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Abstract: Autonomous tractor–trailer robots possess a broad spectrum of applications but pose
significant challenges in control due to their nonlinear and underactuated dynamics. Unlike the
tractor, the motion of the trailer cannot be directly actuated, which often results in a deviation
from the intended path. In this study, we introduce a novel method for generating and following
trajectories that circumvent obstacles, tailored for a tractor–trailer robotic system constrained by
multiple factors. Firstly, leveraging the state information of both the obstacles and the desired
trajectory, we formulate an improved trajectory for obstacle avoidance using the nonlinear least
squares method. Subsequently, we propose an innovative tracking controller that integrates a
universal barrier function with a state transformation strategy. This amalgamation facilitates the
accurate tracking of the prescribed trajectory. Our theoretical analysis substantiates that the proposed
control methodology ensures exponential convergence of the line-of-sight (LOS) distance and angle
tracking errors, while enhancing the transient performance. To validate the efficacy of our approach,
we present a series of simulation results, which demonstrate the applicability of the developed control
strategy in managing the complex dynamics of tractor–trailer robots.

Keywords: trajectory re-planning; tracking control; tractor–trailer system; multiple constraints

1. Introduction

The Tractor–Trailer Wheeled-Robot (TTWR) system, with its intrinsic capability to
tow trailers and transport payloads, holds considerable potential for a myriad of practical
applications spanning the domains of agriculture, transportation, and beyond [1–7]. Never-
theless, the inherently nonlinear and underactuated dynamics of the TTWR system present
intricate challenges in terms of its planning and control faculties. Moreover, as a multi-
body entity, the TTWR system is susceptible to complications such as self-collision and
the potential for structural folding [8–10], further exacerbating the complexity of research
endeavors in this field.

Despite these challenges, advancements in system identification technologies cou-
pled with the progression of nonlinear control theory have significantly deepened the
understanding and refinement of planning and control strategies for the TTWR system.
The research dedicated to TTWR systems encompasses a diverse array of focal areas, in-
cluding the formulation of kinematic and dynamic models, stability analysis, stabilization
control methodologies, and the precision of trajectory tracking control mechanisms [11–19].
These research streams are critical for unlocking the full potential of TTWR systems and
facilitating their integration into the targeted fields of application.

TTWRs are stratified into various classifications based on their maneuverability and
controllability, with two predominant kinematic models garnering substantial scholarly
interest. The first model pertains to a differential steering configuration, wherein two differ-
entially driven wheels are employed as the primary means of propulsion. The alternative
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model incorporates an Ackermann steering mechanism, which utilizes the tractor’s front
wheels for directional guidance and the rear wheels for propelling and towing the trailer.
Kinematic models of these two types are studied in [20]. In our research, we focus on the
first type, i.e., differential wheel steering.

In the field of control theory, the overarching goal of system motion control is to
manage and direct the behavior of dynamic systems, and this is typically bifurcated into
two fundamental categories: stabilization control [14,15,21,22] and tracking control [23–29].

Stabilization control focuses on the system’s ability to attain and maintain a state
of equilibrium. The objective is to design control laws that ensure the states of system
converge to the equilibrium points, despite any disturbances or inherent system fluctuations.
This type of control is vital for systems where maintaining a steady state is essential for
operational stability and safety.

On the other hand, tracking control is concerned with the system’s capability to follow
a predefined trajectory over time. This trajectory represents the desired path or set of
states that the system should achieve throughout its operation. Tracking control is crucial
in applications where the system must follow a particular route or pattern, such as in
autonomous vehicles, robotic manipulators, and other automated systems where precise
motion is required. In this paper, our research focuses on the tracking control.

The complexity of the tracking control task is compounded by a variety of constraints,
which must be accounted for to ensure the system’s safety and performance. Among these
constraints, heading angle limitations, LOS distance restrictions, and obstacle avoidance
are prevalent.

In reference [30], the authors introduce a generic obstacle avoidance function, metic-
ulously engineered to ensure that the LOS distance and angle errors converge within
prescribed limits. This method underscores the importance of designing control strate-
gies that are compliant with constraints while achieving the intended control objectives.
Furthermore, for dealing with uncertainty and external disturbances, an adaptive control
framework was integrated into this method [31]. It enhanced the robustness of system. This
adaptation is crucial in practical applications where perfect knowledge of the environment
is unattainable. Reference [32] expended this approach into the tracking control of multi-
robot systems, enabling them to collectively track desired trajectories while adhering to a
set of constraints. Such collective coordination is imperative in scenarios where multiple
robots operate in a shared space or where formation control is required.

In the context of robotic control, the obstacle avoidance constraint cannot be ignored.
However, within the control issues of TTWR, research on obstacle avoidance has seldom
been the focus of attention. This paper makes a preliminary exploration into the control
problem of TTWRs with obstacle avoidance constraints, which is accomplished based on
the assumptions of low-speed operation and precise tracking.

In the pertaining literature, two efficacious methods for trajectory tracking control
of TTWR were proposed in [13,31]. The methodology espoused in [13] employs the back-
stepping technique, commencing with the conversion of the original system into an error
system via state and input transformations. A virtual controller is then meticulously crafted
to ensure the closed-loop system’s stability. Despite its effectiveness, this approach is
criticized for its complexity and lack of intuitive clarity, particularly as the methodology
for translating the virtual input vector into a tangible input vector remains unaddressed.
Conversely, reference [31] advances the discourse by introducing a barrier Lyapunov func-
tion predicated on distance error and devises a control law that not only complies with
the LOS distance constraints but also boasts a more streamlined structural composition.
Nonetheless, this method is not without its limitations, as it exhibits suboptimal transient
responses within the closed-loop system.

The present paper endeavors to surmount the limitations inherent in these aforemen-
tioned strategies by proposing a novel LOS control law. This newly formulated law is
characterized by its structural simplicity, obviating the need for input transformations,
and simultaneously enhances the transient performance of the closed-loop system. Further-
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more, this study introduces a trajectory re-planning scheme predicated on nonlinear least
squares. This scheme is adept at navigating around static obstacles, thereby augmenting
the TTWR system’s operational robustness and adaptability to complex environments.

The structure of the remainder of this paper is as follows: Section 2 details the materials
and methodologies utilized. This includes a system overview and the necessary background
knowledge, presented in Sections 2.1 and 2.2, respectively. Section 2.3 introduces trajectory
re-planning using the nonlinear least squares technique. Section 2.4 then describes the
development of a novel control law for the TTWR system, predicated upon the tractor’s
LOS distance and angle, which are informed by the re-planned trajectory. Section 3 is
devoted to the presentation of experimental results. Within this section, Sections 3.1 and 3.2
examine scenarios with and without the presence of obstacles, respectively, to validate the
effectiveness of the proposed approach. Section 4 concludes the paper with a summary and
discussion of the findings.

2. Materials and Methods
2.1. System Description

Consider the tractor–trailer mobile robot depicted in Figure 1, wherein the tractor is
outfitted with two driven wheels, and the trailer is mounted on two passive wheels. Given
the assumption of planar motion and the premise that the vehicle’s wheels, modeled as
thin solid disks, are non-slipping in the lateral direction, the kinematic equations governing
the tractor–trailer mobile robot system can be expressed as delineated in [30,31]:

ẋ1(t)
ẏ1(t)
θ̇1(t)
ẋ0(t)
ẏ0(t)
θ̇0(t)

 =



cos θ1(t) 0
sin θ1(t) 0

0 1
cos θ1(t) + sin θ0(t) sin(θ1(t)− θ0(t)) 0
sin θ1(t)− cos θ0(t) sin(θ1(t)− θ0(t)) 0

1
d sin(θ1(t)− θ0(t)) 0


[

v(t)
w(t)

]
. (1)

Figure 1. Schematics of the tracking-control problem for the TTWR system.

Figure 1 illustrates the configuration of a tractor–trailer system, where the midpoint of
the tractor’s wheels is represented by point P1, possessing coordinates (x1(t), y1(t)) in the
inertial reference frame. Correspondingly, the midpoint of the trailer’s wheels is indicated
by point P0, with coordinates (x0(t), y0(t)) also in the inertial reference frame. The head-
ing angles of the tractor and trailer are denoted by θ1(t) and θ0(t), respectively, and are
measured relative to the inertial frame. A rigid linkage of length d ∈ R+ connects point
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P1 on the tractor to point P0 on the trailer, thereby establishing the kinematic relationship
between the two components. The control inputs for the system are twofold: the linear
velocity v(t) at point P1 on the tractor and the angular velocity w(t) associated with the
tractor’s heading angle θ1(t).

Remark 1. Taking into account the practical constraints of the system, actuation is achieved through
manipulation of the driven wheel angles. Let ψl(t) and ψr(t) represent the angular positions of the
left and right tractor wheels, respectively. The control inputs, namely the linear velocity v(t) and
the angular velocity w(t), can be derived from these wheel angles as follows:{

v(t) = r
2 (ψ̇r(t) + ψ̇l(t))

w(t) = r
b (ψ̇r(t)− ψ̇l(t))

, (2)

where the symbol r denotes the radius of the tractor’s wheel, whereas b signifies the half-width of the
vehicle, corresponding to the lateral distance between the centers of the two driving wheels.

Remark 2. When a trailer is tasked with tracking a predetermined trajectory, it is imperative
to ascertain the necessary positional and velocity parameters of the trailer. The velocity data are
instrumental in defining the requisite heading angle of the trailer. Utilizing this data, the anticipated
position and velocity of the tractor can be extrapolated from the desired trajectory of the trailer.
In accordance with the kinematic model governing the tractor–trailer system, it can be established
that a specific relational expression binds the motion of the tractor to that of the trailer:

tan θ1(t) =
ẏ1(t)
ẋ1(t)

, (3)

tan θ0(t) =
ẏ0(t)
ẋ0(t)

. (4)

Within the equation, Equation (3) is self-evident, thus its explanation is omitted.
The proof for (4) is provided in Appendix A.

A detailed derivation of the aforementioned formula is provided in Appendix A.

2.2. Preliminaries and Problem Formulation

Let the coordinates of the desired trajectory for the tractor be denoted as (x1d(t),
y1d(t)) ∈ R2, as depicted in Figure 1. The tracking error is quantified as the Euclidean
distance between the actual position of the tractor (x1(t), y1(t)) and its desired position
(x1d(t), y1d(t)), which can be mathematically expressed as follows:

L(t) ≜
√
(x1d(t)− x1(t))2 + (y1d(t)− y1(t))2. (5)

This metric, L(t), referred to in Equation (5), is also known as the LOS distance that captures
the direct path between the actual tractor position and the desired one. In addition to the
LOS distance, the LOS angle is defined by the relation

ϕ(t) ≜ arctan
(

y1d(t)− y1(t)
x1d(t)− x1(t)

)
, (6)

where arctan represents the inverse tangent function, providing the angular discrepancy
between the tractor’s actual heading and the desired trajectory.

During operational maneuvers, the time-varying performance constraint for the sys-
tem is characterized as follows:

L(t) < ΩL(t), (7)

where ΩL(t) > 0 represents a user-specified, time-dependent upper bound for the permis-
sible tracking error, denoted by L(t). This constraint ensures that the tractor remains within
an acceptable deviation from its intended position throughout the course of operation.
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It is intrinsically understood that L(t) ≥ 0 invariably, as indicated in Equation (5). Nev-
ertheless, it warrants attention that the LOS angle ϕ(t), as delineated in Equation (6), lacks
differentiability at instances where L(t) = 0. To preserve the continuous differentiability of
ϕ(t), it is thus necessitated in practical scenarios to maintain L(t) at a measurable distance
above zero. Consequently, the revised performance constraint is articulated as follows:

0 < ε < L(t) < ΩL(t). (8)

Here, ε > 0 is a diminutive positive constant. Additionally, let us define L0(t) ≜ L(t)− 2ε.
With this new definition, the constraint given by (8) can be reformulated as follows:

−ε < L0(t) < ΩL0(t), (9)

where ΩL0(t) ≜ ΩL(t)− 2ε > 0. It is pertinent to note that the constraints in (8) and (9) are,
for all intents and purposes, equivalent.

The trajectory re-planning and tracking control for the Tractor–Trailer Mobile Robot
(TTMR) are encapsulated by two distinct problem statements.

Problem 1. Trajectory Re-planning: Given a desired geometric path in the Cartesian plane,
represented by y1d = f (x1d), the objective of trajectory re-planning is to construct a new desired
trajectory y1dN = f (x1dN). This trajectory must comply with the condition that the minimum
distance between the system and any obstacle exceeds a predefined safety threshold.

Problem 2. Trajectory Tracking Control: With a predefined desired trajectory y1d = f (x1d),
the challenge is to determine a control input u = [v(t), w(t)]T which ensures that, from any given
initial state, the distance tracking error L(t) diminishes to an arbitrarily small positive value as
time progresses.

For succinctness and clarity in the ensuing discussion, temporal and state depen-
dencies of the system variables will be omitted unless their inclusion is necessary to
avoid ambiguity.

2.3. Trajectory Re-Planning

In the domain of trajectory-tracking control, it is customary to craft trajectories in
advance, incorporating available environmental data. However, real-world operational
environments frequently present unforeseen obstacles. As a robot nears such an obstacle, it
employs sensors to ascertain the obstacle’s location and dimensions. This paper introduces
a trajectory re-planning algorithm predicated on the principles of nonlinear least squares.
The algorithm assesses the potential for collision between the pre-defined trajectory and
any detected obstacles. Should a collision risk be identified, the algorithm is designed
to autonomously generate an alternate trajectory to navigate around the obstacle safely.
The flowchart presented in Figure 2 represents the specific implementation of the proposed
trajectory replanning.

Inputs for the algorithm encompass the obstacle’s position Po and radius ro, current
position for TTWR P, the initial trajectory T, along with predefined action and safety
thresholds denoted by α and β, respectively. The algorithm delineated herein is bifurcated
into two primary components.

Necessity Assessment for Trajectory Re-planning—The initial segment of the algo-
rithm is devoted to ascertaining the need for trajectory modification. It proceeds as follows:

1. Compute the distance L between the robot and the obstacle and evaluate whether L
exceeds the movement threshold α;

2. If L > α, the robot continues along the pre-set trajectory; conversely, if L ≤ α, record
the current time as tb and estimate the end time te, at which the distance Lte between
the robot and the obstacle should again surpass α.
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3. Ascertain whether there exists an instance td within the interval [tb, te] such that at td,
the distance Ltd falls below the safety threshold β.

4. Should td not exist, re-planning is deemed unnecessary; if td is found, initiate re-
planning of a new, secure trajectory TN within the active interval [tb, te] to supplant
the original hazardous trajectory.

Figure 2. Flowchart of trajectory re-planner algorithm.

Trajectory Re-planning Procedure—The second component outlines the specific
methodology for re-constructing the trajectory as follows:

1. Define the movement vector from the position at time tb to the position at time te as
the x-axis of a safe coordinate system. Establish the y-axis per the right-hand rule,
designating the obstacle’s center as the coordinate origin, as shown in Figure 3.

2. Compute the rotation matrix and translation vector that characterize the safe co-
ordinate system in relation to the inertial frame. This computation facilitates the
subsequent mapping of positions and velocities at times tb and te into the safe coordi-
nate system, as shown in Figure 4.
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3. Configure the new trajectory to intersect the point (0, b ) within the safe coordinate
system, ensuring the y-velocity is zero and adopting the mean x-velocity from times
tb and te for the x-velocity, as shown in Figure 4.

4. Integrate the data from tb, te and the designated point to construct the new, collision-
free trajectory using nonlinear fitting techniques.

5. Finally, convert the newly determined trajectory from the safe coordinates back into
the inertial coordinates to execute the trajectory in the robot’s operational environment,
as shown in Figure 3.

-6 -3 0 3 6 9

16

20

24 Trajectory of Tractor
Trajectory of Trailer

Figure 3. Inertial coordinate trajectory re-planning schematic.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

Figure 4. Safe coordinate trajectory re-planning schematic.

Remark 3. In trajectory re-planning, to accommodate diverse operational contexts, multiple
waypoints may be employed, and the trajectory’s configuration can be tailored to the situational
requirements. Standard trajectory forms encompass linear, arc, and sinusoidal paths, among others,
or a hybrid of these shapes. This approach is analogous to the generation of Dubins paths [33].
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2.4. Control Design

The following assumptions are made for the tractor–trailer system to facilitate the
discussion of our analysis.

Assumption 1. The system initial conditions satisfy

0 < ε < L(0) < ΩL(0),

|θ1(0)− θ0(0)| <
π

2
, |θ1(0)− ϕ(0)| < π

2
.

Remark 4. Our study makes two primary assumptions. First, we assume no wheel slippage, which
leads to nonholonomic constraints and simplifies the system model by neglecting lateral skid forces.
This assumption may limit model applicability under slippery conditions. Second, as illustrated in
Assumption 1, we assume initial conditions fall within safe bounds. This is crucial for the employed
UBF method to ensure the system converges to the vicinity of the desired equilibrium point.

In this section, we extend the utilization of the generalized barrier function methodol-
ogy, as delineated in prior work [31], to proficiently handle constraints pertinent to system
performance. Initially, we introduce a transformed error variable ηL, defined as follows:

ηL =
ΩL0εL0

(ΩL0 − L0)(L0 + ε)
.

Following this, we construct the universal barrier function (UBF) to encapsulate the perfor-
mance constraints as follows:

VL =
1
2

η2
L, (10)

It can be observed that ηL is zero if and only if L0 equals zero. Furthermore, as L0 nears the
boundary ΩL0, ηL increases unbounded towards positive infinity, which in turn causes the
associated barrier function VL to also approach infinity. In contrast, when L0 tends towards
−ε, ηL decreases without bound to negative infinity, resulting in VL escalating to infinity.

Delving into the dynamics of L0(t) ≜ L(t)− 2ε, we derive the following:

L̇0 = L̇(t)

=
1
L
(x1d − x1)(ẋ1d − ẋ1) +

1
L
(y1d − y1)(ẏ1d − ẏ1)

= cos ϕ(ẋ1d − ẋ1) + sin ϕ(ẏ1d − ẏ1)

= −v[cos θ1 cos ϕ + sin θ1 sin ϕ]

+ẋ1d cos ϕ + ẏ1d sin ϕ

= −v cos(θ1 − ϕ) + ẋ1d cos ϕ + ẏ1d sin ϕ.

Therefore, the temporal derivative of the UBF (10) is given by

V̇L = ηLη̇L

= ηL
∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) + ηL
∂ηL

∂ΩL0
Ω̇L0

−ηL
∂ηL
∂L0

v cos(θ1 − ϕ), (11)

where

∂ηL
∂L0

=
ΩL0ε

(
L2

0 + ΩL0ε
)

(ΩL0 − L0)
2(L0 + ε)2 ,

∂ηL
∂ΩL0

=
εL2

0

(ΩL0 − L0)
2(L0 + ε)

,
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in which ∂ηL
∂L0

> 0 is always guaranteed by its structure.
In Equation (11), the term cos(θ1 − ϕ) is incorporated as the gain factor for the velocity

control input v. For the proposed control strategy to remain viable, it is imperative to
maintain the non-negativity of this gain. Specifically, it is required that cos(θ1 − ϕ) > 0.
To satisfy this condition, the following feasibility constraint must be met:

|θ1 − ϕ| < π

2
, (12)

ensuring that the angle between θ1 and ϕ does not exceed ±π
2 radians. This constraint is

essential to preserve the directional consistency of the control input gain.
To satisfy the feasibility constraints delineated in Equation (12), we introduce a new

transformed state variable z, defined as follows:

z = tan(θ1 − ϕ).

This transformation ensures that z remains a bounded signal if, and only if, the constraints
specified in (12) are met. To facilitate the stability analysis, we propose the following
candidate for the second Lyapunov function:

Vz =
1
2

z2, (13)

whose time derivative leads to

V̇z = zż = z
∂z
∂θ1

θ̇1 + z
∂z
∂ϕ

ϕ̇

= z
∂z
∂θ1

ω + z
∂z
∂ϕ

ϕ̇, (14)

where

∂z
∂θ1

=
1

cos2(θ1 − ϕ)
, (15)

∂z
∂ϕ

= − 1
cos2(θ0 − ϕ),

Furthermore, the term ϕ̇ yields

ϕ̇ =
(ẏ1d − ẏ1)(x1d − x1)− (y1d − y1)(ẋ1d − ẋ1)

(x1d − x1)
2 + (y1d − y1)

2

=
(ẏ1d − ẏ1) cos ϕ − (ẋ1d − ẋ1) sin ϕ

L

=
−v(sin θ1 cos ϕ − cos θ1 sin ϕ)

L

+
ẏ1d cos ϕ − ẋ1d sin ϕ

L

=
−v sin(θ1 − ϕ)

L
+

ẏ1d cos ϕ − ẋ1d sin ϕ

L
. (16)

Remark 5. From Equation (16), it is evident that ϕ̇ is undefined when L = 0, indicating the
non-differentiability of ϕ at this juncture. Consequently, to guarantee that L remains strictly
positive, the performance constraint condition presented in Equation (7) must be revised to the form
given in Equation (8).
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Then, we define the linear velocity control laws v as follows:

v = ξ

[
KηL +

∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) +
∂ηL

∂ΩL0
Ω̇L0

]
, (17)

where the scaling factor ξ is given by

ξ =

(
∂ηL
∂L0

cos(θ1 − ϕ)

)−1
, (18)

and the angular velocity control law ω is

ω = ϑ

[
−Kz − ∂z

∂ϕ
ϕ̇

]
, (19)

with the factor ϑ being
ϑ = cos2(θ1 − ϕ), (20)

where K is a positive control gain that must be suitably chosen. The block diagram of the
proposed non-linear platoon control system is given by Figure 5.

Figure 5. A block diagram of the platoon control system.

Remark 6. The values of the positive control gains K of this work have been chosen based on the
following: Larger values of K lead to faster convergence of the tracking errors, as can be seen from
the Lyapunov analysis in the proof of Theorem 1. However, too large values may cause high control
inputs. Thus, K is balanced between tracking performance and magnitude of control input.

We next introduce the following Lyapunov stability lemma, which will be instrumental
for the subsequent proof of our main theorem.

Lemma 1 ([34]). For any positive constants ka1 , kb1 , let Z1 := {z1 ∈ R : −ka1 < z1 < kb1

}
⊂ R

and N := Rl ×Z1 ⊂ Rl+1 be open sets. Consider the system

η̇ = h(t, η),

where η := [w, z1]
T ∈ N , and h : R+ ×N → Rl+1 is piecewise continuous in t and locally

Lipschitz in z, uniformly in t, on R+ ×N . Suppose that there exist functions U : Rl → R+

and V1 : Z1 → R+, continuously differentiable and positive definite in their respective domains,
such that

V1(z1) → ∞ as z1 → −ka1 or z1 → kb1 ,

γ1(∥w∥) ≤ U(w) ≤ γ2(∥w∥),
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where γ1 and γ2 are class K∞ functions. Let V(η) := V1(z1) + U(w) and z1(0) belong to the set
z1 ∈

(
−ka1 , kb1

)
. If the inequality holds,

V̇ =
∂V
∂η

h ≤ 0,

then z1(t) remains in the open set z1 ∈
(
−ka1 , kb1

)
∀t ∈ [0, ∞).

Building upon the introduced lemma, we now present the proposed control law
encapsulated in the theorem below.

Theorem 1. Consider the tractor–trailer system as described by Equation (1). Under the influence of
the control laws defined in Equations (17) and (19), the system exhibits the following characteristics:

1. Performance and Feasibility Constraints: The system adheres to the performance constraint as
specified in Equation (8) and the feasibility constraint as given in Equation (12) throughout
the operational process. These constraints are not violated at any point in time.

2. LOS Distance Tracking Error: The LOS distance tracking error, denoted as L(t), demonstrates
exponential convergence towards a small positive boundary 2ε, where ε > 0 is an arbitrarily
chosen small positive number. This implies that the trailer’s trajectory will approximate the
desired trajectory within an arbitrarily small error margin.

3. Tractor Angle Convergence: The tractor’s angle, θ1(t), is guaranteed to converge exponentially
towards the LOS angle, ϕ(t), which represents the angular discrepancy between the desired
trajectory and the actual position of the tractor. This ensures that the tractor’s orientation is
progressively corrected to align the trailer along the desired path.

4. Bounded Control Laws: The control inputs prescribed by Equations (17) and (19) are uniformly
bounded, ensuring that the control signals remain within reasonable limits for all time.

Proof. To establish the stability of the designed control system, we introduce a composite
Lyapunov function as follows:

V = VL + Vz,

where VL is as defined in Equation (10), and Vz conforms to the definition in Equation (13).
Invoking the differential relationships presented in Equations (11) and (14) and applying
the prescribed control laws from Equations (17) and (18), it follows that

V̇ = ηL
∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) + ηL
∂ηL

∂ΩL0
Ω̇L0

−ηL
∂ηL
∂L0

ξ

[
KηL +

∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) +
∂ηL

∂ΩL0
Ω̇L0

]
cos(θ1 − ϕ)

+z
∂z
∂θ1

ω + z
∂z
∂ϕ

ϕ̇

= ηL
∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) + ηL
∂ηL

∂ΩL0
Ω̇L0

−ηL

[
KηL +

∂ηL
∂L0

(ẋ1d cos ϕ + ẏ1d sin ϕ) +
∂ηL

∂ΩL0
Ω̇L0

]
+z

∂z
∂θ1

ω + z
∂z
∂ϕ

ϕ̇

= −Kη2
L + z

∂z
∂θ1

ω + z
∂z
∂ϕ

ϕ̇.

Similarly, by applying (15), (19) and (20), we can obtain the following result:
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V̇ = −Kη2
L + z

∂z
∂θ1

ω + z
∂z
∂ϕ

ϕ̇

= −Kη2
L + z

∂z
∂θ1

ϑ

[
−Kz − ∂z

∂ϕ
ϕ̇

]
+ z

∂z
∂ϕ

ϕ̇

= −Kη2
L + z

[
−Kz − ∂z

∂ϕ
ϕ̇

]
+ z

∂z
∂ϕ

ϕ̇

= −Kη2
L +−Kz2

= −2K
(

1
2

η2
L +

1
2

z2
)
= −2KV,

which gives to V(t) = V(0)e−2Kt. Based on Lemma 1, we can ascertain the stability of the
system states. This implies that

lim
t→∞

L0(t) = 0 =⇒ lim
t→∞

L(t) = 2ε,

lim
t→∞

θ1(t) = ϕ(t),

In the second instance, the uniform boundedness of the Lyapunov function V allows us
to deduce that both ηL and z are uniformly bounded as well. This boundedness guaran-
tees that the system will respect the performance constraint requirement as outlined in
Equation (8) and the feasibility constraint requirement as detailed in Equation (12) through-
out its operation.

Consequently, the uniform boundedness of the control laws specified in Equations (17)
and (19) is evident, as all the signals involved in the design are uniformly bounded.
The integrity of the system’s constraints, coupled with the bounded nature of the control
inputs, affirm the robustness of the control strategy.

Remark 7. In the presented study, we delineate two distinct methodologies to address constraints
of diverse natures within the tractor–trailer system. Initially, we employ a UBF to facilitate the
examination of the performance constraint requirement, as articulated in Equation (8), specifically
pertaining to the LOS distance tracking error, L(t). The UBF approach is particularly beneficial
when dealing with asymmetric constraints, where the imposed limits exhibit unequal magnitudes on
either side of the equilibrium. This technique enables a consolidated framework for accommodating
such disparities in constraint bounds.

Subsequently, we introduce an innovative state transformation strategy to analyze the feasibil-
ity constraint requirement, detailed in Equation (12), that governs the heading angles within the
tractor–trailer system. Distinct from the UBF method—which is restricted to managing a single
variable under constraint for each UBF—our proposed state transformation adeptly encapsulates
multiple constrained variables into a unified analysis framework. In the context of our work, the state
transformation facilitates the concurrent analysis of both tractor and trailer heading angles, denoted
as θ1 and θ0, respectively, by converting them into a single transformed state variable, z. This novel
approach significantly streamlines the analytical process, allowing for a more cohesive and efficient
examination of constraints pertaining to multiple state variables.

3. Results
3.1. Trajectory Tracking

To evaluate the efficacy of the proposed control architecture, a suite of simulations
was performed within the MATLAB framework. We set the link length between vehicles, d,
to 1.5 m. The intended path for the trailer was delineated by specific equations as follows:
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x0d = 10 sin(0.1t),

y0d =

{
10[1 − cos(0.1t)], t < 20π
10 cos(0.1t)− 10, otherwise

.

For the performance constraints, we established the upper bound as ΩL = 2.85e−0.5t + 0.15
and the lower bound as ε = 0.05. This configuration necessitates that the distance tracking
error L be confined within an exponentially decreasing envelope to ensure accurate tracking,
while also being maintained above a minimal positive value to circumvent singularities.

0.05 < L < 2.85e−0.5t + 0.15.

The control gain K was set at 0.32. Initial states for the tractor–trailer system were assigned
as follows: x10 = −0.8, y10 = −0.2, θ10 = 1.2, x0 = −2.1, y0 = −0.9, and θ00 = 0.5.

The simulation results are depicted in Figures 6–9. Figure 6 illustrates the trajectories
of both the tractor and trailer in relation to the desired trajectory, demonstrating the tracking
proficiency of the proposed control system. The outcomes reveal that the tractor–trailer
system promptly aligns with the desired trajectory, exhibiting notable tracking precision.

Figure 7 exhibits the tractor’s distance tracking error and heading angle tracking error.
The top panel illustrates the correlation between the distance tracking error L(t) and the
constraint boundary ΩL(t) and ε, confirming that L(t) satisfies the constraint over the
entire time scale. The bottom panel depicts the temporal variation in the LOS angle error
θ1 − ϕ, evaluating the dynamics of the angle error and its convergence behavior.

Figure 8 presents the distance tracking error and heading angle tracking error for the
trailer. The upper section delineates the distance discrepancy between the actual and target
positions, while the lower section exhibits the angular deviation between the actual θ0 and
desired heading angles θ0d.

Additionally, the control inputs for the system are presented in Figure 9. Collec-
tively, these simulation results empirically substantiate the theoretical claims put forth in
Theorem 1.
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Figure 6. (a) The Desired path and (b) phase-plane trajectories of the TTWR.
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Figure 9. The profile of the velocity control inputs applied to the tractor.

3.2. Avoid Obstacles

To ascertain the effectiveness of the proposed trajectory re-planning algorithm, we
incorporate a circular obstacle with coordinates [1; 20.2] and a radius of 1 into the tracking-
control simulation scenario described in the preceding section. The movement and safety
thresholds applied within the simulation are set to α = 4.5 and β = 2.5, respectively.

For the performance constraints, we specify the upper bound ΩL = 2.7e−0.5t + 0.3 and
the lower bound ε = 0.05. This implies that the distance tracking error L is constrained by
an exponentially decaying function to guarantee precise tracking, while adopting a small
positive constant as a lower bound is employed as the lower bound to preclude issues
related to singularity. The control gain K is determined to be 0.32. Initial conditions were
prescribed for the tractor–trailer system as follows: x10 = −0.8, y10 = −0.2, θ10 = 1.2,
x0 = −2.1, y0 = −0.9, and θ00 = 0.5.

The simulation results for the obstacle avoidance problem are depicted in Figures 10–12.
Figure 10 compares the control law from the literature [30,31] with the control strategy pro-
posed in this study; the latter demonstrates superior responsiveness and faster alignment
with the desired trajectory.

Figure 11 illustrates the distance tracking error and heading angle tracking error for
the tractor. The upper plot portrays the relationship between the distance error L(t) and
the constraint boundaries ΩL(t) and ε; the lower plot shows the variation of the LOS angle
error θ1 − ϕ.

Figure 12 displays the control inputs. Collectively, the results validate the effectiveness
of the re-planning algorithm and the tracking control law.
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Figure 10. Phase -plane trajectories of the TTWR for obstacle avoidance problem using control laws
(a) proposed in literature [30,31] and (b) introduced in this paper.
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Figure 11. Tractor LOS distance and angle tracking error.
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4. Discussion

In practical implementation, the collision avoidance strategy employed in this work
relies on maintaining a specified distance from obstacles. While our decoupled approach
to planning and control accelerates computational speed, it fails to guarantee optimal
solutions. Therefore, pursuing integrated planning and control algorithms that address
these issues concurrently represents a promising direction for future research.

Regarding motion control, the proposed control law demonstrates commendable tran-
sient performance in simulations but lacks the desired smoothness in response. The simula-
tion system is overly simplified, neglecting real-world nonlinearities such as input delays
and actuator saturation, which are crucial for actual deployment. These elements will be
central to our future research endeavors.

Several potential challenges arise when implementing the proposed control law on an
actual tractor–trailer wheeled-robot system.

1. State Feedback and Sensor Noise: Full state feedback requires precise measurements
of position, orientation, and velocity, which are susceptible to noise from onboard
sensors. The implementation of filtering and sensor fusion techniques is vital for
accurate state estimation.

2. Actuation Constraints: The control law assumes unrestricted steering angles and
velocities, whereas physical robots have inherent limitations. Command inputs must
be saturated within practical bounds. Model Predictive Control (MPC) presents a
promising solution to such constraint issues. However, these methods often rely on
numerical optimization to derive control laws, thus analytical guarantees of stability
cannot be ensured.

3. Parameter Uncertainty and Disturbances: Fixed model parameters, such as wheel
radius and hitch length, are subject to variations in the physical environment, and dis-
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turbances like uneven terrain can affect the system behavior. Robust or adaptive
control methods could provide compensation for these uncertainties.

The theoretical framework of the control law is promising, but substantial work is
required to address real-world issues such as sensor noise, actuator limitations, parameter
uncertainty, and external disturbances. Through careful modeling and robust design,
the control approach can be adapted to real-world tractor–trailer systems, and extensive
testing and validation prior to actual deployment are crucial.

5. Conclusions

This study introduces a novel TTWR trajectory tracking control framework, compris-
ing a trajectory replanner and a tracking controller. Specifically, the desired trajectory for
the tractor is derived based on the trailer’s desired trajectory and the system’s internal
constraints. The trajectory replanner then employs coordinate transformations and nonlin-
ear least squares techniques to generate a new desired tracking trajectory for the tractor.
Stability analysis is conducted using UBF, based on the performance requirements of the
Line-of-Sight (LOS) tracking error between the actual and desired tractor trajectory. A novel
state transformation approach addresses constraints related to the vehicle’s heading angle,
ensuring that both LOS distance and angle tracking errors exponentially converge to a small
neighborhood of equilibrium. Simulation results demonstrate that the proposed controller
outperforms previous studies in transient characteristics. Future work will explore the
incorporation of time-delay compensation and noise/disturbance suppression into the
control design, aiding in experimental testing on physical platforms.
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Appendix A

Below, we prove that Equation (4) holds. First, considering the left-hand side of
Equation (4), we can obtain
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tan θ0 = tan θ0 −
ẏ0

ẋ0
+

ẏ0

ẋ0

=
ẏ0

ẋ0
+

(
sin θ0

cos θ0
− sin θ1 − cos θ0 sin(θ1 − θ0)

cos θ1 + sin θ0 sin(θ1 − θ0)

)
=

ẏ0

ẋ0
+

sin θ0 cos θ1 + sin2 θ0 sin(θ1 − θ0)

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

−cos θ0 sin θ1 − cos2 θ0 sin(θ1 − θ0)

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

=
ẏ0

ẋ0
+

sin θ0 cos θ1 − cos θ0 sin θ1

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

+
sin2 θ0 sin(θ1 − θ0) + cos2 θ0 sin(θ1 − θ0)

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

=
ẏ0

ẋ0
+

− sin(θ1 − θ0)

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

+
sin(θ1 − θ0)

cos θ0 cos θ1 + sin θ0 sin(θ1 − θ0)

=
ẏ0

ẋ0

from which we can conclude that (4) holds.
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