

Hsm(r) =

{
−Msm

2 r < Rsm
Asm
2π

{
2(r·Msm)r

r4 − Msm
r2

}
r > Rsm.

(A13)

Equation (A13) has the same form as (A11), but different magnetization Msm and
cross-section area Asm. By choosing magnetization Msm to be

Msm = −Mpm
Apm

Asm
= −Mpm

Rpm
2

Rsm
2 , (A14)

the superposition of the fields in the soft magnetic stator just cancel out, satisfying boundary
condition (A12). Inserting (A14) in (A13) and summing with (A11) yields the distribution
of the fields as illustrated in Figure A1c:

H(r) =


−Mpm

2 +
Mpm

2
Apm
Asm

r < Rpm
Apm
2π

{
2(r·Mpm)r

r4 − Mpm
r2

}
+

Mpm
2

Apm
Asm

Rsm > r > Rpm

0 r > Rsm.

(A15)

To derive the force by the variation of energy, the magnetic energy of weight com-
pensation needs to be calculated. The brought-in energy to magnetize matter is given
by [21]

Um =
∫
V

B∫
0

1
µ0

HdB dV. (A16)

For permanent magnetic material, the relationship between H and B is nonlinear and
hysteretic. The total energy brought in to magnetize a permanent magnet is thus not the
same as the saved field energy. Energy dissipates into heat when magnetization M changes.
However, for the application of weight compensation, we consider magnetization M to
be constant such that no energy dissipates in operation. Therefore, we may use (A16) to
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compute the force by variation of energy. Considering M to be constant, the relationship
between H and B is affine linear:

H =
1

µ0
B − M. (A17)

Since we neglect axial flux, Equation (A16) may be reformulated to

Um = ∑
i

liŨi, (A18)

where li denotes the axial length and Ũi is the energy per length of a cross-section area Ai
(surface energy):

Ũi =
∫
Ai

B∫
0

1
µ0

HdB dA. (A19)

Following Figure 1, the energy of weight compensation formulates to

Uwc = ŨA(l0 − xs) + ŨBxs. (A20)

In order to calculate Ũi, we first subdivide the integral into the surface energy of
permanent magnet field Ũi,pm, of soft magnetic stator field Ũi,sm and mutual surface energy
Ũi,mutual of the superimposed fields:

Ũi = Ũi,pm + Ũi,sm + Ũi,mutual. (A21)

To calculate Ũi,pm, Equation (A17) is inserted in (A19):

Ũi,pm =
∫
Ai

Bpm∫
0

(
1

µ0
B − Mpm

)
dB dA

=
∫
Ai

(
1

2µ0
Bpm·Bpm − Mpm·Bpm

)
dA.

(A22)

In the later following force calculation, we differentiate (A22) with respect to slider
position xs. Since magnetization Mpm is constant and thereby independent of xs, we add

c =
∫ µ0Mpm·Mpm

2
dV (A23)

to (A22) without changing the resultant force. Adding (A23) to (A22) and using (A17)
results in

Ũi,pm =
∫
Ai

(µ0

2
Hpm·Hpm

)
dA. (A24)

To calculate (A24) considering the derived field distribution (A11), we first simplify
the integral. The energy of free stationary currents UF is given by [22]

UF =
∫
V

1
2

H·B dV. (A25)

The regarded system has no free currents, which implies that H and B are orthogonal
vector fields:

0 =
∫
V

1
2

H·B dV. (A26)



Actuators 2024, 13, 107 16 of 17

Inserting (A17) in (A26) shows that∫
V

µ0

2
H·H dV = −

∫
V

µ0

2
H·M dV. (A27)

Using (A27) and (A11) to calculate (A24) results in

Ũi,pm =
∫
Ai

(
− µ0

2 Hpm·Mpm
)

dA

=
∫
Ai

µ0
Mpm

2

4 dA = µ0
Mpm

2

4 Apm.
(A28)

For the soft magnetic stator, we use (A13) to calculate surface energy. The same
proceeding leads to

Ũsm,i =
∫
Ai

(
− µ0

2 Hsm·Msm
)

dA

= µ0
Msm,i

2

4 Asm,i = µ0
Mpm

2

4
Apm

2

Asm,i
.

(A29)

The mutual surface energy results from the overlapping field terms:

Ũi,mutual = −
∫
Ai

µ0

2
Hpm·Msm,i dA −

∫
Ai

µ0

2
Hsm·Mpm,i dA. (A30)

The two terms of the mutual energies are of the same value [23] (∇ × M may be
interpreted as a magnetization current). Doubling the second term of (A30) and inserting
(A13) and (A14) yields

Ũi,mutual = −
∫
Ai

µ0Hsm,i·Mpm dA =
∫
Ai

µ0
2 Msm,i·Mpm dA

= µ0
2 Mpm·Msm,i Apm,i = − µ0

2 Mpm
2 Apm

2

Asm,i
.

(A31)

Summing (A28), (A29) and (A31) finally results in surface energy:

Ũi = Ũi,pm + Ũi,sm + Ũi,mutual

= µ0
Mpm

2

4 Apm

(
1 − Apm

Asm,i

)
.

(A32)

The total energy is calculated by multiplying the corresponding lengths of the two
different cross-sections, AA and AB (Figure 1):

Uwc = µ0
Mpm

2

4
Apm

((
1 −

Apm

Asm, A

)
xs −

(
1 −

Apm

Asm, B

)
(l0 − xs)

)
. (A33)
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