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Abstract: Automatic navigation based on dual-antenna real-time kinematic (RTK) positioning has
been widely employed for unmanned agricultural machinery, whereas GNSS inevitably suffers
from signal blocking and electromagnetic interference. In order to improve the reliability of an
RTK-based navigation system in a GNSS-challenged environment, an integrated navigation system
is preferred for autonomous navigation, which increases the complexity and cost of the navigation
system. The information fusion of integrated navigation has been dominated by Kalman filter (KF)
for several decades, but the KF cannot assimilate the known knowledge of the navigation context
efficiently. In this paper, the geometric characteristics of the straight path and path-tracking error
were employed to formulate the constraint measurement model, which suppresses the position error
in the case of RTK-degraded scenarios. The pseudo-measurements were then imported into the
KF framework, and the smoothed navigation state was generated as a byproduct, which improves
the reliability of the RTK positioning without external sensors. The experiment result of the mobile
vehicle automatic navigation indicates that the tracking error-constrained KF (EC-KF) outperforms
the trajectory-constrained KF (TC-KF) and KF when the RTK system outputs a float or single-point
position (SPP) solution. In the case where the duration of the SPP solution was 20 s, the positioning
errors of the EC-KF and TC-KF were reduced by 38.50% and 24.04%, respectively, compared with
those of the KF.

Keywords: intelligent agricultural machinery; automatic navigation; information fusion; constrained
Kalman filter; position estimation

1. Introduction

With the flourishing of smart agriculture and unmanned farm-related applications, the
automatic driving scenes in agricultural machinery have become increasingly diverse [1–3].
RTK-GNSS has been widely applied in precision agriculture in the past few decades, such
as mapping the row crops and providing ground truth for vision-based navigation appli-
cations [4–6]. In the application of self-driving agricultural machinery, RTK-GNSS is often
integrated with an attitude and heading reference system to correct the position drift resulting
from vehicle attitude variation [7,8]. Recently, the dual-antenna RTK-GNSS navigation system
has been applied alone for agricultural machinery automatic navigation working in large
farmland [9]. However, the radiolocation-based navigation systems suffer from electromag-
netic interference and disturbances from trees and high-voltage wires, inevitably leading to
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short-term RTK failure, which has a significant effect on the stability of unmanned agricultural
machinery. In order to further enhance the reliability of agricultural machinery’s autonomous
operations, improving the reliability of RTK-GNSS based on information fusion methods is of
great significance [10–12].

The Kalman filter (KF) is derived under the criterion of the linear minimum mean
square error (LMMSE), which achieves an optimal state estimation when given precise
a priori knowledge on the state-space model (SSM) and noise properties [13]. In order
to improve the position and heading accuracy of agricultural machinery, many KF-based
integrated navigation systems have been developed [14–16]. Han et al. developed an
integrated navigation system by fusing three single GPS receivers and an inertial measure-
ment unit (IMU) based on the KF [17]. Li et al. proposed a fuzzy adaptive finite impulse
response KF to fuse the position and attitude from the GNSS and IMU [18]. In order to
handle the unknown a priori knowledge on an SSM or noise, Jing et al. developed an
adaptive square root cubature KF (CKF) to improve the path-tracking accuracy of a land
leveling system, where the process noise and measurement noise are estimated online
by the Sage–Husa method [19]. Wang et al. further improved the robustness of the CKF
by combining the maximum correntropy and resampling-free sigma-point update, which
enhances the reliability of the GNSS/IMU under the GNSS-denied environment [20]. The
above-mentioned methods try to improve GNSS reliability by focusing on either extra
external sensors or an improved KF, which does not take the a priori knowledge of the
navigation context into consideration.

The KF does not employ the a priori known state constraints on its recursive innovation
assimilation, such as the physic constraint on the steering angle or trajectory shape of the
autonomous vehicle. By projecting the solution of the KF into the constrained surface, the
constrained KF achieves a more accurate result in case there is unmodeled uncertainty in
the state estimation [21]. Liu et al. developed an adaptive KF by using road information
to refine the state estimation of vehicle navigation, while neglecting that the road has a
specific width [22]. Similarly, Zhou et al. constructed a pseudo-measurement based on
the a priori known trajectory shape to develop a trajectory shape constraint KF, which
improves the target tracking accuracy [23]. Li et al. employed the destination constraint and
circular trajectory to improve the maneuvering target tracking, where the nonlinear pseudo-
measurement was processed by an unscented Kalman filter [24]. Zhang et al. generalized
the straight path and circular trajectory into the heading constraint state estimation, where
the extended KF was employed to handle the nonlinearity in state-to-measurement [25].
Except for the trajectory shape, non-holonomic constraints have also been applied to reduce
the drift of low-cost inertial sensors in the GNSS/IMU, which improves the positioning
reliability of tractor navigation [26].

The above-mentioned state-constraint KFs have been verified by numerical simulation,
and a few of them applied the state constraint for agricultural machinery navigation
operations. Recently, Zhang et al. proposed a self-calibrating variable structure KF to bridge
the BDS outages, which compensates for the drift of heading and biases of an IMU based on
the assumption that the heading does not vary during straight path tracking [27]. Inspired
by the work of Zhang et al., we take the operation context information of autonomous
navigation vehicles as a priori knowledge in this paper. Not only does the navigation
context include the predefined trajectory, but it also includes the path-tracking errors
of the previous time instant. The automatic navigation mobile vehicle equipped with a
dual-antenna RTK-GNSS was employed to verify the effectiveness of context-constrained
KFs (CC-KFs), where different RTK short-term failures were stimulated to analyze the
performance of the CC-KFs. The main contributions of this paper include the following:
(1) the automatic navigation context of agricultural machinery was taken as the constraints
to enhance the reliability of the RTK positioning; (2) both the equality and inequality
constraints were imported into the dual-antenna RTK system; and (3) the CC-KFs were
verified by an automatic navigation mobile vehicle with a dual-antenna RTK-GNSS, which
improves the robustness of navigation without employing extra sensors.
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The structure of this paper is as follows. Firstly, the principle of a state-constrained KF
is presented in Section 2, and the operation context-constraint models are formulated, on
whose basis the proposed CC-KFs are developed. In Section 3, the CC-KFs are verified by
employing an automatic navigation mobile vehicle. Finally, Section 4 concludes this work.

2. Materials and Methods

The performance of the automatic navigation of agricultural machinery depends on the
predefined field path and real-time position and heading output of the dual-antenna RTK.
However, the dual-antenna RTK suffers from short-term signal degradation from time to
time during the whole field navigation. Generally, the agricultural machinery works in a
boustrophedon way, which consists of parallel straight lines and curves of fixed curvature, and
most of the in-field working focuses on straight-line segments. Furthermore, the path-tracking
errors of agricultural machinery have continuous change regularities, even if the vehicle
suffers from soft soil surfaces or abrupt changes in position and heading. In order to improve
the reliability of the positioning system, pseudo-measurements can be constructed based on
the a priori information on the navigation operations of agricultural machinery.

2.1. Constrained Kalman Filter

Supposing the discrete linear model of the agricultural machinery navigation system
can be written as

xk = Φk|k−1xk−1 + wk−1 (1)

zk = Hkxk + vk (2)

where Φk|k−1 is the state transition matrix from time k − 1 to time k; Hk is the measurement
matrix at time k; xk ∈ Rn, wk ∈ Rn are the system state vector and noise vector; zk ∈ Rp

and vk ∈ Rp are the system measurement vector and noise vector; n and p are the state
and measurement dimensions, respectively. The KF filtering includes time update and
measurement update steps, which are formulated as

x̂−k = Φk|k−1 x̂+k−1 (3)

P−
k = Φk|k−1P+

k−1ΦT
k|k−1 + Q (4)

Kk = P−
k HT

(
HP−

k HT + R
)−1

(5)

x̂+k = x̂−k + Kk
(
zk − Hx̂−k

)
(6)

P+
k = (I − Kk H)P−

k (7)

where (3) and (4) transform the posterior state at time k − 1 into the state a priori domain
corresponding to time k, and then the observations’ innovation at time k is assimilated to
approximate the posterior state by (6) and (7). Given the initial state values x̂0 and P0, the
system noise matrix Q and the measurement matrix R, the state estimate x̂+k at time k can
be derived recursively after assimilating the measurement zk.

In practical engineering problems, the system designer sometimes has some a priori
information about the parameters to be estimated or the saturation of the actuator inputs
for the control system. However, the KF framework cannot fully utilize these a priori
constraint relationships of the state quantities. By converting the a priori knowledge into
constraint equations and importing them into the KF framework as pseudo-measurements,
the estimation accuracy and robustness of the KF can be further improved under sensor
malfunction or abnormal observation. The optimal solution of the equality-constrained KF
can be expressed as

∼
x
+

k = argmin
xk

(
xk − x̂+k )

T W
(
xk − x̂+k

)
(8)
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satisfying
Dxk = d (9)

where D is a known s × n constant matrix whose rank is less than n, s is the number of
linearly independent constraint equations, d is an n-dimensional constant vector, and W is
a symmetric positive definite weight matrix. Constructing a Lagrangian function to convert
the conditional extreme value into the solution of the following function:

L(xk, λ) =
(
xk − x̂+k

)TW
(
xk − x̂+k

)
+ 2λT(Dxk − d) (10)

The optimal solution can then be found by solving

∂L(xk, λ)

∂xk
= 0 (11)

∂L(xk, λ)

∂λ
= 0 (12)

Then, we have

λ =
(

DW−1DT
)−1

(Dx̂k − d) (13)

∼
x
+

k = x̂+k − W−1DT
(

DW−1DT)−1(Dx̂+k − d
)

(14)

Usually, the symmetric positive definite weight matrix W can be selected as the identity

matrix I or (P+
k

)−1
.

2.2. Constraint Measurement Formulation
2.2.1. Trajectory-Constraint Equation

As shown in Figure 1, when the agricultural machinery travels along the predefined
straight-line path at a constant speed v, its heading angle in the x − y plane is α. The actual
tracking path is indicated by red dash line, and any three consecutive points are on the
same straight line. Supposing the position of the agricultural machinery at time k is (xk, yk),
and the positions at time k − 1 and k − 2 are (xk−1, yk−1), (xk−2, yk−2), respectively. Then,
we have

yk − yk−1
xk − xk−1

=
yk−1 − yk−2
xk−1 − xk−2

(15)

Considering the consistency of the speed direction and heading during the straight-line
following, the constraint relationship between the speed and position can be expressed as

yk − yk−1
xk − xk−1

=

.
yk
.
xk

,
yk−1 − yk−2
xk−1 − xk−2

=

.
yk−1
.
xk−1

(16)

where
.
xk and

.
yk are the velocity components at time k, and

.
xk−1 and

.
yk−1 are the velocity

components at time k − 1. According to Equations (15) and (16), the pseudo-measurement
of the target state can be constructed as

ξk = (y k − yk−1)
.
xk − (xk − xk−1)

.
yk (17)

where ξk is the virtual measurement of the underlying position and velocity, and its mean
and variance are both 0. Then, the augmented measurement equation can be defined as

zk =

xk
yk
ξk

 = Hkxk + vk =

 xk
yk

(y k − yk−1)
.
xk − (xk − xk−1)

.
yk

+

vx
k

vy
k

0

 (18)
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Finally, the constraint equation of the straight path tracking of agricultural machinery can
be constructed

D1xk = d1 (19)

where
D1 =

[
− .

yk
.
xk yk − yk−1 −xk + xk−1

.
yk

.
−xk

]
, d1 = 0 (20)
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Figure 1. Straight path constraint model.

2.2.2. Path-Tracking Error Constraint Equation

Unlike the predefined field working path, which is deterministic and static, the path-
tracking errors of agricultural machinery are dynamic states that are generated by employ-
ing different path-tracking algorithms. The tracking errors for the automatic navigation
of agricultural machinery mainly include the lateral error and heading error, where the
former is defined as the distance from the current position to a selected path segment [28].

The path segment generation for U-turning involved in our experiment is presented,
which makes it easier to follow the path-tracking error-derived pseudo-measurement. The
predefined path of agricultural machinery is composed of parallel straight lines and curves
of different curvatures, where the U-turning is a typical path for our whole field path
planning. As shown in Figure 2, the U-turning path includes two straight lines and one
turning curve with turning radius r. The navigation computer generates the AB baseline
after receiving two points A1 and B1 fixed by the dotting instrument, and the waypoints
are then generated according to the given points interval value and calculated straight-line
function. Similarly, the parallel straight line A2B2 can then be generated according to the
implement width and turning form. As we can see from Figure 2, B1 is the ending point
of line A1B1, and O is the center of the turning circle. Supposing N is the middle point of
the turning curve, because the curvature of the turning path is constant, the position of
the waypoint of the curve path can be decided by angle α and the heading ψ of line A1B1.
Let the angular increment be ∆α, ψ < π/2, and the length of line B1M be L; then, for an
arbitrary point M, we have

L = r
√

2(1 − cos α) (21)

β = sin−1

(
sin α√

2(1 − cos α)

)
(22)

If β > ψ, then γ = β − ψ, and thus, for M, we define its position as xm = xb + Lsin γ,
ym = yb + Lcos γ; if β < ψ, then γ = ψ − β, and the position of point M has
xm = xb − Lsin γ, ym = yb + Lcos γ. A similar generation strategy can be applied for
the straight lines of different heading values. Although the lateral tracking error may vary
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from several centimeters to several decimeters, it can also be applied for positioning reliability
enhancement under a GNSS-challenged environment.
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Figure 2. Generation of U-turning path.

As is shown in Figure 3, suppose the lateral tracking error at time k is dk, which
represents the distance of point Pk from line segment Rk+1Rk+2. The equation of the line
Rk+1Rk+2 is Ax + By + C = 0, and according to the definition of the lateral tracking error,
we have

dk =
|Axk−1 + Byk−1 + C|√

A2 + B2
(23)

After taking the square of both sides of Equation (23), we obtain

f(xk−1, yk−1) =
A2x2

k−1 + B2y2
k−1 + 2ABxk−1yk−1 + 2ACxk−1 + 2BCyk−1 + C2

A2 + B2 (24)

Solving the partial derivative of Equation (24), we obtain

∂f(xk−1, yk−1)

∂xk−1
=

2A2xk−1 + 2AByk−1 + 2AC
A2 + B2 (25)

∂f(xk−1, yk−1)

∂yk−1
=

2B2yk−1 + 2ABxk−1 + 2BC
A2 + B2 (26)

And then a pseudo-measurement of the target state can be formulated as

µk =
∂f(xk−1, yk−1)

∂xk−1
xk−1 +

∂f(xk−1, yk−1)

∂yk−1
yk−1 (27)

where µk is the virtual measurement of the underlying position and velocity, and its mean
and variance are both 0. Then, the augmented measurement equation can be written as

zk =

xk
yk
µk

 = Hk(xk) + vk =

 xk
yk

∂f(xk−1,yk−1)
∂xk−1

xk−1 +
∂f(xk−1,yk−1)

∂yk−1
yk−1

+

vx
k

vy
k

0

 (28)

Finally, the constraint equation of the path-tracking error of the agricultural machinery can
be constructed as

D2xk = d2 (29)

where
D2 =

[
0 0 0 0 2A2xk−1+2AByk−1+2AC

A2+B2
2B2yk−1+2ABxk−1+2BC

A2+B2

]
(30)
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d2 = d2 (31)
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2.3. Operation Context Constrained KF

Suppose the navigation state of the agricultural machinery during the field operation
can be written as xk =

[
xk yk

.
xk

.
yk xk−1 yk−1

]
, which represents the eastward and

northward position and velocity of the agricultural machinery at time k, and the eastward
and northward position at time k − 1. The interval between k and k − 1 time is ∆t, and the
system propagation matrix and measurement matrix can be formulated as

Φk|k−1 =



1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (32)

Hk =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(33)

In case the straight path constraint model is employed, the augmented Hk matrix can be
written as

Hk =

 1 0 0 0 0 0
0 1 0 0 0 0

− .
yk

.
xk yk − yk−1 −xk + xk−1

.
yk

.
−xk

 (34)

When the path-tracking error is taken as the pseudo-measurement, and the augmented Hk
matrix is

Hk =


1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 2A2xk−1+2AByk−1+2AC
A2+B2

2B2yk−1+2ABxk−1+2BC
A2+B2

 (35)

Based on the above derivation, the operation context-constrained KF for agricultural
machinery navigation fusion can be summarized as Figure 4.
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3. Results and Discussion

An autonomous vehicle was employed as an experimental platform to verify the
effectiveness of CC-KFs, which consisted of a dual-antenna RTK and navigation controller.
As shown in Figure 5, the OEM719 produced by NovAtel (Canada) was employed as the
base station receiver, while the rover receiver was self-developed based on the UM482 chip
module provided by Beijing Beidou Satellite Communication Group Co., Ltd. (Beijing,
China). The positioning accuracy of the UM482 is 1cm+1ppm, and the antenna baseline for
the dual-antenna mode is 0.785 m. In our test, the update frequency of the dual-antenna
RTK is 5 Hz. The motor driver RMDS405 supports 30 A current, and the encoder is Omron
E6B2, with a resolution of up to 3600 P/R. The host computer recorded the vehicle’s
position and heading in real time and outputted the calculated navigation deviation based
on predefined path data. The embedded controller calculated the desired steering angle
after receiving the navigation deviation, and then sent the control information to the motor
driver via the CAN bus at a frequency of 5 Hz. The motor driver converted the control
information into voltage, and received encoder feedback in real time, forming a closed-loop
steering control system to control the motor at a frequency of 100 Hz.

The geometric-based path-tracking algorithm proposed in [29] was employed to
control the vehicle to travel along the planned continuous U-shaped path. The average
speed of the vehicle was about 1 m/s, and the tracking error, position, and heading results
were collected and saved for analysis. As shown in Figure 6, the lateral tracking error
settled at ±3 cm with a percentage of 86.30%, and the heading deviation settled at ±2◦

with a percentage of 90.61%, which indicates that the tracking error can be applied for
navigation fusion assistance.
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The dual-antenna RTK may suffer from disturbances and lead to four types of posi-
tioning results, which are integer ambiguity fixed, float solution (FS), single-point solution
(SPP), and GNSS outage. The Gaussian noise with the variance of 0.3 m2 was used to
stimulate the FS scenario, and the variance in the SPP solution was calculated by turning off
the radio station and recording the position data for post-process analysis, and in our test,
the variance corresponding to the SPP scenario was set as 3 m2. The duration ∆T for the
FS and SPP were set as 5 s and 20 s, respectively. Accordingly, we randomly deleted RTK
observations to stimulate the GNSS outage case, and the short-term GNSS outage duration
∆T was set to 5 s and 20 s. In the following discussion, the performance of the traditional KF,
trajectory-constrained KF (TC-KF) [23], and lateral tracking error-constrained KF (EC-KF)
are compared and discussed, and the parameter configuration of different filters, such as Q,
R, and P+

0 , are fixed and set the same to make a fair comparison.
The trajectory tracking results are shown in Figure 7. It is noted that if the RTK outputs

continuous and accurate position and heading data, the TC-KF and EC-KF achieve similar
position results with the KF. A more specific result is shown in Figures 8 and 9, where
the position error is calculated with respect to the original RTK output without adding
Gaussian noise. As we can see, under the FS, SPP, and GNSS outage scenario, all the
algorithms show noticeable performance degradation compared with the first straight path
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tracking. However, the TC-KF and EC-KF outperform the KF under the GNSS-challenged
environment, which demonstrates the effectiveness of the constraint model in mitigating
the uncertainty of abnormal observation. Notice that, when the RTK works in the FS
or SPP model, both constraint models enhance the positioning stability compared with
the KF, which indicates the context model imports extra innovation into the calculation
of the Kalman gain. With the increase in ∆T, the constraint model contains less useful
information for the Kalman gain update, which makes the estimation error increase. The
EC-KF shows a better performance than the TC-KF in the cases of the FS and SPP, which
coincides with the fact that once there is an obvious lateral tracking error in the straight
path tracking, Equation (17) is too strong for position estimation, and there should be
significant uncertainty for this pseudo-measurement.
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This conclusion is further confirmed by the result shown in the last straight path of
Figure 7, where the TC-KF and EC-KF achieve the same result during the GNSS outage. In
all the filters, the Kalman gain is calculated based on the last available RTK observation,
and the measurement uncertainty is relatively larger compared with the extra information
provided by Equations (17) and (27). However, as the TC-KF and EC-KF import more
information than the KF when there is no new observation for the measurement update,
they outperform the KF slightly during the GNSS outage. Once new observations are
provided, the large uncertainty of the KF incurs a significant discrepancy between the
state prediction distribution and likelihood function constructed from the RTK observation.
Notice that, in Figures 8 and 9, there is no obvious fluctuation for the TC-KF and EC-KF in
case a new RTK position is provided, which may have two reasons. Firstly, the prediction
uncertainty during the GNSS outage is mitigated to some extent by employing a pseudo-
measurement. Secondly, the position noise of the RTK is very small, which makes the
discrepancy between the prediction covariance and actual measurement noise significant,
whereas the unignorable variance in the pseudo-measurement derived from the history
states relieves this covariance inconsistency problem.
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Figure 9. East position error of continuous U-turning path tracking.

The cumulative distribution of the position error under different scenarios in terms of
the root mean square error (RMSE) is shown in Figure 10, where the EC-KF outperforms
the KF and TC-KF under the FS and SPP scenarios, whereas it shows a similar result with
the TC-KF under the GNSS outage. The position error of the EC-KF under the FS scenario
(with only the Float solution shown in Figure 7) is 0.2 m with a percentage of 80% and is
0.5 m with a percentage of 61% under the SPP scenario (with only the SPP solution shown
in Figure 7). More detailed results are listed in Table 1. Under the FS scenario, in the case of
∆T = 5 s, the TC-KF and EC-KF reduce the position error by 33.20% and 42.58% compared
to the KF, and in the case of ∆T = 20 s, these values become 17.51% and 38.32%. Under the
SPP scenario, in the case of ∆T = 5 s, the TC-KF and EC-KF reduce the position error by



Actuators 2024, 13, 160 12 of 14

33.92% and 44.64% compared to the KF, and in the case of ∆T = 20 s, these values become
24.04% and 38.50%. As we can see, with the increase in the duration and level for RTK
degradation, the EC-KF shows a much better robustness than the TC-KF. Both the TC-KF
and EC-KF outperform the KF in the case of the GNSS outage, where the tracking error-
constraint equation does not show a better result than the trajectory-constraint equation
when no new observation is provided.
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Table 1. RMSE of position error under different scenarios.

Scenario ∆T (s) KF (m) TC-KF (m) EC-KF (m)

Float solution
5 0.256 0.171 0.147

20 0.394 0.325 0.243

SPP solution
5 1.026 0.678 0.568

20 1.348 1.024 0.829

GNSS outage 5 1.721 1.291 1.291
20 7.149 6.650 6.650

4. Conclusions

This paper proposed an operation context-enhanced KF for agricultural machinery
navigation based on a dual-antenna RTK. In order to improve the reliability of the RTK,
the operation context of the unmanned agricultural machinery was augmented to the RTK
measurement, which reduces the position error in case of RTK failure without employing
additional sensors. The field test based on the autonomous vehicle indicates the EC-KF
outperforms the TC-KF and KF obviously in the RTK-degraded environment, and the
path-tracking error constraint shows more robustness than the trajectory constraint in
handling different types of abnormal observation. Because the KF is the most popular
information fusion method in navigation applications, and the agricultural machinery often
works in a boustrophedon way, the context-constrained KFs can be easily implemented to
enhance the stability of the RTK. As the tracking error-constraint model not only works for
a straight path but also works for a curved path, the EC-KF can be applied for the whole
field navigation of the agricultural machinery without switching the constraint model.

In this work, only the straight path and lateral tracking error were employed in
deriving the context-constraint equations; in future work, more flexible data-driven models
should be imported into the KF based on self-learning methods. Furthermore, because
we focus on RTK-based automatic navigation in this paper, we only compared the EC-
KF solution with the KF and TC-KF solutions, and a comparison with other integrated
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navigation solutions would demonstrate the superiority of context-constrained KFs more
clearly. These context-constraint models were derived with the hypothesis that the pseudo-
measurements are perfect measurements, i.e., without setting the measurement noise,
which may not coincide with the practical application. In future work, assimilating the
pseudo-measurement in a more efficient way is also under consideration.
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