
Citation: Zhang, J.; Ding, Y.; Wu, W.;

Li, W.; Zhang, Z.; Jiao, Y.

Improvement in the Accuracy and

Efficiency of Smoothed Particle

Hydrodynamics: Point Generation

and Adaptive Particle

Refinement/Coarsening Algorithms.

Actuators 2024, 13, 174. https://

doi.org/10.3390/act13050174

Academic Editor: Luigi de Luca

Received: 27 March 2024

Revised: 23 April 2024

Accepted: 1 May 2024

Published: 5 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Improvement in the Accuracy and Efficiency of Smoothed
Particle Hydrodynamics: Point Generation and Adaptive Particle
Refinement/Coarsening Algorithms
Jun Zhang 1, Yanchao Ding 2, Wei Wu 1, Wenjie Li 1 , Zhaoming Zhang 1 and Yanmei Jiao 3,*

1 Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information
Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
zhangjunrdf@nuaa.edu.cn (J.Z.); 19850078978@163.com (W.W.); jay2000@nuaa.edu.cn (W.L.);
zzm603nuaa@163.com (Z.Z.)

2 China Ship Scientific Research Center, Wuxi 210084, China; dyc1119@cssrc.com.cn
3 School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
* Correspondence: jiaoym@njtech.edu.cn

Abstract: An adaptive particle refinement (APR) algorithm has been developed for the smoothed
particle hydrodynamics (SPH) method to augment the resolution of the region of interest to achieve
high accuracy and simultaneously reduce the cost of computational resources. It is widely applied
in the field of fluid-controlling problems involving large interface deformations, such as the two-
phase flow and fluid–structure interaction because this algorithm can capture the interface with
high accuracy. Nonetheless, existing APR algorithms widely encounter computational dispersion
issues at the interface of regions of different particle resolutions. Moreover, traditional shifting
algorithms applied in the APR processes also have difficulties in dealing with particles with different
smooth lengths. In this work, an algorithm for fast particle generation was first developed based
on the accelerated ray method, which accelerates the discretization of the flow field into particles.
Then, a dynamic refinement/coarsening algorithm based on the APR algorithm is proposed to
solve the computational dispersion problem that occurs at the refinement/coarsening interfaces.
In addition, the shifting algorithm was improved in this work to ensure the particles are always
well distributed during numerical calculations and, thus, can efficiently facilitate the adaptive
particle refinement/coarsening processes. Comparative analysis indicates that the robust algorithms
developed for the SPH method in this work can lead to more precise and reasonable flow fields
compared with the conventional SPH adaptive methods.

Keywords: smoothed particle hydrodynamics; point generation algorithm; adaptive particle refine-
ment; dynamic refinement/coarsening; shifting algorithm

1. Introduction

Numerous phenomena in hydrodynamic engineering, such as structure entry [1],
breakwater wave dissipation [2], ship navigation [3], tidal power generation [4], etc., are
usually accompanied by the large deformation of the free liquid surface and dynamic
boundaries, etc. The traditional grid-based computational fluid dynamics (CFD) method
can encounter issues like mesh entanglement and deformation when addressing these
complexities. Smoothed particle hydrodynamics (SPH), as a kind of Lagrangian meshless
method, has a natural advantage in dealing with these fluid-controlling problems by
making up for the deficiencies of the mesh methods. However, uniformly distributed
particles are conventionally used by SPH in numerical simulations. It, thus, generates a
large number of spatial particles when the computational domain is large, which takes up
a lot of the computer’s memory and consumes a lot of computational time. To overcome
this problem, two main types of adaptive techniques are proposed. The first one, normally
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referred to as the variable smooth length technique, is to set different lengths between two
neighboring particles to make the particle spacing increase smoothly from the boundary to
the core region of the computational domain [5]. It is similar to the practice of refining the
grids of the region of interest in the grid method [6]. The variable smooth length technique
can distinctly improve the accuracy of the solution. The second one is to apply dynamic
refinement and coarsening algorithms to control the resolution of the distributed particles
to achieve a high accuracy in the calculation of the computational domain [7].

Inspired by research in astrophysics, Monaghan introduced the concept of the spa-
tially varied resolution, which adjusts the smoothing length according to the number of
neighboring particles around the target particle [8]. Then, Nelson and Papaloizou proposed
applying this variable smooth length technique to improve the SPH method [9]. In partic-
ular, particle spacing is determined by the smoothing length h, and each particle has its
adaptive smoothing length hi. By incorporating the gradient of the smoothing length in the
momentum equation, an improved SPH model with variable smoothing lengths is derived,
which is validated by solving the problem of a one-dimensional shock tube. Another
study also improved the SPH model by modifying the SPH momentum equation so that
the errors arising from the interaction of particles with different smooth lengths could be
reasonably reduced. The rational simulation results of a wedge entering the water were
achieved by utilizing this improved SPH model with particles densely arranged around
the wedge [10]. However, this SPH method can still cause strong instability in the flow
field [11]. It is brought about by the nature of the Lagrange particles in the SPH method,
which inevitably induces the movement of particles over time and, thus, causes large
gradients of smooth lengths between adjacent particles, ultimately leading to large errors in
the kernel approximation. To avoid this problem, some studies have proposed dynamically
adjusting the smooth length according to the density [12,13] or the velocity [14] of the target
particles. Qiang and Gao proposed an iterative solution to the problem of fully varied
smooth lengths to further improve the accuracy of physical interpolation calculations [15].
However, the efficiency of the simulation calculation is greatly affected by the need to
iteratively solve the smooth lengths of the particles at each step of the calculations. To
improve computational efficiency, the smooth length of the target particle was reasonably
adjusted according to the variation in the number and the average smooth length of the
neighboring particles [16], thus avoiding the time-consuming iterative solution method.

Some other scholars have utilized dynamic particle refinement and coarsening tech-
niques to enhance the adaptive SPH method. Feldman and Bonet proposed a particle
refinement technique that splits a parent particle into several child particles and assigns
the corresponding physical properties to the child particles according to the principles of
mass and energy conservation [17]. Although the dynamic particle refinement technique
allows for large gradients of smooth lengths between particles, the number of particles
increases significantly, thus decreasing the efficiency of numerical simulation as it proceeds.
Therefore, Vacondio et al. proposed an adaptive SPH method to increase the efficiency
of the numerical simulation, which dynamically distributes particles by splitting them
at the target region and merging them outside the target region [18]. Wang et al. also
proposed a general dynamic particle refinement strategy and, importantly, a new particle
refinement criterion for two-phase flow to capture the interface more precisely in fluid–
structure interaction (FSI) problems. The calculation results of the wedge entering water
showed that the proposed dynamic particle refinement strategy can achieve better accuracy
and efficiency [19]. It is notable that the essential disadvantage of the dynamic particle
refinement technique is its high cost in computational resources, as the splitting and the
merging of particles need to be performed again at the beginning of each computation step.
In addition, the merging algorithm is very inefficient, and the conditions for its application
are very demanding, making it difficult to be widely adopted. For this reason, Barcarolo
et al. avoided using the complex merging process by keeping the split parent particles in
the refinement region passively following the fluid and activating them when they left the
refinement region [20]. To deal with the instability caused by the interaction of particles
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with different smooth lengths, Chiron et al. proposed the adaptive particle refinement
(APR) technique by referring to the adaptive mesh refinement (AMR) technique from the
mesh method [7]. This method makes particles of the same smooth length interact with
each other only within its conservation area of uniform spatial resolution. Information
between two conservation areas of different spatial resolutions can be exchanged only
through the boundary of the conservation area to achieve the coupling of two different
resolution regions.

In this work, systematical investigations were carried out based on the dynamic parti-
cle refinement and coarsening technique introduced above. Firstly, this work developed an
initial point generation algorithm and then applied the accelerated ray method to quickly
discretize the particles in the two-dimensional calculation domain. This work innovatively
proposes a scheme that dynamically splits parent particles and removes child particles
according to the target region based on the adaptive SPH technique proposed by Chiron [3].
We also improved the particle shifting algorithm so that it could efficiently facilitate the
adaptive particle refinement and coarsening processes. Finally, the significantly improved
adaptive SPH algorithm was verified through two reported cases. This work not only
realizes the acceleration of the discretization of the flow field into particles through the
accelerated ray method but also solves the computational dispersion problem occurring at
the refinement/coarsening interfaces. In addition, the shifting algorithm is simultaneously
improved in this work to significantly facilitate the adaptive particle refinement/coarsening
processes.

2. Mathematical Model

In the field of computational fluid dynamics, it can be reasonably assumed that the
fluid is weakly compressible. Therefore, the incompressible flow can be simulated using
the weakly compressible Navier–Stokes equations [21], the Lagrangian form of which is
given as follows: 

dρ
dt = −ρ∇ · v

dv
dt = −∇P

ρ + υ∇2v + g
dr
dt = v

P = f (ρ)

(1)

where υ, ρ, v, P, and r denote the kinematic viscosity, the density, the velocity, the pressure,
and the position of the investigated fluid, respectively. In addition, the Tait equation [22,23]
is often used to establish the relationship between pressure and density when solving
hydrodynamic problems, which is provided as follows:

P =
ρ0c2

s
γ

((
ρ

ρ0

)γ

− 1
)

(2)

where ρ0 is the density of the fluid when P = 0 and cs is the artificial speed of sound. γ
is a constant that is typically set to 7 in the hydrodynamic simulations [24]. To keep the
compressibility of the fluid within 1% [25], the artificial speed of sound must be set to at
least 10 times the value of umax.

As for the SPH method, a convolution integral on the domain is used to interpolate
given physical quantities based on kernel functions. The kernel approximation ⟨ f (r)⟩ of
the field function f (r) at a certain spatial position r can be expressed as follows [26]:

⟨ f (r)⟩ =
∫

Ω
f (r∗)W(r − r∗, h)dVr∗ (3)

where W(r − r∗, h) and h represent the kernel function and the smooth length. Ω is the
support domain of the kernel function, which is determined by the smooth length. Since
the SPH method discretizes the flow field into particles, each of which carries the physical
properties of the fluid, it is not technically possible to use Equation (3) with continuous in-
tegration to approximate the field function. Thus, the SPH scheme converts the continuous
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integral into a discrete summation approximation. Then, Equation (3) can be represented
by the kernel particle approximation as follows:

⟨ f (ri)⟩ =
N

∑
j=1

f (rj)W(ri − rj, h)Vj (4)

where N is the total number of particles contained in the support domain of particle i, and
Vj is the virtual volume of the particle j. The smooth kernel function used in this work is
the Wenland kernel function [27], with a ratio of 4 for the smooth length h compared to the
particle spacing dx. There are approximately 50 particles in the kernel support domain in
the two-dimensional case.

Therefore, the control equations in Equation (3) can be converted into the ones in the
form of a weakly compressible SPH as follows:

dρi
dt = −ρi

N
∑

j=1
(vi − vj) · ∇iW(ri − rj, h)

mj
ρj

dvi
dt = 1

ρi

N
∑

j=1
(Pi + Pj)∇iW(ri − rj, h)

mj
ρj

+ g

dri
dt = vi

Pi =
ρ0c2

0
γ

((
ρi
ρ0

)γ
− 1

)
(5)

where m is the mass of the particle. The SPH scheme in antisymmetric and symmetric
forms is used for the continuity and momentum equations, respectively, to reduce the
errors arising from discontinuities and to ensure better conservation properties [28].

3. Numerical Methodology
3.1. Initial Point Generation

In the two-dimensional case, the generation of boundary points requires first param-
eterizing the physical boundary curve, which must be of first-order continuity and have
good locality to ensure the smoothness of the curve, and changes in the position of a single
point only affect the shape of the curve around the control point [29]. In addition, to com-
pletely represent the shape of the physical boundary, the spline interpolation function needs
to proceed through every node extracted on the physical boundary. Accordingly, this work
employs the Catmull–Rom cubic spline for curve parameterization, as depicted below:

S(u) = Si−1(−0.5u + u2 − 0.5u3) + Si(1 − 2.5u2 + 1.5u3)
+Si+1(0.5u + 2u2 − 1.5u3) + Si+2(−0.5u2 + 0.5u3)

(6)

where S(u) is the point coordinate, and u is the parametric coordinate ranging from 0 to 1.
Once the parametric equations of the boundary curve are obtained, the discrete points

of the boundary curve can be obtained, and the background point system is subsequently
generated. To generate the background point system, the fluid domain needs to be deter-
mined and completely covered using the background Cartesian points. The coordinates of
the background Cartesian points are calculated as follows:

xi,j = xstart + (i − 1)∆x, (1 ≤ i ≤ Nx)
yi,j = ystart + (j − 1)∆y, (1 ≤ j ≤ Ny)

(7)

where xstart and ystart denote the coordinates of the point generated at the beginning, ∆x,
and ∆y represent the spacings of the background Cartesian points, and Nx and Ny are the
number of layers of the background Cartesian point in the x and y directions.

In the background point system, it is necessary to determine the spatial position
relationship between the background Cartesian points and the boundary point system. If
the background Cartesian points are in the computational domain, they are judged as valid
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points. The ray method is a commonly used judging algorithm in the two-dimensional
case [29–31]. Due to the need to perform the judging algorithm through the ray method at
least once for each background Cartesian point, when the number of background Cartesian
points and boundary nodes is large, the efficiency of determining the positions of the nodes
is very low. Therefore, to improve the efficiency of point generation, this work proposes an
accelerated ray method, which marks the fluid domain by a set of background grids and
defines the attributes of the background grids in advance. The properties of the background
Cartesian points are then quickly determined according to the properties of the background
grids where the background Cartesian points are located. Taking the boundary of a solid
existing within a flow field as an example, the corresponding steps of the accelerated ray
method are given as follows.

Firstly, the whole flow field is marked by background grids, as shown in Figure 1a.
The properties of the background grids in the flow field are defined as In-D, Out-D, and On-
B, which are abbreviations of In-domain, Out-of-domain, and On-boundary, respectively.
Secondly, the background Cartesian points are then judged according to the properties of the
background grid, as shown in Figure 1a. The properties of the background Cartesian points
are set to valid, invalid, and to-be-judged according to the properties of the background
grids of In-D, Out-D, and On-B. Finally, as shown in Figure 1b, the background Cartesian
points whose initial properties are defined as to-be-judged are judged and defined again as
valid or invalid by the ray method.
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Figure 1. Schematic of the accelerated ray method: (a) the background grids and their properties;
(b) the initial judgment of properties of the background Cartesian points; and (c) the final judgment
of properties of the background Cartesian points. The abbreviations In-D, Out-D, and On-B represent
the In-domain, Out-of-domain, and On-boundary, respectively. The samples •, ▲, and ■ denote valid,
invalid, and to-be-judged, respectively.

3.2. SPH Adaptive Algorithm
3.2.1. Particle Refinement Algorithm

Following the initial generation of fluid particles, the refinement of particles within
the region of interest needs to be performed to achieve high accuracy. The refinement
algorithm applied in this work was improved based on the one reported by Feldman and
Bonet [13]. It splits a parent particle requiring refinement into a number of child particles
using a pre-defined square refinement pattern, as shown in Figure 2 [32]. Two parameters,
the separation ratio ε and the smoothing ratio ς, are defined to determine the distance
between two child particles and the ratio of the smooth length of the child particles to that
of the parent particles, respectively. Then, the spacing ∆xc and the smooth length hc of the
child particles can be calculated according to Equations (8) and (9):

∆xc = ε∆xp (8)

hc = ςhp (9)
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where the subscripts c and p represent the child particle and the parent particle, respectively.
The ranges of both the separation ratio ε and the smooth length ratio ς are from 0 to 1.
When ε and ς equal 0, it means that the distance between two child particles and the smooth
length of the child particles is 0. When ε and ς equal 1, it means that the distance between
the two child particles and the smooth length of the child particles are the same as those of
the parent particle.
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The distribution of the child particles approximates a uniform Cartesian lattice distri-
bution when ε = 0.5. Then, as for the child particles, the ratio of the smooth length to the
spacing can be derived as follows:

hc

∆xc
=

ςhp

0.5∆xp
= 2ς

hp

∆xp
(10)

This ratio determines the number of particles in the support domain. It is reported
that these two refinement parameters need to meet certain restrictive conditions to ensure
a minimized error and good stability; that is, ς should change from 0.6 to 0.65 when ε is
set as 0.5 [33]. However, this significantly increases the computational load and also runs
counter to the goals of the adaptive technique since the number of generated child particles
in the support domain is 73% to 120% more than that of the parent particles. This work
utilizes a more advanced APR technique, which directly sets two refinement parameters
as ε = 0.5 and ς = 0.5 to ensure the same number of neighboring child particles before and
after refinement.

In addition to the refinement pattern, the physical properties of the child particles also
need to be determined. The physical properties of the child particle, including the mass mc
and the velocity uc, are derived from the parent particle below:

mc = λcmp (11)

uc = up (12)

where λc is the refinement coefficient related to the refinement pattern. It is set as 0.25 for
the square refinement pattern utilized in this work.

The refinement process should satisfy conservations of mass, energy, and momentum,
which are provided as Equations (13)–(16), according to Equations (11) and (12).

Conservation of mass : mp =
4

∑
c=1

λcmc (13)

Conservation of energy :
1
2

mpup
2 =

4

∑
c=1

mcuc
2 (14)

Conservation of linear momentum : mpup =
4

∑
c=1

mcuc (15)
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Conservation of angular momentum : rp × mpup =
4

∑
c=1

rc × mcuc (16)

The conservation of mass, energy, and linear momentum are naturally satisfied, and
the conservation of angular momentum is automatically satisfied as for the refinement
pattern applied in this work. However, the conservation of angular momentum cannot be
satisfied for the asymmetric refinement pattern.

3.2.2. Particle Coarsening Algorithm

The efficiency of the SPH adaptive algorithm can be significantly enhanced through
the implementation of coarsening algorithms, which dynamically remove the child particles
that move out of the target region. Vacondio et al. proposed a particle coarsening algorithm
that allowed two child particles in pairs to be merged into a new parent particle [18]. The
mass of the new parent particle was the sum of the masses of the two child particles; the
position of the new parent particle was located at the center of the mass of the system
composed of the two child particles, and the velocity of the new parent particle was
obtained as the velocity at the center of mass of the system composed of the two child
particles. Although this particle coarsening algorithm can ensure all the conservation
equations above, it comes with a substantial computational cost and requires a more
intricate implementation process.

Another particle coarsening algorithm is to retain and inactivate the parent particles
after refinement so that they passively follow the flow within the refinement zone and
activate upon exiting the refinement zone [20]. Child particles are generated once the
parent particle enters the refinement zone and are removed after leaving the refinement
zone. Therefore, the statuses of particles over the whole calculation domain are divided
into two categories: activated and inactivated. A variable γ is defined to indicate these
statuses as follows:

γ =

{
1, Activated
0, Inactivated

(17)

Introducing γ as a weighting function into the kernel particle approximation.

⟨ f (ri)⟩ =
N

∑
j=1

f (rj)W(ri − rj, h)
mj

ρj
γj (18)

⟨∇ · f (ri)⟩ =
N

∑
j=1

f (rj) · ∇iW(ri − rj, h)
mj

ρj
γj (19)

In this case, both the parent and the child particles are involved in the summation of the
particles, and the field functions of the inactivated particles are also calculated. However,
an irrational state, as shown in Figure 3, may occur when the parent particles enter or leave
the refinement region [20]. When a parent particle, represented by the red disk, leaves
the refinement region with an activated status, its two child particles, represented by the
blue disks, are still kept inside the refinement region, also with an activated status. It
causes the total mass of the system to increase transiently. To ensure a smooth transition
between the two statutes of activated and inactivated, Barcarolo et al. proposed the concept
of a transition zone in which γ varies linearly within the transition zone [20]. When a
parent particle leaves the refinement zone and crosses the transition zone, the parameter γ
increases linearly from 0 to 1. In contrast, the parameter γ decreases linearly from 1 to 0 as
the child particle leaves the refinement zone and crosses the transition zone.
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3.2.3. APR Technology

According to the algorithm of the APR technique, particles possessing identical
smoothing lengths within a region of consistent spatial resolution can interact directly,
whereas particles with distinct smoothing lengths in two separate regions cannot directly
interact. Information exchange occurs exclusively through the guard area, which serves to
connect the two regions of varying resolutions. As shown in Figure 5, the guard area acts
as a boundary between two regions with different levels of refinement.
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while all the circles are not. The circles only passively follow the fluid.

In SPH calculations, two neighboring regions of different resolutions indirectly interact
with each other through particles in the guard area. The field function f of the particles in
the guard area is interpolated from the fluid as follows:

⟨ f (r)⟩guard =

N
∑

j=1
f (rj)W(ri − rj, h)

N
∑

j=1
W(ri − rj, h)

(20)

where ⟨ f (r)⟩guard denotes the approximation of the field function f for particles in the
guard area. Interpolations are carried out at the start of each time step, and values of
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the field functions of the neighboring particles are assigned equally to the particles in
the guard area through Equation (20). As shown in Figure 5, the field functions of the
particles in the guard area are obtained via interpolations of the field functions of the
activated particles so that two guard areas with different refinement levels are generated
besides the boundary. Since only particles with the same refinement level can be calculated
interactively, computational errors induced by the gradient of smooth length are avoided.

Since the traditional shifting algorithm can only deal with the flow where the particles
are uniformly distributed, it causes erroneous displacement corrections for particles with
different smooth lengths. In this work, the shifting algorithm is improved by adjusting the
displacement correction equation as follows:

δrs =

{
−DF∇Ci∆t, i /∈ guard area

0, i ∈ guard area
(21)

where ∇Ci is the concentration gradient of the particle, DF is the diffusion coefficient, and
∆t is the time step. When the displacement correction is applied to the particles in the
guard area, the lack of a complete support domain for the protected particles leads to the
incorrect calculation of the concentration gradient of the particle. It causes the particles
in the guard area to spread into the fluid, which significantly disrupts the distribution
of the particles in the guard area and, thus, affects the calculation of the flow field in the
refinement region. Therefore, the displacement correction proposed in this work is only
applied to the particles in the non-guard area. In addition, the particles in the guard area
only passively move with the fluid and are regenerated at every time step to maintain a
uniform distribution.

4. Results and Discussion
4.1. A Viscous Flow Passing around a Rectangular Cylinder

In this section, a case study of a viscous flow passing around a rectangular cylinder,
representing a kind of blunt-headed body, is conducted to test the accuracy of the improved
adaptive SPH model in this work. The geometry in this case study involves sharp corners,
and the conventional SPH model commonly produces stretching instabilities when dealing
with flow fields near these sharp corners. Therefore, this work demonstrates the superiority
of the proposed adaptive SPH algorithm, first by figuring out the flow field of the viscous
flow passing around a rectangular cylinder. The calculation domain set in this work, as
shown in Figure 6, is consistent with the one reported in Ref. [34]. The gravity force is
ignored, and the Reynolds number Re = ud/υ is set as 200. An initial flow field with
uniformly distributed particles is generated by applying the accelerated ray method. Along
with the proceeding simulation, the whole calculation domain is divided into three regions
with three particle resolutions, d/∆x = 25, d/∆x = 50, and d/∆x = 100, through the adaptive
SPH method.
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Usually, there is a wide zone of negative pressure behind an object when a viscous
flow passes around the object. As shown in Figure 7a, the negative pressure induces signifi-
cant tensile instabilities [35] and unphysical cavitation behind the object [36] by applying
the conventional adaptive algorithms of the SPH method. Another problem is that the
traditionally applied shifting algorithm of the SPH method normally results in diffusions of
particles between regions with different resolutions, which blurs the boundaries between
different regions, as shown in Figure 7b.
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Figure 7. Common problems caused by the traditionally applied SPH method are as follows: (a) ten-
sile instability and (b) diffusion of particles between regions with different resolutions.

All these problems can be effectively figured out by applying the adaptive algorithms
improved in this work, as shown in Figure 8. It displays contour plots of the pressure
and the velocity when the lift reaches the maximum value. The boundaries between
regions with different resolutions are highlighted by dashed boxes. As shown in this figure,
reasonable pressure and velocity are achieved, and they vary rationally and smoothly over
regions with different resolutions. Most importantly, no tensile instabilities or diffusions of
particles between regions with different resolutions occur.
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The vortex and the flow field of the viscous flow passing around a rectangular cylinder
at Re = 200 are calculated and given in Figure 9. It can be seen that after the flow field fully
developed, a periodic vortex-shedding phenomenon occurred behind the square column,
forming a Karmen vortex street. The corresponding time histories of the lift and drag
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coefficients were derived and are compared with that achieved using the Finite Volume
Method (FVM) [34], as shown in Figure 10. The satisfactory agreements of the curves
of the lift and drag coefficients in the periodic regime demonstrate that the improved
adaptive algorithms can effectively capture the transportation features in this case study.
Furthermore, Table 1 also compares the results of the mean of the drag coefficient Cd.mean
and the root mean square of the lift coefficient Cl.rms calculated from this work and the
reported work in Ref. [34]. As can be seen from the table, the errors between this work and
the reported work are only 2.39% and 9.25%, corresponding to Cd.mean and Cl.rms. It proves
that the improved adaptive SPH model in this work can stably and accurately deal with
problems such as the viscous flow passing around blunt-headed bodies.
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Table 1. Comparison of the mean of the drag coefficient, Cd.mean, and the root mean square of the lift
coefficient, Cl.rms, calculated from this work and the reported work in Ref. [34].

Cd.mean Cl.rms

FVM [34] 2.090 0.724
Improved SPH 2.140 0.657

Error 2.39% 9.25%

4.2. A Free Body Sinking in a Fluid

In this section, a case study of a free body sinking in a fluid with a moving refinement
domain was conducted to validate the effectiveness of the dynamic adaptive SPH method
developed in this work. As shown in Figure 11, a rectangular block with dimensions of
0.5 m in height H and 1 m in width L was submerged in a fluid-filled tank with dimensions
of 10 m in height Ht and 4 m in width Lt. The origin of these coordinates is located at
the centroid of the rectangular block and the center of gravity of the rectangular block
(xco, yco) is located at (0.25 m, 0 m). The densities of the fluid and the rectangular block
are set as ρf = 1.0 kg/m3 and ρb = 2.0 kg/m3, respectively. The gravity g is 1.0 m2/s, the
initial velocity of the rectangular block is 0 m/s, and the kinematic viscosity of the fluid
ν is 0.002 m2/s. In this validation case, the variations in the center of gravity and the roll
angle θ(z) of the rectangular block were analyzed.
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A particle-independent test was carried out first based on three different particle
resolutions, L/∆x = 50, L/∆x = 100, and L/∆x = 200, which was also used to verify the
capability and assess the accuracy of the adaptive algorithm with the dynamic refinement
and coarsening of the particles. Two refinement-coarsening sets were provided, including
a refinement region with a particle resolution of L/∆x = 100 surrounded by a coarsening
region with a particle resolution of L/∆x = 50, i.e., L/∆x = 100–50 and a refinement region
with a particle resolution of L/∆x = 200 surrounded by a coarsening region with a particle
resolution of L/∆x = 100, i.e., L/∆x = 200–100.

Figure 12 shows the evolution of the roll angle and the center of gravity with the time
from t = 0.0 s to t = 5.0 s. First, the calculations converged gradually as the particle resolution
increased from L/∆x = 50 to L/∆x = 200. Second, the evolution trends obtained from the
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refinement-coarsening sets showed growing agreement with the ones achieved from the
cases of uniform particle resolutions when increasing particle resolutions. Third, the
evolution trends obtained from the refinement-coarsening set of L/∆x = 200–100 displayed
a satisfied consistency with the one achieved from the work reported in Ref. [20]. The
corresponding quantitative comparison of the roll angle θ(z) and the displacement of the
center of gravity of the rectangular block, xco−xc, and yco−yc, at t = 5.0 s between L/∆x
= 200–100 and the Ref. [20] is provided in Table 2. It shows that the errors of θ(z), xco−xc,
and yco−yc are relatively small at 4.46%, 2.44%, and 2.69%, respectively, indicating that the
adaptive algorithm developed in this work can accurately figure out the problems with
moving boundaries.
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Figure 12. Evolution of selected parameters of the rectangular block sinking in a fluid: (a) the roll
angle θ(z), (b) the horizontal coordinate of the center of gravity of the rectangular block xc, and (c) the
vertical coordinate of the center of gravity of the rectangular block yc [20].
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Table 2. Comparison of the roll angle and the displacement of the center of gravity of the rectangular
block at t = 5.0 s between L/∆x = 200–100 and the Ref. [20].

θ(z) (rad) xco − xc (m) yco − yc (m)

Exp. [20] −1.57 0.82 2.60
SPH, L/∆x = 200–100 −1.64 0.80 2.67

Error 4.46% 2.44% 2.69%

Figures 13 and 14 illustrate the evolution of the pressure and the velocity when the
rectangular block sinks into the fluid, respectively. Since vortexes shed from the rectangular
block as it sinks, the flow field at the upper and the lower regions of the rectangular
block varies more significantly and spreads more widely than that at the left and right
regions. Therefore, this work applies a rectangular refinement region, with the longer edge
being placed in the vertical direction in the simulation domain. As depicted in the figures,
reasonable contour plots of pressure and velocity were obtained and then distributed
rationally and smoothly in the dynamically varied refinement and coarsening regions.
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In addition, conventional adaptive techniques normally induce unreasonable pressure
peaks at the junctions between the refinement and the coarsening regions [37] due to
the interaction of particles in different regions with different particle resolutions. It is
still impossible to eliminate the discontinuity and distributions of the pressure between
two different regions, even with the use of the buffer method proposed by Barcarolo
et al. [20]. However, the upgraded adaptive algorithm reestablished in this work improves
the dynamic refinement and coarsening of particles using the concept of guard areas to
avoid the interaction of particles with different smooth lengths. This novel approach
successfully eliminates pressure perturbations at the boundary of different refinement
regions, and thus, stable, and continuous pressure and velocity fields are achieved, as
shown in Figures 13 and 14.

5. Conclusions

In summary, this work systematically investigates and reestablishes the SPH adaptive
algorithm, the details of which are listed below:

(1) A novel point generation algorithm based on the accelerated ray method is proposed,
where the boundary is parameterized using Catmull–Rom cubic splines, and back-
ground Cartesian points are composed of particles within the flow field. The new
point generation algorithm accelerates the discretization of the flow field into particles.
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(2) An improved dynamic particle refinement/coarsening algorithm based on the APR
technique has been developed to solve the computational dispersion problem at the
boundary between regions with different particle resolutions.

(3) The shifting algorithm was improved in this work to ensure the particles are always
well distributed during numerical calculations and, thus, efficiently facilitate the
adaptive particle refinement/coarsening processes.

Two case studies were conducted to validate the high capabilities of the reestablished
SPH adaptive algorithm to deal with the problems of viscous flows passing around blunt-
headed bodies and the flows within dynamically moving refinement regions. The compar-
ative analysis between the results obtained from this study and the literature demonstrates
that the improved robust SPH adaptive algorithm in this study offers distinct advantages in
generating a more precise flow field when compared to traditional SPH adaptive methods.
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