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Abstract: It is well-known that collision-free control is a crucial issue in the path planning of unmanned
aerial vehicles (UAVs). In this paper, we explore the collision avoidance scheme in a multi-UAV
system. The research is based on the concept of multi-UAV cooperation combined with information
fusion. Utilizing the fused information, the velocity obstacle method is adopted to design a
decentralized collision avoidance algorithm. Four case studies are presented for the demonstration
of the effectiveness of the proposed method. The first two case studies are to verify if UAVs can
avoid a static circular or polygonal shape obstacle. The third case is to verify if a UAV can handle a
temporary communication failure. The fourth case is to verify if UAVs can avoid other moving UAVs
and static obstacles. Finally, hardware-in-the-loop test is given to further illustrate the effectiveness
of the proposed method.

Keywords: cooperative control; distributed control; unmanned aerial vehicles

1. Introduction

Currently, the cooperative control of a multiple unmanned aerial vehicle (UAV) system is attracting
growing interest. This is motivated by the constantly growing number of civil and commercial UAV
applications [1]. One of the core problems in multi-UAV systems is motion planning, where each UAV
navigates a path to the target by sharing each other’s information. This should result in a collision-free
path derived from UAV motion control. This has driven the development of various UAV collision
avoidance algorithms.

UAV collision avoidance necessitates a way to predict UAV motion. There are different methods
to predict UAV motion and the future positions of the UAV. Early collision avoidance strategies
focus on the static obstacles [2,3], using decision trees to avoid various troublesome situations [4],
and using path planning to avoid the obstacles [5]. As moving obstacles are more often found in a
real environment, many techniques have been proposed for dealing with this situation. For example,
in [6], the authors developed a vision-based collision avoidance method by using minimum effort
guidance. In [7], the authors presented a reactive avoidance method by using nonlinear differential
geometric guidance; in [8,9], the authors developed a local path planning method for UAV navigation;
in [10], the authors presented a collision avoidance algorithm by using dynamic programming; in [11],
the authors proposed a collision avoidance algorithm based on potential fields; in [12–17], the authors
presented the velocity obstacle method for deconflicting the UAV paths. Among these methods,
the velocity obstacle has been the most actively studied in multi-UAV control over the past ten years.
These include methods from avoidance maneuver based on conflict geometry [12]; optimal reciprocal
collision avoidance [13]; reciprocal collision avoidance using on-board decentralized sensing without
communication [16]; the recursive probabilistic velocity obstacles algorithm [14]; the hybrid reciprocal
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velocity obstacle algorithm [15]; and the artificial bee colony optimized reciprocal velocity obstacle
algorithm [17]. However, each of these methods suffer from at least one of the following limitations:

• Each UAV acts independently without coordination with other UAVs, giving rise to deadlock;
• Each UAV acts with full coordination with all other UAVs, requiring excessive communications;
• A heavy computational load is required.

The aim of this paper was to develop an efficient avoidance method that does not suffer from
any of these limitations. The basic idea is to use the cooperative control concept. First, multi-UAV
communication is proposed to exchange UAV information. Second, a fusion algorithm is proposed for
forming a heartbeat message which provides the cooperative information of UAV-to-UAV. Third, with
the heartbeat message, the algorithm the UAVis designed to select the velocity command to avoid only
those UAVs or obstacles that are within a certain range around the UAV. This control is decentralized,
and each UAV independently makes its own decision. Finally, simulation and hardware-in-the-loop
tests were conducted to illustrate the effectiveness of the proposed method. The contribution of this
paper is twofold: designing the information fusion technology to obtain other UAV heartbeats in a weak
communication network; and developing a velocity obstacle algorithm to handle polygonal obstacles.

A short version of this paper was presented at ASCC 2017 [18]. The work of [18] has been
expanded to include four new parts: (i) we add the related work in Section 2 ; (ii) we extend
the algorithm to 3D space; (iii) we give the algorithm to handle polygonal obstacles in detail;
(iv) we modify the algorithm (see Section 3.4) and test more examples, especially in the hardware-in-
the-loop simulation.

2. Related Work

Autonomous collision avoidance has been an active research area in unmanned aerial vehicle
control. These include the path planning method [9], the conflict resolution method [19], the potential
function method [11], and the velocity obstacle method [12]. Because it is less computationally complex,
the velocity obstacle method is attractive in giving a fast solution in a dynamic environment. We shall
briefly review a few of the most closely related works in the velocity obstacle method.

The original concept of the velocity obstacle is introduced in [20]. The authors describe the
collision cone concept, where the collision cone is a set of vehicle velocities that will cause a collision
with the obstacle if the obstacle’s velocity is constant. However, this work only discusses the case
where two UAVs avoid collision with each other, and only provides the concept of avoiding polygonal
obstacles without implementation details. In this work, no simulation is given to verify the proposed
method. In [12], the authors define another velocity obstacle cone in a velocity space by moving the
collision cone by the obstacle’s velocity. In [21], the authors introduce a non-cooperative concept
for avoiding collision by assuming that the distance, direction, and range of speed of the obstacle
are known. In this work, the feasible velocity set is obtained by checking speeds in the obstacle
speed range. However, the computational cost is very high, and it is not suitable for MUAVs. In [14],
the authors use the probability concept to represent collision. If the feasible velocity leads to a collision
with an obstacle, it is denoted as 1; otherwise, it is 0. Using this approach, the proposed method can
calculate the collision chance for MUAVs. This requires a perfect communication network. However,
the obstacle is assumed to be circle-shaped, and only two vehicles were tested in their simulation.
In [22], the authors introduce “the passing on the right rule” to the velocity obstacle method in order to
provide a safety rule. In [23], the authors present an extension of [12,22]. In this work, the avoidance
rules are designed based on conflict geometry. However, the authors assume that a full communication
oriented system is necessary without failure.

It is observed in [24] that the traditional velocity obstacle method has an oscillation behavior.
To overcome this issue, the authors in [13,24] present a reciprocal velocity obstacle (RVO) method.
In this work, the authors suggest to move the collision cone by 1

2 (vA + vB), where vA is the vehicle
velocity and vB is the obstacle velocity, instead of moving by vB as in the original velocity obstacle
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approach [12]. In [16], the authors use the RVO method based on an onboard sensor without
communications. Furthermore, in [17], the authors propose the use of a genetic algorithm in RVO to
find the optimal velocity set. However, it is still observed that undesirable oscillation exists in the RVO
approach when more than two vehicles are tested. In [15], the authors propose a hybrid reciprocal
velocity obstacle method by using an asymmetrical collision cone. However, their results showed that
the collision chances increased with an increasing number of vehicles.

So far, there is a limited body of literature considering sensor constraints. In [25], the authors propose
a reciprocal collision avoidance algorithm, where the robots use their camera with a limited field of
view to detect the environment. However, this result is not feasible for MUAVs, since the limited sensor
has a large dead zone and cannot react rapidly in a multi-UAV system where UAVs can approach from
the sides undetected.

The limitations of each method are summarized in Table 1. For each method, we check if it
considers the requirements listed in the columns. “Suitability for MUAVs” indicates if the method is
suitable for a MUAV system. “Robust to communication failure” indicates if it requires communication
to be perfect. “Cooperation” indicates if it can share information with other UAVs to work together.
“Low computational cost” indicates if the solution can work with minimal computational resources.
“Polygonal obstacle” indicates if the solution can be applied to handle polygonal obstacles.

For our MUAV system, the collision avoidance method should be scalable, and can handle any
number of UAVs as long as the traffic density does not become infinite. Obviously, this requires a
distributed control form. Additionally, since a UAV has to face various obstacle shapes, it is important
to consider a shape that can represent general irregular shapes for obstacles. From the table, it is
observed that every method has some limitations and cannot satisfy all requirements. This paper
proposes a distributed cooperative control method that addresses all these limitations.

Table 1. Limitations of existing velocity obstacle methods.

Reference Suitability Robust to Communication Cooperation Low Computational Polygonal
for MUAVs Failure Cost Obstacle

[20] No Yes No No Yes
[12] Yes No Yes No No
[22] No Yes No No No
[23] Yes No Yes Yes No
[21] No Yes No Yes No
[14] Yes No Yes No No

[13,24] No No Yes No No
[16] No Yes No No No
[17] No Yes No Yes No
[15] No No Yes No No
[25] No No Yes No No

3. Problem Statement and Solution

The overall goal of the multi-UAV system is to reach all the targets without collision in the working
area. Let us consider M targets in the entire zone and N UAVs that need to be assigned to these targets.
Define a set of UAVs as C = {C1, C2, ...CN}, and targets as T = {T1, T2, ..., TM}. Our problem is to
design a collision avoidance algorithm which drives a UAV to its assigned target safely. The solution
to this problem is to be in a decentralized form. In this framework, each UAV makes its own decisions
based on its own onboard GPS data and communicated information from other UAVs.

3.1. Communication

In this paper, the multi-UAV system uses the User Datagram Protocol (UDP) [26] for the wireless
communication. With UDP, UAVs in the network can broadcast their messages regularly at the
frequency f Hz, and it is not necessary to wait for acknowledgment from other UAVs. The UAVs are
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connected but not necessarily fully connected. The UAV nodes are organized in a mesh topology.
The reasons for the use of the UDP mode are that we want the latest message from other UAVs
regularly and we want to save energy by reducing transmissions.

3.2. Cooperation through Shared Heartbeats

The cooperation task described in this section is the sharing of information among UAVs through
one-hop heartbeats. A heartbeat message is formed by fusing together received heartbeats and a UAV’s
own onboard information. The information exchanged heartbeat (HB) is given in Table 2.

Table 2. Unmanned aerial vehicle (UAV) (Ci) heartbeat.

UAV ID
UAV adjacent number (UAV valency)
Total UAV number in network
x position
y position
z position
Vx speed
Vy speed
Vz speed
GPS time
UAV mode
Replacement UAV
Target ID
Want to target ID
Cost
UAV status

In an N UAV system, if the communication is working well, each message has information from
N UAVs. Each UAV receives N − 1 HB messages from other UAVs. This implies that it has N HB
messages including itself. In our system, all messages are placed into the MessageBox. The total
messages at each time interval in the MessageBox has N × N messages. Obviously, there exists
redundant information in the MessageBox. The next question is how to fuse to the messages to reduce
the information size, thereby generating the HB of the UAV. Each message is attached with a GPS time
stamp. Thus, we know the latest message if we compare all GPS time among the messages in the
MessageBox. Here, we use a search algorithm (see Algorithm 1) to find the latest message.

Algorithm 1: Search algorithm
Input : UAV Ci ID, HB from other UAVs

Cj, j = 1, 2, ..., N; j 6= i
Input : HB of UAV Ci

for m = 1 to length of total UAVs do
tmp = 0

for h=1 to length of total UAVs do
if GPS T of HB[h*total_UAV_Num+m]
>= tmp then

tmp = GPS T of HB[h*total_UAV_Num + m]
store HB[h*total_UAV_Num + m] information

end if
end for h loop

end for m loop

Let us consider a UAV Ci. At each time interval, the UAV Ci receives HB messages from other
UAVs, which are placed into the MessageBox of UAV Ci according to the order number of the UAV
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Identification (ID). Then, we check the j-th UAV information (j = 1, 2, ...N; j 6= i) from all HB messages
in the MessageBox. This starts from the 1st UAV message and we check if it has the latest GPS time
for the jth UAV message. If so, it will extract the jth UAV information from the 1st UAV message and
put it to the HB message of UAV Ci. However, if the GPS time of the jth UAV information in the 1st
UAV message is not the latest, it will check the next UAV message in the MessageBox. This process
continues until it finds the latest message of the jth UAV from UAV Ch. Repeating this process, we can
find the latest UAV information of all UAVs from the UAV HB messages received and from the HB
message of UAV Ci at this time interval.

The HB message of UAV Ci thus obtained will be broadcasted at the next time interval. Over some
period of time, the HB messages will converge to some stable form for the given number of UAVs if the
communication network is connected. This process is the fusion of information. In this way, we can
guarantee that the ith HB formed will consist of the latest UAV information received. The information
fusion is illustrated in Figure 1. After the fusion, the HB at each UAV only has the latest information of
N UAVs.

Figure 1. Information fusion. HB: heartbeat.

We can use the following protocol to represent information fusion for the i-th UAV which contains
the h-th UAV HB:

ξhi(k + 1) =
N

∑
j

ρ
(h)
ji ξ ji(k), 1 ≤ h ≤ N, 1 ≤ i ≤ N, (1)

where ξ ji represents the HB of the jth UAV received by the ith UAV, and ρ
(h)
ji is the weighting of the

information fusion, that is:

ρ
(h)
ji =

{
1 i f searching is success f ul,
0 otherwise.

(2)

Thus, we use ξi to represent all possible HBs received from other UAVs:

ξi(k + 1) = Aiξi(k), (3)
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where ξi(k) = [ξ1i(k), ξ2i(k), ..., ξNi(k)]T , and

Ai =


ρ
(1)
1i ρ

(1)
2i ... ρ

(1)
Ni

ρ
(2)
1i ρ

(2)
2i ... ρ

(2)
Ni

...
...

...
...

ρ
(N)
1i ρ

(N)
2i ... ρ

(N)
Ni

 . (4)

Note that for each row in the matrix Ai, the weighting set of {ρ(h)1i , ρ
(h)
2i , ...ρ(h)Ni } has only one

element which is equal to 1 due to the searching result, and other elements are zero. This implies that

N

∑
j

ρ
(h)
ji = 1. (5)

Therefore, we conclude the following consensus theorem.

Theorem 1. Assuming that the communication is a mesh network (partial or fully mesh network), the HB
information of the multi-UAV system with protocol (1) achieves consensus as k→ ∞. By Theorem 1, the cooperation
of the multi-UAV system can be implemented through the proposed protocol.

Remark 1. The proposed cooperation mechanism can handle the weakly connected communication network.
For example, Figure 2 shows three types of weakly connected network graphs. By exchanging and information
fusion, the proposed method is robust against weak communication in the network.

Figure 2. Weakly connected network: Three cases are shown in (a) tree form, (b) ring form,
and (c) line form.

3.3. Cooperative Collision Avoidance

The collision avoidance algorithm requires that all UAVs broadcast their position and velocity
regularly at f Hz. This is done cooperatively through shared HBs, as shown in Figure 3. Each UAV
takes the position and velocity of all UAVs within communication range and computes a flight speed
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and direction command in the horizontal plane. This command is computed and sent to the UAV flight
control board, which sends actuator commands to the UAV. The whole process is shown in Figure 4.

The algorithm works not only in the horizontal plane, but also in the vertical direction. For the
own UAV and another UAV j, the own UAV has to check if

• Horizontal distance between both UAVs ≤ rang1; and
• Vertical difference between both UAVs ≤ rang2.

If both conditions are satisfied simultaneously, the own UAV enters the collision avoidance
mode; otherwise, the own UAV is free and can use any control command. In this paper, climb speed
commands are decoupled from the collision avoidance commands in the horizontal direction.

If both conditions are not satisfied, the collision avoidance rules for the vertical direction are:

• Keep the vertical speed (i.e., climbing or descending) command;
• UAV does collision avoidance in the horizontal direction at the same time.

Figure 3. UAVs performing collision avoidance cooperatively through shared HB.

Figure 4. UAV control with collision avoidance algorithm.

3.3.1. Collision Avoidance between Two Moving Vehicles

The own vehicle A considered is a point object, moving at a speed vA. The vehicle A first checks
if the vehicles around it are within its range (denoted as maximum range), as shown in Figure 5.
The detection of collision avoidance only considers those vehicles which are within the lown vehicle’s
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maximum range. Furthermore, the vehicle A also detects the vertical direction and does the height
difference check from neighbouring UAVs. If the height difference between both UAVs is less than
the defined value, collision avoidance will handle this case; otherwise, collision avoidance will not
consider this case. The algorithm is based on the velocity obstacle (VO) method [12], which uses the
concept of the collision cone along the horizontal plane.

Before using the VO method, vehicle A checks if the vehicles around it are within the own vehicle’s
maximum range and height difference. If yes, for those vehicles within the defined height difference,
it will separate both vehicles by moving the own vehicle until they are at a safe distance.

Figure 5. Maximum range around vehicle A: Vehicles B, C, D, and E are within vehicle A’s range.

Consider the own vehicle A, and the circle B which is constructed by the obstacle vehicle B with a
radius rA + rB, where rA + rB is a safe distance between vehicle A and obstacle B. Figure 6 shows the
concept of velocity obstacles. For a given vehicle B moving at velocity vB, the VOA

B (vB) in the velocity
space of the vehicle A is a cone which is the infeasible velocity command candidate set. It is produced
by finding two tangent lines (line 1 and line 2) to the circle B from the center of the vehicle A and
moving the collision cone by VB.

A velocity command candidate in this cone set is infeasible because it would lead to a collision
with the other vehicle when both vehicles hold their velocities constant over time.

The collision cone is useful for vehicle A to select its avoidance velocity set to avoid a future
collision within a given time interval. The key selection criteria for this set are to choose those velocities
which never fall into the collision cone. Define a normal nl1(nl2) vector to line 1 (line 2). An alternative
expression of the selection criteria is that the vector vA − vB should be chosen so as to be outside the
collision cone. Both selection rules will avoid the obstacles.

Motion safety is also important for the velocity obstacle method. Assume that the maximum
velocity of UAVs is VM, while the maximum braking deceleration is b. We have the following theorem.

Theorem 2. If a UAV is in a safe distance 3V2
M

2b from one obstacle initially, then the UAV is able to brake to a
complete stop at all times without colliding with the obstacle.

Furthermore, each selected velocity is subject to the actual velocity constraints. This avoidance
velocity set is called the reachable avoidance velocity (RAV).
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Figure 6. Velocity obstacles. There are two vehicles A and B with the respective radii rA and rB at the
respective positions pA and pB. vA and vB are the velocity vectors of vehicles A and B respectively.
The light cone represents the velocity obstacle on vehicle A if vehicle B was stationary. The dark
cone denoted as VOA

B (vB) represents the same velocity obstacle when taking into account vehicle B’s
velocity vB.

For vehicle A, a velocity command candidate avoiding vehicle B can be obtained by selecting
any velocity in the RAV set. Moreover, this velocity command can be classified into the three regions
according to the collision cone and the positions of both vehicles A and B. This is because the relative
velocity vA − vB of vehicle A outside the collision cone is guaranteed to be free from collision if vehicle
B keeps its current velocity constant. Figure 7 shows that a velocity command candidate can fall into
one of the three regions: region S1 is between λl and λB, region S2 is between λr and λB, and region
S3 is below the line λB, where the lines λl , λr are the tangent lines of the collision cone, while the line
λB is perpendicular to the center line of the collision cone. Since the regions S1, S2, S3 are outside the
collision cone, they are safe. The velocity command should be selected from these three safe regions.

Consider actual traffic conditions and rules. We suggest alternative velocity options so that
the vehicles will not get stuck in traffic. Take, for example, incorporating the rule of passing on the
right [22]. This is based on the rules of the sea, the International Regulations for Preventing Collisions
at Sea (COLREGS), as shown in Figure 8. These are similar to the Federal Aviation Administration
(FAA) rules of the air. Applying this rule to the RAV set will avoid deadlock. This can be observed
when two vehicles approaching head-on try to avoid each other but instead steer to the same side.
They would then be unable to pass each other. The rule can be adopted especially with the velocity
obstacle concept, as we can restrict the velocity command options to make the vehicle pass on the
correct side of the other vehicle. According to the rules of COLREGS, velocity sets S2 and S3 are
selected as the avoidance velocities. Thus, they are reachable avoidance velocities and are safe for
driving vehicle A.
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Figure 7. Vehicle A considers vehicle B as an obstacle. It shows that vehicle A has three regions, S1, S2,
and S3, around the velocity obstacle.

Figure 8. Rules of the sea, COLREGS. The rule is essentially about passing on the right side of
other traffic.
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3.3.2. Collision Avoidance between a Vehicle and a Static Circular Obstacle

For static obstacles, we have to modify the collision cone when selecting an avoidance velocity
set. This is because a static obstacle is not more dangerous than moving obstacles. Considering static
circular obstacles, the associated velocity obstacle is as shown in Figure 9. In this velocity obstacle,
a user-defined time τ is introduced such that the feasible region is enlarged. Compared to the velocity
obstacle due to moving vehicles, this is smaller in that velocities towards the obstacle are permitted
if they take more than time τ to make contact with the obstacle. Thus, the RAV incorporated with
COLREGS should avoid the modified collision cone for dealing with static circular obstacles.

Figure 9. The velocity obstacle associated with a static circular obstacle. There is one vehicle A and
one obstacle B with the respective radii rA and rB at the respective positions pA and pB. Vehicle A will
touch the perimeter around obstacle B in time τ if using the command speed vCMD. At this moment,
vehicle A’s position is at (pB − pA)/τ.

3.3.3. Collision Avoidance between a Vehicle and a Static Polygon

In addition to circular obstacles, polygonal obstacles are also considered. Unlike circular obstacles,
polygonal obstacles have complex shapes. These polygonal obstacles fall into two general categories:
convex and non-convex. In general, a non-convex polygon can be considered as consisting of
several convex polygons, as shown in Figure 10, where the non-convex polygon v1v2v3v4v5v6v7v8 is
partitioned into three portions: convex polygons v1v2v7′v8, v6′v6v7v7′, and v3v4v5v6′. It is necessary
to design the algorithm to avoid each of the convex polygons. Thus, we concentrate on convex
polygons in this paper and find the avoidance approach. To include a safety buffer, we first need to
expand the polygon obstacle to draw a region of safe constant width around it, as shown in Figure 11.
Throughout this paper, we assume that the polygon was expanded with a safe constant width R.
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Figure 10. Non-convex polygon divided into convex polygons.

Figure 11. Polygon expansion: R is safe constant width.

In order to find a feasible region from a convex polygon, we have to calculate the centroid of a
polygon. For a closed polygon consisting of n vertices (x0, y0), (x1, y1), ..., (xn−1, yn−1), its centroid is
denoted as (Cx, Cy). Their values are given by

Cx =
1

6A

n−1

∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi), (6)

Cy =
1

6A

n−1

∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi), (7)

where A is the polygon’s area, which is described by

A =
1
2

n−1

∑
i=0

(xiyi+1 − xi+1yi). (8)
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Thus, by connecting a vehicle point and the centroid of a polygon, a ray is formed as shown
in Figure 12. This ray goes through the segment splitting the polygon space in two parts, called the
half-space as shown in Figure 12. We are concerned with the angle between this line and the vertex of
the polygon. For each half-space, we can obtain the angle between the line and vertex of the polygon.
For example, as shown in Figure 12, we have the angles 1–2 for the right side of the line, while we
have angles 3–4 for the left side of the line. From the collected angles of each half-space, we can obtain
a maximum angle and thus a collision cone is formed for the polygon. A velocity command avoiding
the polygon can be selected from outside the collision cone.

Figure 12. Vehicle A at position PA faces one polygonal obstacle B. The centroid of the polygon is at
PB. The vector PAPB pass through PA and PB.

Remark 2. Some papers deal with polygonal obstacles. For example, the work in [27] uses a path planning
approach to handle polygonal obstacles. In this paper, we want to improve the VO method such that it can
be applied to many situations, including polygonal obstacles. This is convenient for application purposes.
In addition, it should also be noted that it is difficult to use the approach proposed in [27] to deal with moving
obstacles, since the computed trajectories depend on the pre-defined static objects. In comparison to the work
of [27], the VO method is more suitable for dealing with moving obstacles.

3.4. Collision Avoidance Algorithm

The safe set of velocity commands is represented by all points within the maximum velocity circle
and outside all the velocity obstacles. The velocity command to choose would then be the one that has
the least deviation from the desired velocity command which points directly toward the waypoint to
head for. The detailed steps of the algorithm are as follows:

Step 1. Check all the other vehicles within the 3D range (i.e., maximum range and height difference).
Step 2. For those vehicles within the defined height differences, the primary vehicle does a

separation movement in the horizontal plane until reaching a safe distance rA + rB, where rA is the
radius of the primary vehicle, and rB is the radius of another vehicle around the primary vehicle.

Step 3. Find the admissible regions given all the other vehicles within the 3D range and safe
distance (user-defined).

Step 4. Find the admissible regions given all the static circular obstacles and polygonal obstacles
within a certain range (user-defined).

Step 5. Find the cost for each admissible speed–direction option.
Step 6. Find the lowest cost option and apply this velocity to the flight control board of the

primary UAV.
Step 7. Repeat the steps above.

Remark 3. The safe distance of the proposed collision avoidance is required to be 3VM, where VM is the
maximum speed of the UAV. This implies that if both UAVs are disconnected for two seconds, they still have at
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least 2VM distance under this extreme communications loss situation. This implies that the proposed collision
avoidance algorithm is robust against communication failures of up to two seconds of disconnection.

Remark 4. The primary UAV in the proposed collision avoidance scheme only checks with those UAVs which
are within a certain range around the primary UAV and chooses the velocity command from the lowest-cost
option. Thus, the proposed collision avoidance algorithm is locally optimal. It will take less computational load
than algorithms which use full information from all connections with other UAVs to make the collision avoidance
decision. Utilizing full information would incur a heavy computational load, is not practical in real-time UAV
control, and is not scalable when increasing numbers of UAVs are involved. In addition, some papers use
optimization algorithms to find feasible trajectories to avoid obstacles. In general, these kinds of approaches can
take a longer time to search for an optimal solution. For example, the work in [9] uses a non-linear program
(NLP) and a mixed integer linear program (MILP) to find trajectories while maintaining the safe separation
between UAVs. Unfortunately, the average solution times of the MILP and NLP were 4.32 s and 46.53 s,
respectively, as reported by [9]. This is unacceptable for real-time control. In our C program, the solution of the
proposed velocity obstacle method took approximately 10 ms.

Remark 5. The present algorithm also differs from those algorithms which only use information obtained from
the on-board sensors and give a limited solution. Onboard sensors are usually unable to provide all-around
situational awareness as well as the velocities of other UAVs. This may cause a deadlock problem. In our solution,
the weakly connected network is used to exchange HBs from other UAVs, and thus the avoidance can find a
feasible path from around UAVs, thereby reducing the possibility of a deadlock.

4. Simulation Study

The purpose of this section is to illustrate the usefulness of the proposed multi-UAV collision
avoidance method. Each UAV is regarded as a point mass in a three-dimensional space. The stationary
obstacles are depicted as circles. In the simulation, we use C to implement the logic and algorithms
and MATLAB as a tool to plot the results.

Case 1: Avoiding a Stationary Circular Obstacle. Consider a scenario where we have ten UAVs
and ten targets of two types: the static type, labeled as 0, 1, 2, 3, 7, 9; and the patrol type, labeled as 4, 5,
6, 8. Every UAV will be assigned to a target and will fly to that target, which may be of static or patrol
type. Table 3 shows the target waypoints, and the obstacle is a circle with a radius of 30 m. During the
flight, they may encounter static obstacles (as shown by the circles in the following figure) or other
UAVs. The cooperative collision avoidance algorithm will cause the UAVs to avoid the static obstacle
which is located in the center of the working zone. Each UAV communicates with other UAVs using
UDP through a regular broadcast of messages every 1 s.

Table 3. Simulation of collision avoidance of MUAVS: Case 1.

UAV ID Initial Coordinates (N,E) Target Waypoints (N,E)

UAV 0 (−270, −170) (100, 100)
UAV 1 (−300, −170) (0, 110)
UAV 2 (−300, −150) (50, −100)
UAV 3 (−270, −120) (−50, −50)
UAV 4 (−300, −120) (−50, −120)–(100,−50)
UAV 5 (−300, −100) (−150, −120)–(−150, 70)
UAV 6 (−300, −70) (120, 50)–(120, −100)
UAV 7 (−280, −50) (−150, 150)
UAV 8 (−280, −70) (−200, −200)–(0, 210)–(70, 180)–(80, 200)–(110, 210)–(130, 230)
UAV 9 (−300, −50) (−70, 100)

Figure 13 shows the multi-UAV flight paths in the simulation. It was observed that both UAVs
effectively avoided the obstacle located in the center of the working area when flying to their respective
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targets. The results show that the UAV assigned to target 6 was successful in avoiding the obstacle
when it flew to it. This was also observed for the UAV assigned to target 0. Figure 14 shows the profile
of the horizontal distance between the ith UAV and the jth UAV (i 6= j). It was observed that the
minimum separation distance along the horizontal direction was about 30 m, and no collision occurred.
This simulation verifies that the proposed UAV collision avoidance algorithm was effective in avoiding
a static circular obstacle.

Figure 13. Case 1: Cooperative collision avoidance against static circle obstacle. Symbols “i,pj” represent
the ith UAV with priority level (j = 1 at low priority; j = 3 at high priority).

Figure 14. Test 1: Separation distance along horizontal direction.
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It was observed that the two vehicles could move along the obstacle to reach their respective
targets. This is because the selected velocity always follows the direction of the tangent line of the
velocity cone. This ensures smooth turning to avoid collision.

Case 2: Avoiding Polygonal Obstacle. Consider a scenario where we have ten UAVs and ten
targets of two types: the static type, labeled as 0, 1, 2, 3, 7, 9; and the patrol type, labeled as 4, 5,
6, 8. Table 4 shows the target waypoints. Every UAV is assigned to a target and flies to that target,
which may be of either static- or patrol-type. During the flight, they encounter a polygonal obstacle.
The cooperative collision avoidance algorithm will effectively cause the UAVs to avoid the polygonal
obstacle, which is located inside the working zone.

Figure 15 shows the multi-UAV flight paths in the simulation. It is observed that four UAVs
(UAVs 6, 7, 8, and 9) effectively avoided the rectangular obstacle when flying to their respective targets.
This simulation verifies that the proposed UAV collision avoidance algorithm was effective in avoiding
a polygonal obstacle.

Figure 15. Case 2: Cooperative collision avoidance against polygonal obstacle. Symbols “i,pj” represent
the ith UAV with priority level (j = 1 at low priority; j = 3 at high priority).

From the simulation, it was observed that the algorithm was capable of computing the minimum
angle to move along in order to avoid collision, as explained in Section 3.4. It should also be noted
that vehicle 6 selected the shortest route to its target. This shows that the vertex of the polygonal shape
selected as an avoidance direction also depends on whether that vertex is closest to the desired velocity
vector. From Table 1, we see that existing results do not consider polygonal obstacles except for [20],
which only provides the concept without implementation details.
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Table 4. Simulation of collision avoidance of MUAVS: Case 2.

UAV ID Initial Coordinates (N,E) Target Waypoints (N,E)

UAV 0 (−270, −170) (100, 100)
UAV 1 (−300, −170) (0, 110)
UAV 2 (−300, −150) (50, −100)
UAV 3 (−270, −120) (−50, −50)
UAV 4 (−300, −120) (−50, −150)–(100, −150)
UAV 5 (−300, −100) (−150, −120)
UAV 6 (−300, −70) (−50, 50)
UAV 7 (−280, −50) (−150, 150)
UAV 8 (−280, -−70) (−200, -200)–(0, 210)–(70, 180)–(80, 200)–(110, 210)–(130, 230)
UAV 9 (−300, −50) (−180, 100)

Case 3: Temporary Communication Failure. Consider a scenario where we have ten UAVs and
ten targets. Every UAV will be assigned to a target waypoint as shown in Table 5. Consider UAVs 0
and 1. They demonstrated robustness against temporary communication failure. UAV 0 started from
the initial coordinate (−250,−250) and flew to its assigned target (100, 0), while UAV 1 started from the
coordinate (350, 100) and flew to its assigned target (0, −50). The simulation was first performed with
perfect communication connections between both of them. Figure 16 shows the paths in the simulation,
while Figure 17 shows the separation distance profile. In the next run, we simulated communication
failure at time = 75 s for UAV 1 and later restored communication to the network at time = 77 s (the
communication failure lasted for two seconds). Figure 18 shows the simulation results, while Figure 19
shows the separation distance profile.

Table 5. Simulation of collision avoidance of MUAVS: Case 3.

UAV ID Initial Coordinates (N,E) Target Waypoints (N,E)

UAV 0 (−250, −250) (1, 110)
UAV 1 (100, 350) (−50, 0)
UAV 2 (−200, −180) (50, −100)
UAV 3 (−350, 200) (−250, 300)
UAV 4 (−150, −180) (−50, −150)–(100, −150)
UAV 5 (−300, −100) (−200, −75)
UAV 6 (−300, −70) (−110, 50)
UAV 7 (−280, −70) (−150, 150)
UAV 8 (−280, −50) (−200, 200)–(0, 210)
UAV 9 (−300, −50) (−250, 100)

It is observed from Figures 16 and 17 that UAVs 1 and 0 could avoid each other well when they
had perfect communication. With a temporary communication failure (two seconds failure in this
case), UAV 0 used the old position and speed information of UAV 1 (at time 75 s) to run the collision
avoidance. Figures 18 and 19 demonstrate that UAVs 1 and 0 could still avoid each other. If UAV 1 had
continuous communication failure, the proposed algorithm would not work. In this case, UAV 0 could
use built-in sensors such as laser or camera to estimate the position and speed of UAV 1 and perform
the collision avoidance control.



Actuators 2018, 8, 1 18 of 25

Figure 16. Case 3: Cooperative collision avoidance against temporary communication failure (normal
situation): UAVs 1 and 0 perform collision avoidance.

Figure 17. Case 3: Cooperative collision avoidance against temporary communication failure (normal
situation): Separation distance along the horizontal direction.

Figure 18. Case 3: Cooperative collision avoidance against temporary communication failure (unhealthy
situation): Red star represents temporary communication failure at time 75 s, and UAVs 1 and 0
perform collision avoidance.
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Figure 19. Case 3: Cooperative collision avoidance against temporary communication failure (unhealthy
situation): Separation distance along horizontal direction.

Case 4: Avoiding Moving Vehicles and a Static Obstacle. Consider a scenario with seven UAVs
in the working area. Table 6 shows the initial coordinates and target assignment for each UAV.
The maximum distance from the UAV for considering collision is 75 m. During this simulation, seven
UAVs were within 75 m of each other in order to fully test the collision avoidance with all seven UAVs.
The safe distance for the collision avoidance algorithm was set to 15 m, while the maximum speed of
the UAV was set at 5 m/s. During this simulation, seven UAVs passed one circular obstacle and passed
each other in order to test the collision avoidance algorithm against dynamical UAVs and a static
obstacle. The flight paths are shown in Figure 20, while the horizontal distance profile (between the
i-th UAV and j-th UAV) is shown in Figure 21. It was observed that the minimum separation distance
was about 25 m. Thus, safety was maintained with the proposed collision avoidance algorithm.

Figure 20. Case 4: Seven UAV control (flight paths).
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Table 6. Simulation of collision avoidance of MUAVS: Case 4.

UAV ID Initial Coordinates (N,E) Target Waypoints (N,E)

UAV 1 (0, 200) (0, −200)
UAV 2 (62, 190) (−62, −190)
UAV 3 (117, 162) (−117, −162)
UAV 4 (162, 117) (−162, −117)
UAV 5 (192, 62) (−192, −62)
UAV 6 (200, 0) (−200, 0)
UAV 7 (190, −62) (−190, 62)

Figure 21. Case 4: Seven UAV control (horizontal separation distance profile).

This case was used to examine the proposed distributed collision avoidance control for MUAVS.
In this form, all vehicles were connected with each other through communications, even when we
considered a maximum range of only 75 m, as explained in Section 3.3.1 This implies that if one vehicle
is far away from another (i.e., farther than 75 m), it will not affect the collision avoidance action of the
vehicle. This solves the scalability issue when the number of vehicles increases. It was observed from
the simulation that each vehicle only avoided the moving obstacles when it was near the obstacles
(i.e., less than 75 m).

These case studies give a basic test for the proposed algorithm. Further analysis is necessary to
validate the effectiveness in more stressful conditions (e.g., Monte Carlo simulation).

5. Hardware-in-the-Loop Simulation

Hardware-in-the-loop simulation (HILS) is a type of real-time simulation. We wanted to use HILS
to test the extreme case, the scenario is a cross between two groups of UAVs, which is difficult to do in
a real flight test. Each UAV is composed of a hardware payload with a mathematical motion model in
HILS (see Figure 22 and Table 7), and thus can communicate with the ground control station (GCS)
and other UAVs. The HB exchange is achieved in UDP mode. In this way, each UAV can implement
the distributed control based on the information obtained from the HB exchange. The motion model is
given by:
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x(k + 1) = x(k) + T × ux, (9)

y(k + 1) = y(k) + T × uy, (10)

z(k + 1) = z(k) + T × uz, (11)

vx(k + 1) =
x(k)− x(k− 1)

T
, (12)

vy(k + 1) =
y(k)− y(k− 1)

T
, (13)

vz(k + 1) =
z(k)− z(k− 1)

T
, (14)

where T is the sampling time, and ux, uy, uz obtained from the VO algorithm are the velocity control
signals along the x, y, z directions, respectively. The motion model was used to generate the position
and velocity of the UAV. Each UAV had a safe radius of 15 m. The GCS was used to broadcast the
parameters (including target waypoints) of UAV control, launch, and recovery commands. Every UAV
broadcasted its HB regularly at 1 Hz, while the position and velocity of UAVs were sampled at 10 Hz
and the output to the UAV motion model by sending the velocity command was at the rate of 4 Hz.
First, all UAVs were launched by a GCS launch command, climbing up vertically at an altitude of
60 m. Then, five UAVs (UAV IDs 113, 112, 110, 111, and 25600) went to the target waypoints to do
patrol motion control from west to east and from east to west (along the x-axis), while three UAVs
(UAV IDs 102, 103, and 107) went to the target waypoints do patrol motion control from south to
north and from north to south (along the y-axis). Later, all UAVs were commanded to go back by the
GCS. Finally, all UAVs landed at the launch points successfully. The flight paths of the eight UAVs are
shown in Figure 23, while the separation distance profile between UAV to UAV along the horizontal
direction is shown in Figure 24. It was observed that the minimum separation distance was about
30 m. This verifies that the VO algorithm was successful.

Figure 22. Hardware-in-the-loop simulation (HILS) : Payload. GCS: ground control station.

Table 7. Hardware components in payload.

Components Company Model Number Description

Single-Board Computer Commell LP173E 1.91 GHz quad core processor
Network Interface Card Mikrotik R11e-5HnD Mini PCIe, 802.11a/n
Camera E-con system See3CAM_11CUG 1.3 MP
Antenna Cisco AIR-ANT5135SDW 3.5 dBi, 5150–5850 MHz
Battery AA Portable Power Corp ICR18650B4 3-cell 11.1 V 2600 mAh
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Figure 23. HILS: Patrol motion control of eight UAVs: stars represent launching points and recovery
points, circles represent target waypoints.

Figure 24. HILS: Separation distance from UAV to UAV.

6. Conclusions

This paper presented a collision avoidance scheme for a multi-UAV system. We described a
distributed cooperative control strategy through shared UAV messages and information fusion. This is
a key point in our paper. By sharing HB information, each UAV knows the status of nearby UAVs
and chooses a feasible velocity command to avoid collision with the obstacles. We also proposed an
avoidance control approach dealing with polygonal obstacles. The core of this approach is to find
the maximum angle of each half-space of the collision cone which is formed by the line between the
vehicle and centroid of the polygonal obstacle. Simulation and hardware-in-the-loop tests verified that
the algorithm can avoid static obstacles and moving UAVs. The drawback of the proposed algorithm
is that the solution is locally optimal. In future research, we will have three jobs: incorporating
the visibility graph algorithm to find a globally optimal path for improving the collision avoidance
algorithm, investigating how uncertainties in GPS errors affect the performance of the collision
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avoidance algorithm and improving the algorithm accordingly, and comparing our algorithms with
existing collision avoidance methods.

Author Contributions: S.H. designed heartbeats and avoiding polygonal obstacle method; R.S.H.T. designed
the collision avoidance algorithm; W.L. was involved in the discussion and modification of the collision
avoidance algorithm.

Funding: This research received no external funding.
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Appendix A

Proof of Theorem 1. Taking the induced ∞-norm of (3), we have

||ξi(k + 1)||∞ = ||Aiξi(k)||∞
≤ ||Ai||∞||ξi(k)||∞ (A1)

= max1≤h≤N

N

∑
j=1

ρ
(h)
ji ||ξi(k)||∞.

Since (5) holds, this implies that

||ξi(k + 1)||∞ ≤ ||ξi(k)||∞, (A2)

that is, monotonic decreasing. Thus, ||ξi(k)||∞ ≤ ||ξi(0)||∞, which is bounded as k→ ∞.

Appendix B

Proof of Theorem 2. First, we have to consider the braking time τ, which is how much time is required
for a UAV to come to a full stop before colliding with another UAV. The worst case is that when the
UAV finds that it is possible to have a collision with an obstacle, it takes a maximum deceleration b
to brake down from its current velocity VM to a complete stop, that is, v(τ) = 0 at time τ. Thus, it
follows that

v(τ) = VM − bτ. (A3)

The braking time τ is obtained, that is

τ =
VM
b

. (A4)

Second, the sliding distance during the time τ is

∆S1 =
∫ VM/b

0
(VM − bs)ds = V2

M/b− b |VM/b
0 =

V2
M

2b
. (A5)

Third, at the same time, we also have to consider the obstacle moving at the speed VM at the
worst case during that time τ. The moving distance ∆S2 is

∆S2 = VMτ =
V2

M
b

. (A6)

Finally, the safe distance is given by

sa f e distance = ∆S1 + ∆S2 =
V2

M
2b

+
V2

M
b

=
3V2

M
2b

. (A7)
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