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Abstract: Unlike conventional rigid actuators, soft robotic technologies possess inherent 

compliance, so they can stretch and twist along every axis without the need for articulated 

joints. This compliance is exploited here using dielectric elastomer membranes to develop 

a novel six degrees of freedom (6-DOF) polymer actuator that unifies ordinarily separate 

components into a simple cubic structure. This cube actuator design incorporates elastic 

dielectric elastomer membranes on four faces which are coupled by a cross-shaped end 

effector. The inherent elasticity of each membrane greatly reduces kinematic constraint and 

enables a 6-DOF actuation output to be produced via the end effector. An electro-mechanical 

model of the cube actuator is presented that captures the non-linear hyperelastic behaviour 

of the active membranes. It is demonstrated that the model accurately predicts actuator 

displacement and blocking moment for a range of input voltages. Experimental testing of a 

prototype 60 mm device demonstrates 6-DOF operation. The prototype produces 

maximum linear and rotational displacements of ±2.6 mm (±4.3%) and ±4.8° respectively 

and a maximum blocking moment of ±76 mNm. The capacity for full 6-DOF actuation 

from a compact, readily scalable and easily fabricated polymeric package enables 

implementation in a range of mechatronics and robotics applications. 

Keywords: multi-axis actuators; soft robotics; dielectric elastomer; electro-active 

polymers; hyperelastic modelling 
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1. Introduction 

Over the last decade polymer-based actuation technologies with electrical, thermal or chemical 

stimuli have driven the development of a variety of novel, multi-modal devices [1–3]. One of the most 

promising types of polymer actuator are dielectric elastomers due to their high active strains and 

energy densities (>1 J/g) and capacity for self-sensing [4,5]. The inherently compliant nature of 

dielectric elastomer actuators (DEAs) is particularly advantageous in comparison to conventional 

“stiff” actuation technologies for applications that involve inhomogeneous and unstructured 

environments or multi-axis loading e.g., human-robot interaction. Furthermore, compliance determines 

the level of intrinsic mechanical constraint of an actuation device, which in turn determines the number 

of kinematically-free degrees of freedom (DOF) that the actuator can control. Hence, in contrast to 

conventional multiple DOF actuation technologies, which typically consist of serial or parallel 

mechanisms with rigid links and several 1-DOF actuators, DEAs can effectively unify numerous 

discrete components into a single contiguous membrane through their inherent elasticity. Previous 

multiple DOF DEAs have included 2-DOF membranes [6,7], 3-DOF spring rolls [8], 3-DOF and  

5-DOF cone actuators [9–11], and 5-DOF membrane motors [1]. 

In this work, a new compact DEA configuration is presented which is capable of non-holonomic  

6-DOF actuation. This cube DEA design incorporates four DEA membranes in a cubic polymer 

structure that are coupled via a cross-shaped end effector (the actuator can be inverted so that the cubic 

body becomes the end effector and vice versa). Each DEA membrane can independently produce a  

2-DOF output through electrode segmentation, where the elastomer membrane provides continuous 

elastic coupling between each active segment [6,7]. A rigid cross-shaped link couples each membrane 

via bushings and enables 6-DOF actuation via a single protruding end effector. The simplicity of the 

cube DEA relative to its functionality is most evident when it is compared to an existing large 

displacement 6-DOF actuator such as the Stewart platform [12], which typically consists of 13 mobile 

parts (6 × 2-component legs and top plate/end effector) and 18 articulated joints (6 × universal,  

6 × spherical and 6 × prismatic) that are driven by six linear actuators. In contrast, the cube DEA can 

be constructed from as few as two rigid parts (cubic frame and cross rod) and four DEA  

membranes. However, it should be noted that the Stewart platform can be designed to produce much  

larger displacements. 

6-DOF actuation from a readily scalable and compact structure enables the cube DEA to potentially 

be developed for several applications. It can be utilised as a compact haptic device with 6-DOF force, 

F, and moment, M, output by fitting a thin shell onto the outside of the cross-rod end effector, as 

shown in Figure 1a. The capacity for each DEA membrane to self-sense strain [5] to enable user input 

could be exploited in this haptic device without any additional mechanical complexity. Multi-layered 

DEA membranes would likely be required to maximize the output values of F and M, but this would 

not limit the number of kinematically free DOF due the inherent membrane compliance. 

The actuation output of the cube DEA can also be applied for active vibration stability, which can 

be required to stabilise cameras or other optic devices. An example of this is shown in Figure 1b, 

where the cube DEA is fixed to the body of an autonomous air vehicle and the camera is connected to 

the centre of the cross-rod end effector. This design could be equally applied to terrestrial or aquatic 

mobile robots that rely on optical sensory input or any camera mount that might experience multi-axis 
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vibrational disturbances. As with the proposed haptic device application in Figure 1a the DEA 

membranes could be multi-layered to increase passive stiffness and active output of F and M. 

A robotic application of the cube DEA is shown in Figure 1c. Here it is proposed that a 1-DOF 

gripper mechanism (actuated independently of the cube DEA) is mounted inside the cube frame and 

attached to the centre of the cross rod, which allows the gripper to be displaced linearly, δ, and 

rotationally, θ, in 6-DOF. This has a specific benefit over traditional, larger multiple DOF robotic 

manipulators with applications where there is a significant limitation on the available workspace e.g., 

machine and pipe inspection/maintenance. However, it should be noted that while the use of 

monolithic DEA membranes provides notable compactness and inherent compliance, the maximum δ 

range will be limited compared to conventional multi-component parallel robotic manipulators. In 

addition, the cube DEA in this work can be fabricated entirely from polymers and non-ferromagnetic 

electrodes (such as the gel electrode in [13]) so it can potentially be compatible with MRI scanners to 

facilitate invasive manipulation. 

 
  

(a) (b) (c) 

Figure 1. Example applications for the cube dielectric elastomer actuator (DEA) with six 

degrees of freedom (6-DOF) output: (a) lightweight haptic device; (b) active vibration 

stabilisation of camera on a mobile quadrotor robot; (c) 6-DOF manipulator (where 

grasping mechanism is driven by separate 1-DOF actuator inside cube DEA). 

2. Principle of Operation 

DEA membranes are elastic capacitors that produce a shape change response when a high electric 

field (>10 V/μm) is applied. The electrostatic Maxwell pressure, P, produces planar expansion and 

transverse thickness reduction of the DE membrane. The magnitude of P is proportional to the applied 

electric field squared [4]: 

2

0 EP r  (1) 

where E is the applied electric field (V/m), ε0 is the permittivity of free space (8.85 × 10−12 F/m) and εr 

is the relative dielectric constant of the elastomer. An unconstrained DEA membrane produces biaxial 

actuation strain, so in order to produce a usable output in a specific DOF it is necessary to introduce 

some form of constraint. This can be achieved by attaching a single membrane to a rigid ring, so that 

all active strain is directed inwards towards a rigid central inclusion (Figure 2a). Circumferential strain 

is largely constrained so applying an electric field results in a radial strain that pushes the central 

effector. By segmenting the electrodes, so that different regions of the membrane can be selectively 

actuated, 2-DOF actuation is produced by the single membrane (Figure 2b). The actuator concept 
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presented here combines four of these DEA membranes into a cubic frame, with a central cross rod to 

couple the output of each membrane to an external load (Figure 2c). By independently controlling the 

response of each electrode quadrant, the cube DEA is capable of producing full 6-DOF actuation.  

  
 

(a) (b) (c) 

Figure 2. Schematic of a single DEA membrane with four electrodes (shaded) in:  

(a) passive state; and (b) active state with two electrodes actuated producing output 

displacement, δ. (c) Cube DEA design with the output of four membranes coupled using a 

cross rod. The characteristic dimension, L, of the cube DEA is the distance between each 

pair of parallel membranes. 

Translational (prismatic) actuation along the x-axis is achieved by activating two membranes that 

are parallel to the x-z plane as shown in Figure 3a. Similarly, lateral actuation along y-axis is attained 

by activating two membranes that are parallel to the y-z plane as shown in Figure 3b. Actuation along 

the z-axis is produced by actuating two electrode quadrants in all four membranes as shown in Figure 3c. 

Engaging the additional two membranes for z-axis actuation generates twice the force, but does not 

effect the output displacement since the membranes act in parallel (assuming each membrane has the 

same thickness and pre-stretch). Equal force output in all three DOF can be achieved by adding an 

additional two DEA membranes to complete the cube (and modifying the cross rod accordingly). 

Rotational outputs about each axis are achieved by activating diametrically opposing pairs of electrode 

segments, as shown in Figure 3d,e,f. As with actuation along the z-axis, rotation about the z-axis 

incorporates all four membranes being activated (Figure 3f), which will produce twice the torque 

generated by the other two rotational actuation modes. 

An advantage of the cube DEA design is that it produces antagonistic actuation in all 6-DOF (the 

inherent elasticity of the membrane will provide a return force in any case). By modulating the applied 

voltage to each electrode quadrant the response magnitude is controlled, as determined by Equation (1). 

Furthermore, the actuation modes shown in Figure 3 can be combined to produce non-orthogonal outputs. 

It should be noted that 6-DOF actuation can be achieved using other electrode configurations than 

those in Figure 3. Specifically, the orientation of the four electrode quadrants on each membrane can 

be rotated by 45° (so that only one quadrant per membrane needs to be activated for the outputs in 

Figure 3) or, alternatively, the number of electrode segments per membrane can be reduced to three 

(120° circular sectors). The latter configuration represents the most efficient version of the cube DEA 

in terms of control inputs, since only 12 inputs are required to produce antagonistic actuation in 6-DOF. 
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Figure 3. Translational (a,b,c) and rotational (d,e,f) displacement generated by selective 

activation of electrodes. Active quadrants are highlighted and passive quadrants are black. 

Note that actuation along and about the x and y axes requires two active DEA membranes  

(m = 2), while actuation along and about the z axis requires four active DEA membranes  

(m = 4). 

3. Hyperelastic Electro-Mechanical Model 

3.1. General DEA Model 

In this section, a quasi-static analytical model is derived to predict cube DEA response to an applied 

voltage. DEA behaviour is well known to be highly non-linear due to the combination of viscous-elastic 

material properties and the electric field dependent actuation mechanism [14]. In the present study, the 

model focuses on the hyper-elastic and electro-static components of this behaviour; hence the quasi-static 

assumption is required to negate viscous effects (as with numerous previous analyses: [15–18]). 

Further assumptions, described in Section 3.2, are utilized here to generate a simplified predictive 

model that can be readily utilized for device prototyping. However, to fully analyze the heterogeneous 

displacement fields and failure modes of many DEA configurations approaches consider finite 

deformations have been employed [19–23]. 

As described in Section 2, the DEA response is produced when an applied electric field generates 

electrostatic Maxwell pressure, P. The deformation of a thin film elastomer is described by  

non-dimensional stretch, λ (= length/original length). The principal stretches are considered here to be 

in-plane stretches λ1 and λ2 and thickness stretch, λ3. The elastomer is assumed to be incompressible 

(λ1λ2λ3 = 1). The equations of state for an ideal dielectric elastomer are given as [16–18,24,25]: 
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where σ1,2,3 are the true principal stresses, V is the applied voltage (V), T is the nominal membrane 

thickness (m) and W is the hyperelastic strain energy density. For the DEA material used in this work, 

3 M VHB 4905, we assume εr = 4.5 (based on the mean of εr values in [3]). 

The Gent strain energy function [26] has previously been applied to model VHB 4905/4910 DEAs 

since it captures the strain-stiffening behaviour exhibited by the elastomer [16,24,27]. The Gent model 

is given by: 
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where µ is the small-strain shear modulus and J is a dimensionless stretch limiting parameter. 

Applying the Gent model, Equation (4), to the equations of state (2,3) (with the plane stress 

assumption σ3 = 0) produces Equations (5) and (6) describing general biaxial DEA behaviour: 
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3.2. Cube DEA Model 

The cube DEA is composed of four identical DEA membranes, each with four active quadrants and 

a rigid central effector (which connects to the cross rod). The membrane is assumed to have principal 

stretches in the radial, λr, circumferential, λθ and thickness, λt, directions. Each DEA membrane 

quadrant, when active, will act to apply a radial force to the rigid central effector. Therefore it can be 

assumed that λr will be greater than λθ during actuation and hence the analytical model of the global 

membrane behaviour can be approximated by treating λθ as a constant and λr as a dependent variable. 

This approximation has been applied and experimentally validated in previous analytical models of 

circular membrane DEAs with rigid central inclusions [15,28], but the assumption of constant λθ limits 

the applicability of the model to experimental parameters where localized increases of λθ and hence E 

and P are negligible relative to λr. 

Figure 4 demonstrates how the elastomer length in the first principal axis (radial) changes relative 

to the actuation displacement, δ. The initial (passive) length, lθ, is given by (R – r) and the actuated 

length, lθ’, is given by (λr/λr,pre)(R – r), where λr,pre is the pre-stretch applied to the elastomer in the 

radial direction prior to its attachment to the rigid frame. Hence, λr is described by considering the 

relation between lθ’ and δ and θ: 
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The actuation displacement is limited by the physical boundaries of the membrane, (r – R) ≤ δ ≤ (R – r), 

so the maximum radial stretch is 2λr,pre. Using Equations (5) and (7), the radial stress, σr, can be found 



Actuators 2015, 4 209 

 

for arbitrary values of θ, δ and V. A force component, dF’, acts on the central effector due to σr. dF’ is 

found by multiplying σr by area, which is equal to an infinitesimal section of the central effector, 

2πr(dθ/2π), multiplied by the deformed thickness, T/λrλθ, of the elastomer: 
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(a) (b) 

Figure 4. (a) Representation of change in elastomer length, from lθ to lθ’, along the first 

principal axis (radial) due to output displacement, δ. The elastomer is contained within a 

rigid boundary with radius R and contains a rigid inclusion with radius r. (b) Electrodes B 

and D are activated to induce δ and the axis of actuation, and line of symmetry, is the line 

from θ = 0 to θ = π. 

Resolving dF’ into the axis of actuation gives the total force applied from each section of the 

membrane:  
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where m is the number of DEA membranes being utilized and Fext is an externally applied load (with 

the same orientation as the actuation axis of interest). In Equation (9), it is assumed that two electrode 

quadrants per membrane are active as shown in Figure 2b. One quadrant can be neglected from 

consideration due to symmetry (the factor of two in each term in Equation (9) accounts for this), so 

that 0 < θ < Θ1 represents the first passive region, Θ1 < θ < Θ2 represents the active electrode quadrant 

and Θ2 < θ < π represents the remaining passive region. Hence each electrode quadrant is assumed to 

be equal to (Θ2 – Θ1), which for the design presented in this work will be slightly less than 90° due to 

the passive gaps between quadrants. Note that if different electrode geometries are used or if non-equal 

voltages are applied to the active electrode constants, then the integration intervals in Equation (9) 

must be adapted accordingly and the assumption of symmetry about the plane of axis of actuation may 

no longer hold. For linear actuation along the x and y-axes, Equation (9) is numerically solved for a 

state of equilibrium with m = 2 (see Figure 3a,b), assuming single layers DEAs. Similarly, for linear 

actuation along the z-axis, Equation (9) is solved with m = 4 (see Figure 3c), assuming single layers 

DEAs. To predict rotational actuation, Equation (10) includes an additional design constant, the cube 

length halved, L/2, to convert membrane force into a moment: 
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where Mext is an externally applied load (with the same orientation as the actuation rotation of interest). 

For rotational actuation about the x and y-axes, m = 2 (see Figure 3d,e), and about the z-axis, m = 4 

(Figure 3f). It is assumed in Equations (9) and (10) that the cross rod is kinematically free to slide and 

rotate through the rings attached to each membrane, whereas in practice friction may contribute an 

additional force. Equations (9) and (10) were numerically solved in Matlab (Mathworks) to predict 

performance of the prototype cube DEA described in Section 4 (r = 5 mm, R = 25 mm, L = 30 mm,  

Θ1 = 5°, Θ2 = 85°, µ = 80 kPa, J = 90, λ1,pre = λ2,pre = 3). 

4. Materials and Methods 

The DEA membranes were fabricated using VHB 4905 polyacrylate tape (3 M) with carbon grease 

electrodes (MG Chemicals) bonded to a laser cut acrylic frame. The cube frame has a length of 60 mm 

and the DEA membrane diameter is 50 mm. Four compliant electrode quadrants are applied to each 

side of the membrane with a passive gap of 3 mm between each electrode segment. Each circular 

membrane was 3 × 3 biaxially pre-stretched (λr,pre = λθ,pre = 3) prior to being attached to the frame, 

which resulted in the nominal thickness, T, being reduced from 500 µm to a pre-stretched thickness, 

λ3T, of 55.6 µm. The maximum applied biaxial stretch before mechanical failure for VHB 4905/4910 

has been experimentally determined to be λr,pre = λθ,pre = 36 [29,30]. Therefore, by selecting  

λr,pre = λθ,pre = 3, and considering that λr ≤ 2λr,pre, the cube DEA should be fail-safe in its passive state.  

High voltage drive signals were generated by a Biomimetics Laboratory EAP controller (Auckland 

Bioengineering Institute, Auckland, New Zealand). Angular displacement was recorded by high 

resolution camera (Powershot G9, Canon, Tokyo, Japan) and then analysed frame by frame using 

software (ImageJ) to obtain the maximum displacement. Linear displacement measurements were taken 

by a laser sensor (LK-G152 and LK-GD500, Keyence) focussed on a flat plastic marker measuring  

19 × 11 mm2 fixed to one end of the connecting cross rod, with a sampling rate of 200 Hz. Force 

measurements were taken using a load cell (LMA-A-10N, Kyowa, Japan) aligned with the flat plastic 

marker and a signal amplifier (DPM-712B, Kyowa, Japan). 

5. Results and Discussion 

Actuation of a single membrane on the cube DEA (without the cross rod connected) is shown in 

Figure 5b,c for both single electrode quadrant activation and double electrode quadrant activation. The 

performance of the cube DEA was then characterised experimentally for the double electrode 

activation, as described in Sections 2 and 3. The linear and rotational displacement responses for 

varying supply voltages are plotted in Figure 6. The dielectric breakdown voltage was found to be 

around 5.5 kV so 4.5 kV was determined to be a safe working limit for robust actuation and 

displacement measurements were recorded for supply voltages up to 4.4 kV. The maximum linear 

displacement in z-axis equalled 2.4 mm and the maximum linear displacement in x-axis equalled  

2.6 mm. Note that measurement in the y-axis was not taken as it can be assumed to be identical to the 

x-axis. As expected, the displacement along the x and y-axes is approximately equal to that of the  
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z-axis, despite the latter utilising twice the number of active electrode quadrants, since the DEA 

membranes operate in parallel. The results from the analytical model derived in Section 3 are plotted 

alongside the experimental data in Figure 6. For the rotational displacement the model predicts the 

response of the non-linear elasticity and electric field-dependent Maxwell stress of the DEA 

membranes. However, the model does not capture a higher order trend evident in the linear x and  

y-axis displacement response. The model exhibits an error of 0.24 mm at 2.16 kV and an error of  

−0.20 mm at 4.45 kV which indicates it is not sufficiently accurate to precisely predict this response 

along these two DOF. This error is likely attributable to the assumption of homogenous strain along 

radial lines and hence future work will neglect this assumption by considering finite deformations. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) Cube DEA prototype with 50 mm diameter membranes capable of 6-DOF 

actuation. Activated membranes shown with single active electrode (b); and with two 

active electrodes (c). 

  

(a) (b) 

Figure 6. (a) Lateral displacement in x, y and z-axes; and (b) rotational output about z-axis 

against voltage. 

Although measurements were only taken for positive displacements along each axis, the 

symmetrical design of the cube DEA means that each output can be antagonistic. Hence the maximum 
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displacements are actually ±2.6 mm for x and y-axis displacement and ±2.4 mm for z-axis 

displacement at 4.4 kV. These maximum displacement values can be converted to strains relative to 

the characteristic cube dimension of 60 mm, giving maximum actuation strains of ±4.3% along the x 

and y-axis and ±4.0% along the z-axis. Figure 6b shows that the maximum rotational displacement 

measured about z-axis was ±4.8° at 4.44 kV. 

The blocking moment is considered here to be the moment produced with zero output displacement 

measured about the x and z-axes (again it is assumed that actuation along/about the x and y-axes are 

identical) with the results are plotted in Figure 7. The maximum blocking moment about the z-axis was 

±75.5 mNm at 4.4 kV and the maximum blocking moment about the x-axis was ±34.8 mNm (also at 

4.4 kV). As expected, the blocking moment about the z-axis is approximately double that about x and 

y-axes, since the former utilises twice the number of active electrode quadrants operating in parallel. 

Also, approximate linear blocking force values can be estimated from the blocking moment 

measurements since both outputs relate to the sum of forces generated by each DEA membrane at zero 

displacement and hence the activated DEA membrane equilibrium states are equivalent. Using the 

experimental moment arm value of 30 mm this gives an estimated linear blocking force along the x 

axis of 1.16 N and along the z axis of 2.51 N.  

It should be noted that because the blocking moment was measured using a load cell pressing 

against a single arm from the cross rod, the centre of rotation shifted slightly during actuation (two 

load cells, if available, aligned against two opposing arms from the cross rod would correct this issue). 

Analysis of video capture suggested that this created a maximum error of 3.7%. 

The predicted blocking moment from the analytical model derived in Section 3 is plotted alongside 

the experimental data in Figure 7 and correlates to the measured blocking moment. However, there is a 

discrepancy with the numerical and experimental blocking moment about the z-axis at a voltage of 

over 3 kV. This is likely due to the onset of membrane wrinkling and resulting increase in localized 

circumferential stretch, λθ. Any increase of λθ will concomitantly increase the electric field and hence 

P, which will generate a greater blocking moment. Electromechanical membrane wrinkling and 

increased λ2 is not captured in the current analytical model so is the likely sources of error. In summary 

the model has been shown to predict the general response but more computationally involved methods 

such as finite element modelling are required for detailed design. 

 

Figure 7. Blocking moment generated about each axis against voltage. 
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The simple structure of the cube DEA means that it is readily scalable. Assuming that r/R and L/R 

can be maintained at all scales and V and T are constant then as the cube dimensions are reduced 

(R→0) the actuation will be affected as listed in Table 1. In summary, these scaling relationships show 

that the displacements and forces in the three linear DOF will both scale proportionally, meaning that 

performance is likely to scale with the anticipated load. In contrast, the angular displacements and 

moments in the three rotational DOF scale differently, so the relative displacement/moment 

performance will change considerably at different scales. 

Table 1. Scaling of cube DEA output assuming r/R and L/R are constant. 

Output Scaling Relationship 

linear displacement, δx,y,z Rzyx 1,,   actuation stretch is dimensionless 

rotational displacement, 

φx,y,z 
independent of R  actuation stretch is dimensionless 

blocking force, Fb RFb 1  Equation (8): dF’  r and r  R 

blocking moment, Mb 
21 RMb   

Equation (8): dF’  r and r  R 

Equation (10): dF’  L and L  R 

It is anticipated that future development of the cube DEA will involve utilizing improved DEA 

materials and increased automation of fabrication. Switching the elastomer material from VHB 4905 to 

a silicone elastomer will greatly reduce the viscoelasticity and creep behaviour of the membrane [3,31]. 

This is particularly important for active vibration damping applications, where a large viscous 

component will inhibit high frequency response. However, silicone elastomer DEAs described in 

literature to date have not generated actuation strains equal to VHB 4905/4910. In addition, silicone 

elastomer films are more readily fabricated as multi-layered stacks using techniques such as spin 

coating [32] or spray deposition [33]. Such fabrication methods can enable the development of 

heterogeneous DE microstructures, which have been numerically demonstrated to significantly 

amplify the electromechanical coupling [22]. The polymeric composition of the cube DEA means that 

it could ultimately be fabricated using 3D printing techniques (as demonstrated by [34]). The potential 

3D printed devices would open the possibility for a network of inter-connected cube DEAs to be 

embedded within a structure for novel morphing capabilities or active vibration damping. An 

important consideration for the cube DEA to be developed for practical applications where the external 

loading may be unpredictable are instabilities such as pull-in failure that are associated across various 

configurations of DEAs [35–37]. 

6. Conclusion 

A novel 6-DOF polymer actuator has been presented that utilises highly compliant dielectric 

elastomer membranes. The inherent compliance and elasticity of membranes allows the single  

cross-shaped component to be coupled to multiple inputs, effectively unifying the numerous discrete 

components required in previous multi-DOF actuator devices. An electro-mechanical model has been 

developed using the Gent hyperelastic strain energy function, which is able to accurately predict 
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actuator displacement. Experimental testing of a prototype 6-DOF device with characteristic length of 

60 mm demonstrated maximum displacements of ±2.6 mm (±4.3%) and ±4.8° and a maximum 

blocking moment of ±75.5 mNm. The capacity for full 6-DOF actuation from a compact and easily 

fabricated polymeric package enables implementation in a range of applications such as robotics and 

active vibration damping. 
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