
actuators

Review

Artificial Immune Systems: An Overview for
Faulting Actuators

Robert Kidd

Engineering Department, SUNY Maritime College, Throggs Neck, NY 10465, USA; rkidd@sunymaritime.edu

Received: 31 May 2019; Accepted: 27 June 2019; Published: 29 June 2019
����������
�������

Abstract: This paper reviews Artificial Immune Systems (AIS) that can be implemented to compensate
for actuators that are in a faulted state or operating abnormally. Eventually, all actuators will fail or
wear out, and these actuator faults must be managed if a system is to operate safely. The AIS are
adaptive algorithms which are inherently well-suited to these situations by treating these faults as
infections that must be combated. However, the computational intensity of these algorithms has
caused them to have limited success in real-time situations. With the advent of distributed and
cloud-based computing these algorithms have begun to be feasible for diagnosing faulted actuators
and then generating compensating controllers in near-real-time. To encourage the application of AIS
to these situations, this work presents research for the fundamental operating principles of AIS, their
applications, and a brief case-study on their applicability to fault compensation by considering an
overactuated rover with four independent drive wheels and independent front and rear steering.

Keywords: artificial immune system; fault-tolerant control; genetic algorithms; case-study

1. Introduction

With the increase of robotics designed to work in hazardous environments, there has been an
increased focus on ensuring systems can either continue operating or “limp home” when actuators fault.
This field, Fault-tolerant Control (FTC), is an extremely active area of research and is ever expanding [1].
One of the emerging areas of study for FTC is bioinspired algorithms such as evolutionary algorithms
and genetic algorithms. One of the genetic algorithm variants, the Artificial Immune System (AIS),
has several of the traits that would be beneficial in FTC including adaptability to new situations
and a memory of previous solutions. Historically, these algorithms have been limited due to their
computational intensity. Advances in computation have allowed these algorithms to become feasible.
An overview of genetic algorithms and AIS theory, methods, construction, and application in FTC is
presented here.

Before diving into the AIS, the backbone of the genetic algorithm will be provided. This will be
done with the binary genetic algorithm first, as it is generally the simplest to explain. Because actuator
faults are often nonbinary, real-world applications require an extension of the binary genetic algorithm
to use real numbers. These real-value genetic algorithms utilize floating point numbers and require
some important modifications to the genetic algorithm to be functional. Once the fundamentals of a
real-valued genetic algorithm are laid out, the AIS can be discussed in detail.

1.1. Background on Fault-tolerant Control

FTC is an active field of study in part due to the inherent limitations of many methods involved.
A complete discussion of common FTC methods can be found in the literature in survey terms [1–3]; in
application specific terms, such as aircraft [4,5]; and in methodology terms, such as gain scheduling [6].
To demonstrate the applicability of the AIS in FTC, several common FTC methods will be discussed:

Actuators 2019, 8, 53; doi:10.3390/act8030053 www.mdpi.com/journal/actuators

http://www.mdpi.com/journal/actuators
http://www.mdpi.com
http://dx.doi.org/10.3390/act8030053
http://www.mdpi.com/journal/actuators
https://www.mdpi.com/2076-0825/8/3/53?type=check_update&version=2

Actuators 2019, 8, 53 2 of 26

multiple model controllers, gain scheduling, and sliding mode controllers, and model predictive
controllers. The main target of this particular application is multiple model controllers and model
reference adaptive control (MRAC), which attempt to force the system to behave like a desired reference
system [7]. This paper does not consider fault detection or diagnosis.

Multiple model (MM) controllers, also known as discontinuous controllers, have shown some
limited success. The system is given an a priori set of controllers. For FTC, these different controllers
typically compensate for different faults that can occur. For a very simple example, a robot could be
given a controller that compensates for each actuator failing. The controller that corresponds to a
known fault can be activated with minimal time and effort once the fault is detected. For a simple
example of this, consider a grid-based robot that can travel forward and perform 90-degree rotations to
the left and right. When the robot is facing north and wishes to move east, it would rotate right to
face east and then move forward. If this robot were to fault and be unable to rotate to the right but
could still rotate left and move forward, a multiple model structure could be implemented to overcome
this. The controller would dictate that when the robot needs to move to the right, it will perform three
90-degree rotations to the left and then move forward.

Recently, a MM controller has shown the ability to control a four wheeled vehicle in the presence
of actuator faults at low speed [8]. The vehicle tested here had four independent drive wheels that
were connected by two steering motors. This allowed each wheel to provide a propulsive effort, while
the front wheels were aimed in one direction and the rear wheels were aimed in another. When a short
is detected in the front drive wheels, the controller switches from all-wheel drive to rear-wheel drive.
When a fault is detected in the rear drive wheels, the controller switches from all-wheel drive to front
wheel drive. This prevents the system from behaving unexpectedly as the error can be side-stepped
through redundant systems.

MM controller systems are limited in that, on their own, they cannot adapt to errors that are
outside the errors they were tailored for. That is, for the vehicle example, if a fault occurred in the
steering motors or in both wheels on the left side, the MM controller would fail. An exhaustive search
method can be attempted to generate more models, such as in the work of Cully, Clune, and Mouret [9].
These possible candidates are generated by trialing all controller configurations ahead of time. When
a fault is detected, the best model is selected based on an intelligent search of the a priori controller
configurations. This expands the functionality of the system, but it still does not have the ability to
account for all faults and it requires extensive computation before any improvements can be made to
the faulted system. A simple hexapod robot required a 2-week computation to generate all possible
model configurations [9].

While these controllers lack versatility, they excel in situations where the failure modes are
known. If a failure is known to be likely, then developing a controller beforehand can save valuable
time when the error is detected. Similarly, if a given component is guaranteed not to fail, then no
effort or computation needs to be spent on considering the possibility of it failing. Their use of a
priori information is excellent, but they have difficulty adapting to situations outside their initial
knowledge base.

Other switching-type controllers include gain-scheduling (GS) and sliding mode (SM) controllers.
GS controllers have shown the ability to easily correct for errors that follow anticipated error paths
within linear systems. These systems typically use linear parameter varying (LPV) controllers; however,
they can be coupled with eigenvalue assignments to allow for guarantees of stability under total failures
that cause nonlinear behaviors [10]. Sliding mode controllers have shown success with theoretical FTC
systems, but have had difficulty in practice. This is due to “parasitic dynamics” or high frequency noise
in the plants that are generally considered negligible when designing a controller [11]. By incorporating
an asymptotic observer, these parasitic dynamics can be accounted for and filtered out of the controller.
This allows the SM controller to guarantee stability without needing to identify the cause of the
fault, perform system identification online, or redesign the controller online [11]. However, the SM
controller requires the plant model to be static while compensating for the fault and it cannot deviate

Actuators 2019, 8, 53 3 of 26

too significantly from the design point or operating envelope [6]. Additionally, the nonlinearities can
cause the system to break down if unexpected nonlinear behaviors are introduced [1]. In practice, the
physical system can become more complex after an error and errors can compound one another. Thus,
these controllers have the ability to adapt, but have trouble doing so in dynamic environments.

A model predictive (MP) controller is designed to deal with dynamic plants, anticipating how
they will change over time. Because the system deals with dynamic plants, a failure can be seen by the
controller as a change in the plant, assuming the failure is not too sudden for the controller. For faster
failures, where the controller sees the change as a large discontinuous change, the controller requires
a model of the fault or the system after the fault [12]. Recently, research on MP control has shifted
toward nonlinear and quickly changing systems. MP control can account for certain nonlinearities
entering a system by injecting the nonlinear effects into the controller and then compensating for them.
Unfortunately, this typically has to be done externally to the controller and can only give bounded
input-bounded output (BIBO) stability in many cases [13]. It should be noted that the situations where
these nonlinearities can be accounted for are fairly limited at the current stage of the research.

In general, model prediction lends itself very well to FTC problems, but it has several limitations
that are particularly difficult in this case. First, existing nonlinearities in system dynamics can make it
difficult for the system to adapt to new nonlinearities caused by a fault. Secondly, for certain fault cases,
the controller cannot adapt to errors on its own. Instead, it must rely on an external component to give
it new input. Lastly, these systems have difficulties with compounding errors and very fast changes.

1.2. Background on Bioinspired Algorithms

When discussing bioinspired algorithms, most researchers are more familiar with the Artificial
Neural Network (ANN) than the Artificial Immune System (AIS). Instead, this paper will focus on
the AIS as opposed to the ANN. Both are artificial models of complex biological systems: with the
AIS modeling the vertebral immune system and the ANN modeling the brain. Significantly more
work has been invested in researching the ANN than the AIS: “Though ANNs are well established
techniques and are widely used, AISs have received very little attention and there have been relatively
few applications of the AIS” [14]. This means that there are likely existing applications where the AIS
would be preferable to the ANN but are not currently being used. For example, the ANN typically
uses a central control node to mimic the centralized nature of the brain. The AIS can be implemented
this way, but the immune system is distributed throughout the body and so is extremely well suited to
applications with distributed systems and swarm robotics.

Both the ANN and the AIS are extremely computationally heavy. Cloud and distributed computing
have allowed these bioinspired algorithms to become feasible solutions by increasing the number of
calculations that can be done at any moment. For the AIS, this can increase the speed of the response
since all computationally intensive portions of the algorithm can be run independently, or parallelized.
This parallelization has been key to utilizing the computational advances for the ANN and AIS. As these
technologies improve, the AIS and ANN will become faster. Cloud computing services such as Google
Cloud, Amazon AWS, and Microsoft Azure allow incredibly heavy computations like those involved
in the ANN and AIS to be performed quickly without large investments from individual companies
or researchers. On the distributed side, inexpensive hardware advances can provide comparable or
significantly improved performance over desktops and laptops with extremely small form factors
and power requirements for independently deployed systems [15]. Examples include $99 NVIDIA
Jetson Nano for AI applications like ANN, and the $75–150 Google Coral Edge TPU for distributed
applications like the AIS [16,17]. Whether done in a centralized cloud or distributed system, these
computational advances are enabling the AIS and ANN to be tested in applications where they were
previously seen as too slow, such as in FTC.

The two largest factors preventing the AIS from becoming more common are the complexity of
the algorithm for those implementing them [14] and the long time periods required for convergence.
As the technological advances allow the algorithms to be computed faster, the AIS will become more

Actuators 2019, 8, 53 4 of 26

available. Some of the first applications will be for slow systems, such as maritime vessel operations.
The research in this area indicates significantly larger timescales available for computations [18].

While bioinspired algorithms such as the ANN are used extensively in fault detection and
diagnosis [19], especially through deep learning [20], this paper will address fault-tolerant control
regardless of whether detection or diagnosis is included. The AIS that will be discussed could
incorporate fault detection or could be run continuously, as in the example provided in Section 3.
Diagnostic conclusions could be drawn from the controller solution provided at the end of the algorithm,
but these typically require extensive performance data. ANNs are better suited to this analysis and
interpretation phase than the AIS.

One of the key differences that recommend AIS over ANN in this application is the way the
systems are designed to respond. ANNs are generally utilized for postprocessing large datasets or
interpreting new information based on the knowledge gained from these sets. This results in a large
time delay between inputs and outputs, but initial outputs that are of high quality. Essentially, the
ANN needs to wait and think, even in FTC implementations [21]. On the other hand, the AIS is
designed to develop an immediate output which is of questionable quality which improves over time.

In an emergency, the system cannot afford to wait and think. It needs to respond quickly, even if
the response is suboptimal. For example, if a UAV swarm is no longer responding as expected, the
UAVs cannot wait while a centralized system identifies the cause and the solution. The UAVs need
to attempt some sort of compensation immediately. Like the cells of the vertebral immune system,
the distributed nature of the swarm allows each UAV to test compensation methods individually.
The performance of each UAV can inform future compensation for the group. Between the distributed
nature of the AIS and the continually improving response, the AIS is better suited for FTC than the
ANN in certain scenarios.

2. Genetic Algorithms

Genetic algorithms were first introduced in the early 1960s [22], and have demonstrated historical
success at solving a variety of problem [23,24]. They also have a long track record of being able to
function in suboptimal environments [25]. As a member of the family of evolutionary algorithms,
these algorithms attempt to mimic Darwinian evolution. However, the key feature that differentiates
these algorithms from other evolutionary ones is their focus on paralleling the mechanics of genes and
DNA on a cellular level.

Modern biology classes cover genetics and the basics of cellular reproduction with enough detail
for this paper. The core functionality is as follows; within a certain population of organisms, the
individuals that are most suited to survive in the current environment, the fittest, can reproduce and
generate the most offspring. The genes that make those individuals the fittest ones will be passed along
to the future generations. Except for rare circumstances, such as a suddenly changing environment, this
means that the overall fitness of the population will increase and eventually an optimum individual
will be created. There are many important caveats to the above that are not readily apparent in nature
but become critical in writing these algorithms. To discuss these, the simple binary genetic algorithm
will be discussed.

2.1. The Binary Genetic Algorithm

When all control parameters in a problem can take one of two values, the binary genetic algorithm
has can consistently find an optimal solution. Each control parameter for the problem is represented as
a bit, which can either be high (value of 1) or low (value of 0). This means that a binary string or array
containing a bit for each control parameter can represent a configuration of the control parameters.
These strings are often termed candidates or candidate solutions. Within the biological model, an
individual competes within a population for the right to reproduce based on its fitness, which is
dictated by the effects of its genes. The binary genetic algorithm begins the biological parallel by

Actuators 2019, 8, 53 5 of 26

considering each candidate binary string as an individual organism. The bits within the strings serve
as the genes, while a collection of these individuals is considered a population.

To generate a reasonable solution to the optimization problem, the population must be sufficiently
large. If the population is too small, there is insufficient diversity to ensure the solution generated is a
global optimum. The genetic algorithm shares many traits with common hill-climbing algorithms such
as greedy attraction toward local optima and an inability to leave local optima if not implemented
correctly. Required strategies exist for preventing local optima such as increased mutation or migration,
which will be discussed later. However, the cleanest method to ensure a solution closer to the global
optimum is produced in a reasonable timeframe is to use a sufficiently large population. The literature
recommends a population that has ten times as many individuals as there are variables to be optimized.

The population in a genetic algorithm is typically created at random. As the population is
generated, the major concerns that often arise are clustering away from the global optimum and a lack
of genetic diversity. When the population is clustered away from the global optimum, the algorithm
will take significantly longer to complete. If the population has insufficient genetic diversity, then
the system cannot generate a reasonable solution through recombination of the individual genes
in the population. With enough time, the optimum can be found but this relies too heavily on
random mutation.

Alternative heuristic methods can be used to attempt to mitigate these issues. These can include
the use of scatter patterns [26], orthogonal arrays [27,28], and initial testing to determine probable
optima [29]. These approaches are best suited to continuous or real-valued genetic algorithms [26,27],
but can function in discrete or binary situations [27], especially in manufacturing environments [28].
These studies indicate that, while these approaches provide a good distribution across the possible
configurations of the input parameters, they are equally susceptible to missing global optima and
being drawn into local optima. The literature has some debate on the matter so many applications use
either a randomly generated population or a population that has a randomly generated population
augmented by a heuristically generated population.

To determine which candidates in the population should be allowed to pass along their genes, the
fitness of each candidate must be determined. The fitness is calculated through some pre-determined
heuristic. This measure follows directly from the standard cost function or objective function found in
optimization problems [30]. At times, these functions are augmented through the addition of other
terms to allow the algorithm to function appropriately [30]. This augmentation could take the form of
a penalty for a population that is too uniform, a bonus for a candidate that has a trait not found in
the rest of the population, increasingly complex terms that are introduced as the solutions gets more
successful [31], or environmental constraints that are introduced over time [32].

Once the fitness of the individuals has been determined, they can be used to create a new
generation of individuals. To do this, the best candidates need to be selected. The selection of these
individuals for reproduction can be done through a variety of different methods. The most popular are
fitness proportionate selection and stochastic uniform sampling.

Fitness proportionate selection is commonly termed “roulette wheel selection” due to its mechanics.
The total fitness of the population is calculated as the sum of the fitness values of every individual in
the population. The total fitness can be envisioned as a roulette wheel where each wedge of the wheel
corresponds to an individual in the parent population. The width of each wedge is determined by the
percentage of the total fitness that can be attributed to each individual. When a parent needs to be
selected, the roulette wheel is “spun”. Each individual has a probability of being selected equal to
the percentage of the wheel occupied by its corresponding wedge. An example using this selection
mechanic will be provided in the next section.

Stochastic uniform sampling uses the total fitness of the population and a single random variable
to determine which individuals will reproduce. The fitness of the individuals is again summed and the
percentage of the fitness that corresponds to each individual is again calculated. However, instead of
each individual being drawn randomly from a wheel, one random number is drawn as the starting

Actuators 2019, 8, 53 6 of 26

point for the selection of all individuals along a number line. This number must be less than or equal to
the step size. The number line is generated by concatenating the fitness of the individuals in descending
fitness order. Consider a 3-individual population that has individuals α, β, and γ. If the fitnesses of
α, β, and γ are 26, 8, and 10, respectively, the number line would be 44 units long. The first 26 units
correspond to α, units 27 through 36 correspond to γ, and units 37–44 correspond to β. The selection
process then takes evenly sized steps through the entire fitness of the algorithm. At each step, the
corresponding individual is selected. The step size is determined by dividing the total fitness by the
number of individuals needed. For the example above, assuming four individuals are to be selected,
the step size should be 11. Assume the random number indicating the starting point is 8. The first
individual then is the one with a fitness corresponding to unit 8, meaning α is selected. The step size is
added to the random number, generating the value 19. The individual with a fitness corresponding to
unit 19 is still α, so it is selected a second time. Again, 11 is added to the random value, generating
30. Since 30 is between 27 and 34, γ is now selected. The step size is added again, generating 41,
indicating that β should be selected. Thus, the four selections are: α, α, γ, and β. These four selections
are randomly paired for reproduction.

The main advantages of stochastic uniform sampling over fitness proportionate selection are that
only a single random number needs to be generated and individuals with very low scores are more
likely to be chosen. Computationally, the reduction in random numbers slightly decreases the time
required for the algorithm. Additionally, when an individual or small cluster of individuals dominate
the overall fitness, the fitness proportionate selection process will bias the selection process away from
the smaller values. The stochastic uniform sampling will give less fit individuals a better chance of
being selected at least once [33].

After selection, the chosen candidates are allowed to reproduce and generate a child population
through crossover. In crossover, a new binary string is generated through a combination of two other
binary strings. To keep with the biological parallel, the pair of binary strings is called the parents and
the new binary string is called the child. The most common methodology to create the child is for the
first portion of the child to be copied from one parent and the second portion to be copied from the
other parent. This is called single-point crossover. To accomplish this, a random number is generated
which is approximately the length of the binary string. This random number indicates the location, or
locus, where the DNA source switches from one parent to the other.

The literature includes some minor debate about whether to allow the locus to occur at the very
front or very back of the string [34]. If this happens, the child will be identical to one parent and take
no traits from the other. Another mechanic, elitism, exists to allow the best parents to be passed from
one generation to the next. However, allowing the locus to extend to the limits of the string allows
lesser parents to be passed directly into the child population at random. Since this adds candidates
that are not redundant individuals, most applications allow it. That is, for a 10-bit string, a random
number is generated from zero to ten. If the number is between 1 and 9, inclusively, then the child
will be a hybrid of the two parents as crossover after gene 1, gene 9, or any gene in between will have
components from both parents. If the value is 10, it will be a direct copy of the first parent, and if the
value is 0, it will be a direct copy of the second parent.

Single-point crossover is acceptable for most applications, but multiple-point crossover can be
used. In multiple point crossover, multiple numbers are randomly generated for the loci. As the
algorithm generates a child, it switches sources between parents at each locus. Two loci are the most
common application, but three or more loci can be used in longer strings. Multiple loci force the
children to be more hybridized at the expense of decreased diversity. Because the candidates are
drawn to the average of the parents, there is a smaller chance to end up closer to one parent or another,
which leads the overall population to have less diversity. Because of this, three or more loci are
infrequently seen.

After the crossover children have been produced, mutation can alter the children’s genes. Mutation
is a key factor that ensures a genetic algorithm has theoretical guarantees of optimality and prevents

Actuators 2019, 8, 53 7 of 26

the algorithm from getting drawn into a local optimum [34]. In mutation, any number of bits can
be flipped from 1 to 0 or from 0 to 1. Mutation algorithms need not be complicated. Often a small
percentage of individuals is randomly selected for mutation. This mutation percentage depends on the
application, but values between 1% and 5% are common, with values up to 10% in certain applications.
The children selected for mutation are chosen at random to prevent any bias in the algorithm. Once a
child is selected for mutation, the number of bits that are flipped is determined by the application
and the mutation percentage. If the mutation percentage is high, a large number of children will be
mutated, so the number of bits to be flipped is held low and vice versa. Increased mutation rates
increase the diversity of the child population at the expense of computational time required to converge
to a solution. Therefore, tuning the mutation rate is critical in any application.

Crossover and mutation are not used to generate the entirety of the child population in most
applications. Any remaining candidates can be generated through elitism and migration. Elitism
allows the best candidates to be passed to the child population untouched. If elitism is used, the elitism
rate is kept low, typically ~5%. This low value is typically sufficient to prevent the best candidates from
being lost due to random selection without degrading the speed of the algorithm unduly. The elite
children can either be defined as the best individuals, or the best unique individuals. If the unique
individuals are chosen, the algorithm may have convergence problems in the final stages as the
population becomes more homogeneous.

Migration allows randomly generated individuals to be injected into the child population directly.
Various methods are used to implement migration. The most common are to always include a small
percentage of every child population as random individuals, or to inject new migrant candidates at key
stages of the algorithm. When adding random individuals to every child generation, the population
stays diverse at the expense of time to converge. When injecting new migrants into the algorithm at
key stages, the injection can either occur when a change in the problem is detected, i.e., the goal has
changed or shifted or when the population has begun to converge to an optimal value. In both cases,
the migration allows a sudden spike in diversity to ensure the population trends toward the global
optimum instead of a local one.

Example Binary Genetic Algorithm

To demonstrate the mechanics of the binary genetic algorithm, consider a complex but unknown
piping system with ten valves that control the output flow of a tank. If the output flow of the tank is to
be maximized through opening and closing the valves via binary actuators, such as solenoids. A binary
genetic algorithm could be used to determine the optimal valve combination. Each of these valves
is essentially a Boolean variable since it can either be open or closed, but not something in between.
Therefore, the combination of the valves can be represented by a binary string such as the combination

A =
[

0 0 1 0 0 1 0 0 0 1
]
, (1)

where valves one through ten are represented by entries one through ten, respectively. A high value (1)
represents an open valve, while a low value (0) represents a closed valve. Equation (1) represents a
combination where only valves 3, 6, and 10 are open. The fitness of A can be determined by measuring
the output flow rate, since that is a direct measurement of the parameter that the algorithm is attempting
to optimize.

A population of ten individuals can be generated to start the genetic algorithm by creating strings
at random as shown in Table 1. The next step would be to run experiments and measure the output flow
rate. For this paper, the fitness values were generated randomly as a demonstration. The individuals
in the population will then be selected for reproduction.

Actuators 2019, 8, 53 8 of 26

Table 1. The table below shows ten different individuals (A–J) in a population along with the individuals’
fitnesses as measured in liters per minute and the probability that the individual will be selected
for reproduction.

Name Combination Fitness (L/min) Selection
Probability

Cumulative
Probability

A
[

0 0 1 0 0 1 0 0 0 1
]

51.99 11.35% 0.1135
B

[
1 0 1 1 0 0 1 1 1 1

]
5.38 1.18% 0.1253

C
[

1 1 1 0 1 0 1 1 1 1
]

86.22 18.82% 0.3135
D

[
1 1 0 0 1 1 1 0 1 0

]
44.29 9.67% 0.4102

E
[

0 0 0 0 1 0 1 0 0 0
]

54.80 11.97% 0.5299
F

[
0 0 1 1 1 0 1 0 1 0

]
56.69 12.38% 0.6536

G
[

1 0 1 0 1 0 1 0 0 1
]

68.04 14.86% 0.8022
H

[
1 1 1 1 1 1 0 0 0 1

]
37.14 8.11% 0.8833

I
[

0 1 0 1 0 1 1 0 1 0
]

7.8 1.71% 0.9004
J

[
0 1 0 1 0 0 0 0 1 1

]
45.64 9.96% 1.0000

The selection probability column of Table 1 is generated for the selection algorithm by dividing
the flow rate for an individual by the total flow rate of all candidates. That is, for A,

Prob(A) =
Fit(A)

Fit(A)+Fit(B)+Fit(C)+ . . .
=

51.99
51.99 + 5.38 + 86.22 + . . .

= 11.35%. (2)

The selection will be performed by fitness proportionate selection. The Cumulative Probability
column for the i-th candidate is the cumulative sum of all selection probabilities from A to i. That is,
for C,

Cumulative(C) = Prob(A) + Prob(B) + Prob(C) = 0.1135 + 1.18 + 18.82 = 0.3135. (3)

When a new parent needs to be generated, a random number is generated from a uniform
distribution between 0 and 1. The parent is indicated by the individual that has the lowest cumulative
probability value that is greater than or equal to the random number. For example, C will be chosen as
a parent if the random number is greater than 0.1253 but less than or equal to 0.3135.

Once two parents are chosen for reproduction, they will produce a child through crossover.
The locus of crossover is a random integer between 0 and 10, with 10 being the maximum size of the
individuals. Before the locus, the entries of the first parent are used. After the locus, the entries from
the second parent are used. The example shown in Equation (4) provides an example where A and C
generate a child through crossover if the locus is 4. The entries from the parents that will form the
child are bolded for clarity.[

0 0 1 0 0 1 0 0 0 1
][

1 1 1 0 1 0 1 1 1 1
] →

[
0 0 1 0 1 0 1 1 1 1

]
= child. (4)

Once the child is generated, it can be mutated. The probability of mutation is generally held low
but is application dependent. In this application, 5% would be a reasonable mutation percentage if one
entry changed in selected children. Should the child above be chosen for mutation, a random integer
between 1 and 10 will determine the locus of mutation. Equation (5) demonstrates a mutation of the
child of Equation (4) when the locus is 3. Since entry 3 of the child is a one, indicating that the valve is

Actuators 2019, 8, 53 9 of 26

open, the mutation causes the entry to change to a zero, indicating that the valve should be closed.
The changed entry is shown as the bolded entry in Equation (5):

mutant child =
[

0 0 0 0 1 0 1 1 1 1
]
. (5)

It should be noted that mutation can generate an individual that is dissimilar to both parents.
After the mutation, the mutant child has valve three closed when both parents originally have the
valve open. This ability to generate new solutions outside the previous scope of solutions is a key
factor in giving the algorithm theoretical guarantees about global optimality [34].

Mutation can generate increased diversity, but it can be problematic to rely solely on mutation.
Because mutation relies on small random changes, sudden large shifts in the goal or the environment
often require the use of additional mechanics. As such, migration is often used to increase diversity.
The migrant can be added to the child population directly. These migrants are usually generated
randomly. In this case, adding the candidate in Equation 6 increases the genetic diversity of the
population by increasing the number of candidates with valve 8 open from 2 to 3. The migrant is also
the only candidate with valve 8 open and valve 9 closed.

migrant =
[

1 0 1 0 0 1 0 1 0 1
]

(6)

2.2. The Real-Valued Genetic Algorithm

When problems cannot be well phrased in terms of binary inputs, the genetic algorithm must
be modified to use real valued inputs. These are typically implemented through floating point
variables [35]. The algorithms have shown success in many environments [34].

On order to transfer the principles of the genetic algorithm from the binary case into the real-valued
case, the traits that define the individuals must be reconsidered. In the valve example above, each
valve could be fully open, fully closed, or anything in between. Since most control methods utilize
digital hardware, there is a limit to the resolution of the command signals. As such, the physical
parameters of the system could allow the valves to be represented by a binary string, but these end up
prohibitively large. For example, each valve could be controlled by an 8-bit command signal, such as
a PWM signal from an Arduino Uno. In this case, the 8-bit command signal for all valves could be
combined into an 80-bit binary string for the binary genetic algorithm. Unfortunately, this algorithm
takes significantly more computational time to process and converge. Real-valued genetic algorithms
offer a better approach.

To implement the real-valued genetic algorithm, the initial population must be generated. First,
the limits of the individuals’ genes must be defined. In the binary case, the genes can be either high (1)
or low (0). In the real-valued case, a maximum and minimum must be defined to specify an acceptable
range. The valve example above could use the percentage that the valve is open to define the maximum
and minimum. The minimum would be 0 representing a fully closed valve. The maximum would
be 100, representing a fully open valve. The initial population is generated by following the same
processes and principles as in the binary case, save that when a random number is generated, it falls in
the allowable range defined by the maximum and minimum. For most applications, the literature still
recommends approximately 10 individuals in the population for every variable that is being solved for.
This means the 10 valves would require a population of 100 individuals in the population.

For a totally randomized initialization of the real-valued valve problem, the individuals would
each get 10 random variables between 0 and 100 assigned to it representing the openness of each valve.

Fitness evaluation and selection occur identically to the binary case. Every individual has their
fitness evaluated and the best are selected for reproduction through fitness proportionate selection,
stochastic uniform sampling, or some similar selection algorithm.

Crossover, however, requires significant changes from the binary version. If the values of the two
parents are averaged, the child will be limited to the range between the two parents. This means no

Actuators 2019, 8, 53 10 of 26

child could be generated outside of the range of parents. Recalling the binary situation, one of the main
benefits of the crossover mechanic was its ability to generate children that were unlike their parents.
To generate a similar outcome in the real-valued case, a heuristic crossover is used [36]. Assume the
two parents are A and B. For a given gene, the value of A’s gene is subtracted from candidate B’s gene.
This difference is multiplied by some crossover coefficient (δ) and added the gene of candidate A.
That is,

child = parentA + δ × (parent B − parentA

)
. (7)

The crossover coefficient δ typically ranges between 0.5 and 1.5. This allows the system to generate
a child that can be between the two parents or beyond them.

Crossover using this method can be implemented in several different ways [36]. The most common
is to randomly select which parent is A and which is B. However, some implementations use the fitter
individual for B and the less fit for A. This biases children toward the fitter parent. Secondly, algorithms
could use a different coefficient for each gene in the parents or could use a uniform crossover coefficient
for all genes for a given child. The crossover coefficient is usually generated randomly for each child to
mimic the variability of the crossover locus. If the child ends up with a gene that would be outside the
allowable range defined by the maximum and minimum values, it is typically capped at the maximum
or minimum value.

Mutation is accomplished by changing values within the candidate to any random number within
the acceptable range. This process is highly application dependent, however. Mutation percentage
and the number of entries to be mutated in the chosen candidates must be tuned in every application.
Typical applications can have mutation percentages of up to 20%. This number is higher than the
binary case because the individual mutations are not guaranteed to be as traumatic changes as in the
binary case as they do not go from one limit to the other automatically.

The literature does offer some alternative approaches within the mechanics of the mutations.
Instead of mutations selecting a new value from a uniform distribution between the maximum and
minimum, mutations could be generated as deviations from the original value. In this case, the
mutation’s strength would be indicated by a normally distributed random variable with a mean of
zero and standard deviation dictated by the application. The random variable is then added to the
original gene. Again, if this puts the value outside the acceptable limit, it is capped at the maximum
or minimum value. Utilizing this approach reduces the effect of each mutation even further, so the
overall mutation rate must also be increased.

Migration and elitism show no major difference in mechanics between the binary and real valued
cases. The migration rate and elitism rate for a real valued application are usually the same as those
found in similar binary applications.

Despite their success, the real-valued genetic algorithms can have difficulties in certain
situations [37]. In particular, the literature notes that “although the theory helps suggest why
many problems have been solved using real-coded GAs, it also suggests that real-coded GAs can be
blocked from further progress in those situations when local optima separate the virtual characters
from the global optimum” [37]. That is, if the real valued algorithm is not defined appropriately or is
used when it is inapplicable, it will be trapped by local optima. An example of this would be if 9 real
valued variables were used to try to optimize the 10 valves.

Applications of Genetic Algorithms to Fault-tolerant Control

The genetic algorithms discussed above have some major limitations. They are especially difficult
to use in fault-tolerant control because these situations are usually dynamic. In a dynamic environment,
the algorithm has a strong tendency to converge prematurely or lose diversity and be unable to respond
to new faults. When the situation changes, the algorithm can take an extremely long time to regenerate
the solution. To demonstrate this, consider two situations: one where the goal value drifts after
the algorithm has converged and one where the goal value suddenly changes after the algorithm
has converged.

Actuators 2019, 8, 53 11 of 26

For the examples below, the system approached a solution, but the goal was changed before the
algorithm could finish. The target application for this algorithm was to determine an optimal value
that was between −100 and 100. The fitness function for this application was the absolute value of the
difference between the individual and the target number. Initially, the target number was 83 and the
goal was changed once the algorithm found a candidate between 82.9 and 83.1. For the drifting goal,
the target value was reduced by 0.1 every generation.

The binary genetic algorithm’s performance with the drifting goal is shown in Figure 1. The black
dots represent the fitness of the best candidate while the blue dots represent the average fitness of all
individuals in the population. As can be expected, since the algorithm uses a binary representation,
only whole numbers are used, so the algorithm has a strong tendency for the best candidate to steadily
increase or decrease in fitness. Additionally, since the binary algorithm relies heavily on mutation once
convergence has been achieved, it is extremely difficult to adapt to minor changes. The mutation rate
was set to a typical 1% for a 10-candidate population. This means that for every 10 generations, one
mutation would be expected. Generations 95–103 have best fitness values and mean fitness values that
are equal. This indicates that the algorithm has extremely limited diversity. This is a major point of
concern because the algorithm has essentially converged despite being 8 units away from the target.

Actuators 2019, 8, 53 11 of 26

goal was changed once the algorithm found a candidate between 82.9 and 83.1. For the drifting goal,
the target value was reduced by 0.1 every generation.

The binary genetic algorithm’s performance with the drifting goal is shown in Figure 1. The
black dots represent the fitness of the best candidate while the blue dots represent the average fitness
of all individuals in the population. As can be expected, since the algorithm uses a binary
representation, only whole numbers are used, so the algorithm has a strong tendency for the best
candidate to steadily increase or decrease in fitness. Additionally, since the binary algorithm relies
heavily on mutation once convergence has been achieved, it is extremely difficult to adapt to minor
changes. The mutation rate was set to a typical 1% for a 10-candidate population. This means that for
every 10 generations, one mutation would be expected. Generations 95–103 have best fitness values
and mean fitness values that are equal. This indicates that the algorithm has extremely limited
diversity. This is a major point of concern because the algorithm has essentially converged despite
being 8 units away from the target.

Figure 1. A binary genetic algorithm responding to a moving goal after initial convergence.

Figures 2 and 3 demonstrate the response of the real-valued genetic algorithm to the same
scenario. Again, mutation is the primary avenue for the algorithm to track the drifting goal with a
mutation rate of 1%. However, in this application, the mutation is done via adding a normally
distributed random variable to the child which has a mean of zero. In Figure 2, the standard
deviation of the random variable is 0.01, while in Figure 3 the standard deviation of the random
variable is 0.1. As can be seen, this algorithm does a much better job of tracking the drifting target
than the binary algorithm. While the binary algorithm rarely had the best fitness below 1.5, the mean
fitness of the real valued algorithm rarely has a mean fitness greater than 1.5 for Figure 2. In Figure 3,
the mean stays high, but the best value stays below 1.

Figure 1. A binary genetic algorithm responding to a moving goal after initial convergence.

Figures 2 and 3 demonstrate the response of the real-valued genetic algorithm to the same scenario.
Again, mutation is the primary avenue for the algorithm to track the drifting goal with a mutation rate
of 1%. However, in this application, the mutation is done via adding a normally distributed random
variable to the child which has a mean of zero. In Figure 2, the standard deviation of the random
variable is 0.01, while in Figure 3 the standard deviation of the random variable is 0.1. As can be seen,
this algorithm does a much better job of tracking the drifting target than the binary algorithm. While
the binary algorithm rarely had the best fitness below 1.5, the mean fitness of the real valued algorithm
rarely has a mean fitness greater than 1.5 for Figure 2. In Figure 3, the mean stays high, but the best
value stays below 1.

Actuators 2019, 8, 53 12 of 26
Actuators 2019, 8, 53 12 of 26

Figure 2. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a moving goal after initial convergence.

Figure 3. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a moving goal after initial convergence.

While Figures 1–3 seem to indicate that the real-valued genetic algorithm is clearly superior to
the binary genetic algorithm for this application, this depends highly on the way the algorithm is
tuned and the type of application. Figures 4–6 demonstrate the challenges associated with this. In
these figures, the goal suddenly changes from 83 to −47 after the algorithm has begun to converge.

Figure 4 demonstrates the response of the binary genetic algorithm over the first 100
generations. As can been seen, the algorithm initially moves the mean toward the best individual,
but the best individual takes a significant number of iterations to move closer to the target value.
This algorithm finds the new optimum value at candidate 185 in this run. This example is generally
nonrepeatable as the random mutations can cause the right mutation at any time. During 5 runs of
this trial, the maximum was 273 generations while the minimum was 41.

Figure 2. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a moving goal after initial convergence.

Actuators 2019, 8, 53 12 of 26

Figure 2. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a moving goal after initial convergence.

Figure 3. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a moving goal after initial convergence.

While Figures 1–3 seem to indicate that the real-valued genetic algorithm is clearly superior to
the binary genetic algorithm for this application, this depends highly on the way the algorithm is
tuned and the type of application. Figures 4–6 demonstrate the challenges associated with this. In
these figures, the goal suddenly changes from 83 to −47 after the algorithm has begun to converge.

Figure 4 demonstrates the response of the binary genetic algorithm over the first 100
generations. As can been seen, the algorithm initially moves the mean toward the best individual,
but the best individual takes a significant number of iterations to move closer to the target value.
This algorithm finds the new optimum value at candidate 185 in this run. This example is generally
nonrepeatable as the random mutations can cause the right mutation at any time. During 5 runs of
this trial, the maximum was 273 generations while the minimum was 41.

Figure 3. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a moving goal after initial convergence.

While Figures 1–3 seem to indicate that the real-valued genetic algorithm is clearly superior to the
binary genetic algorithm for this application, this depends highly on the way the algorithm is tuned
and the type of application. Figures 4–6 demonstrate the challenges associated with this. In these
figures, the goal suddenly changes from 83 to −47 after the algorithm has begun to converge.

Figure 4 demonstrates the response of the binary genetic algorithm over the first 100 generations.
As can been seen, the algorithm initially moves the mean toward the best individual, but the best
individual takes a significant number of iterations to move closer to the target value. This algorithm
finds the new optimum value at candidate 185 in this run. This example is generally nonrepeatable
as the random mutations can cause the right mutation at any time. During 5 runs of this trial, the
maximum was 273 generations while the minimum was 41.

Actuators 2019, 8, 53 13 of 26Actuators 2019, 8, 53 13 of 26

Figure 4. A binary genetic algorithm responding to a sudden jump in the target value after initial
convergence.

The real-valued genetic algorithm that showed significant improvement in the drifting goal
situation has an extremely hard time finding the optimum in the suddenly changing environment.
In Figure 5, the algorithm can be seen to be slowly drifting toward the optimum value. Because the
randomness is tightly constrained by the small standard deviation, 0.01, the algorithm cannot make
sudden changes. This algorithm consistently takes ~200 generations to converge. In Figure 6, the
increased standard deviation of 0.1 allows the algorithm to converge more quickly. However, it
should be noted that the algorithm still tends to drift toward the goal. While this is likely reasonable
in this application, if the goal changed from 830 to −470 instead of 83 to −47, the response would be
like that of Figure 5 in the current range.

Figure 5. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence.

Figure 4. A binary genetic algorithm responding to a sudden jump in the target value after
initial convergence.

The real-valued genetic algorithm that showed significant improvement in the drifting goal
situation has an extremely hard time finding the optimum in the suddenly changing environment.
In Figure 5, the algorithm can be seen to be slowly drifting toward the optimum value. Because the
randomness is tightly constrained by the small standard deviation, 0.01, the algorithm cannot make
sudden changes. This algorithm consistently takes ~200 generations to converge. In Figure 6, the
increased standard deviation of 0.1 allows the algorithm to converge more quickly. However, it should
be noted that the algorithm still tends to drift toward the goal. While this is likely reasonable in this
application, if the goal changed from 830 to −470 instead of 83 to −47, the response would be like that
of Figure 5 in the current range.

Actuators 2019, 8, 53 13 of 26

Figure 4. A binary genetic algorithm responding to a sudden jump in the target value after initial
convergence.

The real-valued genetic algorithm that showed significant improvement in the drifting goal
situation has an extremely hard time finding the optimum in the suddenly changing environment.
In Figure 5, the algorithm can be seen to be slowly drifting toward the optimum value. Because the
randomness is tightly constrained by the small standard deviation, 0.01, the algorithm cannot make
sudden changes. This algorithm consistently takes ~200 generations to converge. In Figure 6, the
increased standard deviation of 0.1 allows the algorithm to converge more quickly. However, it
should be noted that the algorithm still tends to drift toward the goal. While this is likely reasonable
in this application, if the goal changed from 830 to −470 instead of 83 to −47, the response would be
like that of Figure 5 in the current range.

Figure 5. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence.

Figure 5. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence.

Actuators 2019, 8, 53 14 of 26Actuators 2019, 8, 53 14 of 26

Figure 6. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a sudden jump in the target value after initial convergence.

As stated previously, migration can augment mutation to increase diversity. Figure 7
demonstrates this effect. The population and mutation mechanics used in Figure 5 were
implemented in Figure 7. However, when the sudden change in goal was detected, random
candidates were added to the algorithm comprising 40% of the population. Overall, the algorithm
finds the solution a little slower than the algorithm in Figure 6, taking 19 generations to arrive at an
approximate solution compared to 16 previously. It has a much better mean fitness at the end of the
algorithm, however. This means that the algorithm has more data points near the optimum at the
end of the algorithm to get better resolution when converging. The algorithm converges to a much
narrower band than in the Figures 4 through 6. In Figure 6, the best solution has an error of 2.66 × 104

while in Figure 7 and the solution has an error of 1.22 × 108. This is a significant improvement
between the two.

Figure 7. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence when 40%
of the population is replaced through migration.

Figure 6. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a sudden jump in the target value after initial convergence.

As stated previously, migration can augment mutation to increase diversity. Figure 7 demonstrates
this effect. The population and mutation mechanics used in Figure 5 were implemented in Figure 7.
However, when the sudden change in goal was detected, random candidates were added to the
algorithm comprising 40% of the population. Overall, the algorithm finds the solution a little slower
than the algorithm in Figure 6, taking 19 generations to arrive at an approximate solution compared to
16 previously. It has a much better mean fitness at the end of the algorithm, however. This means
that the algorithm has more data points near the optimum at the end of the algorithm to get better
resolution when converging. The algorithm converges to a much narrower band than in the Figure 4
through 6. In Figure 6, the best solution has an error of 2.66 × 104 while in Figure 7 and the solution
has an error of 1.22 × 108. This is a significant improvement between the two.

Actuators 2019, 8, 53 14 of 26

Figure 6. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.1 responding to a sudden jump in the target value after initial convergence.

As stated previously, migration can augment mutation to increase diversity. Figure 7
demonstrates this effect. The population and mutation mechanics used in Figure 5 were
implemented in Figure 7. However, when the sudden change in goal was detected, random
candidates were added to the algorithm comprising 40% of the population. Overall, the algorithm
finds the solution a little slower than the algorithm in Figure 6, taking 19 generations to arrive at an
approximate solution compared to 16 previously. It has a much better mean fitness at the end of the
algorithm, however. This means that the algorithm has more data points near the optimum at the
end of the algorithm to get better resolution when converging. The algorithm converges to a much
narrower band than in the Figures 4 through 6. In Figure 6, the best solution has an error of 2.66 × 104

while in Figure 7 and the solution has an error of 1.22 × 108. This is a significant improvement
between the two.

Figure 7. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence when 40%
of the population is replaced through migration.

Figure 7. A real-valued genetic algorithm using a normally distributed mutation with standard
deviation of 0.01 responding to a sudden jump in the target value after initial convergence when 40%
of the population is replaced through migration.

As these figures indicate, there genetic algorithm often requires tuning to ensure proper results.
In a fault-tolerant control problem, there may be insufficient information to tune the algorithm

Actuators 2019, 8, 53 15 of 26

beforehand. As such, the genetic algorithms need major modifications to work in these environments.
They also have a strong tendency to be drawn into local optima due to hill-climbing mechanics or
produce inexact solutions due to limited resolution at the end of the algorithm. Migration holds the
key to allowing the genetic algorithm to be able to leave local optima while still generating enough
resolution during convergence. The AIS accomplishes this while also allowing memory to be included
in the algorithm.

2.3. The Artificial Immune System

Genetic algorithms have been used for fault-tolerant control, though they have only been applicable
recently [38]. AIS have been used to a limited extent in fault-tolerant control [39]. However, both have
not seen widespread adoption. This is primarily due to the computational complexity of the algorithms.
For basic problems, such as in [38,39], the control schemes are simple, and the algorithms have shown
good results. However, the algorithms generally only use offline computation. As processor speeds
increase and cloud computing becomes more available, these computations can be done in less time
and can possibly be done near real time. The AIS focuses on integrating the principles of the biological
immune system into the genetic algorithm.

In the natural immune system [40], plasma B cells attempt to neutralize contagions when an
infection occurs. When the plasma B cells cannot respond well, memory B cells are activated that
show a good response to a portion or the whole of the infection. When activated, these memory B
cells generate many clones that travel to the infection site. During the cloning process, the new B cells
undergo somatic hypermutation, allowing many variants of the memory B cells to flood the infection
site. Somatic hypermutation is a transformation process that incorporates gene segments from the
environment into the individuals. Assuming these new cells are fitter than the plasma B cells, they will
replace cells in the plasma B cell population. From here, standard genetics mechanics continue in the
plasma B cells while new clones are continually brought in if the response at the infection site is not as
quick as desired. When the plasma B cells have discovered a solution to the infection, the solution is
then stored as a new permanent member of the memory B cell population. This guarantees immunity
to the infection if it is encountered again because the solution to the infection can be brought into the
plasma population immediately.

The approach in this paper will be a simplified version of the vertebral immune system.
These models can add increased detail and complexity to provide improved performance. This increased
detail can be applied as desired, but it is not required. For example, Figure 8 demonstrates a slightly
more detailed version discussed as a germinal center [41]. The memory population mechanics discussed
above all take place in the germinal center. The plasma population is represented in the diagram as the
plasmatic B bells. The B cell in the memory population is shown at the bottom of the germinal center,
where it undergoes clonal selection and somatic hypermutation. Before the B cells have a chance to enter
the plasma population or get stored in the permanent memory population, this implementation adds
additional competitive processes. The competition for targeted mutations by the follicular dendritic
cells and the competition to be added to the plasma or permanent memory population through T cell
binding increase the performance of the B cells that enter the population. These additional mechanics
can shorten the response time of the AIS but are not required.

Actuators 2019, 8, 53 16 of 26
Actuators 2019, 8, 53 16 of 26

Figure 8. Illustration of the B cell generation in the germinal center [41].

The AIS field is extremely active in terms of both applications and research [42,43]. Algorithm
variants are produced frequently [42], including negative selection [44,45], immune networks [46],
clonal selection [41,47,48], danger theory [49], dendritic cell algorithms [50], other models, or
hybridized approaches. Of these, the most active in recently studies are clonal selection, negative
selection, danger theory, and immune networks [51]. Immune networks are especially common as
they are well suited to distributed or cloud computing. This paper focuses on the base clonal
selection AIS introduced by de Castro and Von Zuben [48].

The AIS starts with a plasma population that is similar to the genetic algorithm population. In
most applications, this needs to be done as a real-valued genetic algorithm. When the infection
occurs, this plasma population attempts to fight it. For fault-tolerant control, this infection can
represent an actuator that is not behaving as expected. The AIS will attempt to find a way to identify
or compensate for this error depending on the needs of the application.

The plasma population follows the standard mechanics discussed in previous sections.
Typically, it uses random individuals, plus some nonrandom, premeditated individuals. The
premeditated individuals come from a databank of solutions to potential infections that could occur.
For fault-tolerant control methods, these nonrandom individuals are solutions to known faults. If an
actuator is known to be “finnicky”, an individual in the plasma population can be generated that is a
potential compensation for that actuator’s finnicky behavior. If one of these individuals correctly
compensates for the fault, the algorithm can respond immediately.

The randomly generated individuals are split into purely random individuals and random
individuals that have minor traits from the databank added to them. These individuals allow the
algorithm to get individuals “seeded” near potential solutions and minimize the computational time
required to generate a feasible solution if the initial guesses are close, but not accurate.

After initialization, the plasma population uses elitism, crossover, and mutation as is standard
in the typical genetic algorithm. However, it has an abnormally high level of migration, typically
~30% [52]. These migrants are not random individuals. Instead, they are generated as potential
solutions based on the information in the databank. In Figure 8, the cells that survive competition for
T cell binding and enter the plasmatic B cell population are the migrants.

The databank itself is stored in the dark zone of Figure 8. It is split into two parts: the memory
population and the gene library. The memory population stores the individuals that show the best
response to assorted known infections. These individuals are static and do not change over time.

Figure 8. Illustration of the B cell generation in the germinal center [41].

The AIS field is extremely active in terms of both applications and research [42,43]. Algorithm
variants are produced frequently [42], including negative selection [44,45], immune networks [46],
clonal selection [41,47,48], danger theory [49], dendritic cell algorithms [50], other models, or hybridized
approaches. Of these, the most active in recently studies are clonal selection, negative selection, danger
theory, and immune networks [51]. Immune networks are especially common as they are well suited
to distributed or cloud computing. This paper focuses on the base clonal selection AIS introduced by
de Castro and Von Zuben [48].

The AIS starts with a plasma population that is similar to the genetic algorithm population. In most
applications, this needs to be done as a real-valued genetic algorithm. When the infection occurs,
this plasma population attempts to fight it. For fault-tolerant control, this infection can represent an
actuator that is not behaving as expected. The AIS will attempt to find a way to identify or compensate
for this error depending on the needs of the application.

The plasma population follows the standard mechanics discussed in previous sections. Typically,
it uses random individuals, plus some nonrandom, premeditated individuals. The premeditated
individuals come from a databank of solutions to potential infections that could occur. For fault-tolerant
control methods, these nonrandom individuals are solutions to known faults. If an actuator is known to
be “finnicky”, an individual in the plasma population can be generated that is a potential compensation
for that actuator’s finnicky behavior. If one of these individuals correctly compensates for the fault, the
algorithm can respond immediately.

The randomly generated individuals are split into purely random individuals and random
individuals that have minor traits from the databank added to them. These individuals allow the
algorithm to get individuals “seeded” near potential solutions and minimize the computational time
required to generate a feasible solution if the initial guesses are close, but not accurate.

After initialization, the plasma population uses elitism, crossover, and mutation as is standard
in the typical genetic algorithm. However, it has an abnormally high level of migration, typically
~30% [52]. These migrants are not random individuals. Instead, they are generated as potential
solutions based on the information in the databank. In Figure 8, the cells that survive competition for T
cell binding and enter the plasmatic B cell population are the migrants.

Actuators 2019, 8, 53 17 of 26

The databank itself is stored in the dark zone of Figure 8. It is split into two parts: the memory
population and the gene library. The memory population stores the individuals that show the best
response to assorted known infections. These individuals are static and do not change over time.
These individuals can be generated a priori based on experience with the system, can be generated
through testing, or can be generated while the algorithm is running. This parallels the biological
immune system where viable ways to combat an infection are inherited from parents, can be provided
through inoculation, or can be developed after successfully fending off an infection. Typically, the
memory population also includes randomized individuals. These often comprise half of the memory
population or more. They exist to give the algorithm a starting point outside the known region in case
a new, unexpected, issue arises that was completely foreign to previous experience. Most applications
reset these random individuals every iteration to increase the likelihood that a random individual will
be generated closer to the global optimum than any existing individual. This increases the available
diversity without affecting the plasma population because these individuals stay separate from the
plasma population unless they are good enough to be selected to be migrated over.

The other part of the databank is the gene library. It stores the different characteristics of the
memory population. This allows variants of the memory population to be made quickly by adding
these traits to existing individuals. The memory population has a slightly higher tendency toward
randomization than the memory population because it is adding a supplemental mechanic for mutation.
To prevent the mutation from being too controlled, random elements are added to the gene library
to ensure the genetic diversity of the system is not compromised. The gene library can be populated
through entirely random gene segments or a combination of random and nonrandom segments.

Clonal selection focuses on the somatic hypermutation that occurs during the cloning process.
The memory candidates that produce the best response to the infection are determined by their
performance according to the fitness function. Selection is usually determined by using the same
selection process as the genetic algorithm operating on the plasma population.

Once the clones are generated, random elements from the gene library are added into the new
clones at an extremely high rate. These rates can be upwards of 90–100%. Because the clones are added
to the plasma population regularly, the high mutation rates prevent the system from becoming too
homogenous. The mutated clones are then added directly to the plasma population. This process
repeats every generation until a solution is produced.

There is some memory updating that must take place at this point. As the plasma population’s
response to infection improves, the best individual in the plasma population is added to the memory
population. If the fitness of memory population is constant or stays within some preset bounds, the
algorithm assumes that the system is operating on the same infection. Since the same infection is being
addressed, the algorithm updates a single individual in the memory population. The traits that define
this new member of the memory population are extracted and added to the gene library.

If the fitness of the memory population leaves the acceptable bounds, then a new individual is
added to the memory population, which will store the best candidate for the new fault. The best
candidate for the previous fault is effectively frozen and will stay in the memory population in case
the old fault occurs again. This can naturally lead to a major memory leak if not managed properly.
This memory management is done on a per-application basis.

Applications of Artificial Immune Systems to Fault-tolerant Control

The artificial immune system can be implemented in several different methods for fault-tolerant
control. Due it its inherent memory and learning attributes, the AIS can augment and overcome the
limitations of other FTC methods. In the example provided in Section 3, the AIS is used for model
reference adaptive control and multiple model control. This is one of the simplest applications for the
AIS in FTC.

The introduction mentioned that the multiple model controller incorporated a priori information
very well but had a limited range of solutions. If the fault was in the a priori information, compensation

Actuators 2019, 8, 53 18 of 26

was quick and accurate. If it was not included, it is extremely unlikely to be compensated for
sufficiently. An AIS can be incorporated into a multiple model control scheme by treating the
controllers as individuals in the population. Thus, the controllers can be combined, reconfigured, and
mutated to generate new models outside the original a priori set. An example of this can be seen in
Figure 9. This allows the system to leverage the advantages of the original MM controller, including
calculation speed, while mitigating its limitations when the fault is outside the faults predicted ahead
of time. This implementation also mitigates the limitations of the AIS, namely its long computation
times before convergence. The MM controller can act at a different speed than the AIS, providing some
initial improvement immediately upon which the AIS can improve with each generation. Alternately,
the MM controller portion could be absorbed directly into the AIS. In that case, the AIS would not only
generate a controller, but also select the controller to be used. It would lose some response time as it
would only be able to change controllers at the end of each generation.

Actuators 2019, 8, 53 18 of 26

reconfigured, and mutated to generate new models outside the original a priori set. An example of
this can be seen in Figure 9. This allows the system to leverage the advantages of the original MM
controller, including calculation speed, while mitigating its limitations when the fault is outside the
faults predicted ahead of time. This implementation also mitigates the limitations of the AIS, namely
its long computation times before convergence. The MM controller can act at a different speed than
the AIS, providing some initial improvement immediately upon which the AIS can improve with
each generation. Alternately, the MM controller portion could be absorbed directly into the AIS. In
that case, the AIS would not only generate a controller, but also select the controller to be used. It
would lose some response time as it would only be able to change controllers at the end of each
generation.

Figure 9. Diagram demonstrating an integration of the AIS with a multiple model controller where
the AIS adds a model to the multiple model controller.

These are options for implementing the AIS with the MM controller but should not be
considered all encompassing. Regardless of the implementation mechanics, once the compensating
controller has been determined, it is stored in memory and added to the a priori set of controllers.
This ability to store solutions that had success in the past is what is critical in providing immunity. In
FTC, this provides immunity to similar faults in the future. For swarm or distributed systems, this
can also improve the performance of the group as it learns from the faults of the individuals.
Essentially, the swarm develops immunity to a fault as soon as a single individual can overcome it.

The sliding mode and gain scheduling controllers can also benefit from the AIS. The AIS can be
used to provide additional FTC capabilities when the system drifts outside the acceptable
boundaries of the controller, similar to mechanisms that switch between active and passive
compensation [5]. However instead of switching to a different precomputed controller or control
scheme, the AIS could be used to choose between several different precomputed controllers, modify
existing controllers, generate new controllers, or reschedule gains to improve performance. For the
model predictive controller, when a fault occurs that is outside the preprogrammed realm, the AIS
can perform additional compensation for sudden changes and nonlinear term injections by
generating potential solutions until the controller’s functionality can be restored. These avenues
allow the existing control scheme to function where it is designed to operate best, while expanding

Figure 9. Diagram demonstrating an integration of the AIS with a multiple model controller where the
AIS adds a model to the multiple model controller.

These are options for implementing the AIS with the MM controller but should not be considered
all encompassing. Regardless of the implementation mechanics, once the compensating controller
has been determined, it is stored in memory and added to the a priori set of controllers. This ability
to store solutions that had success in the past is what is critical in providing immunity. In FTC, this
provides immunity to similar faults in the future. For swarm or distributed systems, this can also
improve the performance of the group as it learns from the faults of the individuals. Essentially, the
swarm develops immunity to a fault as soon as a single individual can overcome it.

The sliding mode and gain scheduling controllers can also benefit from the AIS. The AIS can be
used to provide additional FTC capabilities when the system drifts outside the acceptable boundaries
of the controller, similar to mechanisms that switch between active and passive compensation [5].
However instead of switching to a different precomputed controller or control scheme, the AIS could
be used to choose between several different precomputed controllers, modify existing controllers,
generate new controllers, or reschedule gains to improve performance. For the model predictive
controller, when a fault occurs that is outside the preprogrammed realm, the AIS can perform additional

Actuators 2019, 8, 53 19 of 26

compensation for sudden changes and nonlinear term injections by generating potential solutions
until the controller’s functionality can be restored. These avenues allow the existing control scheme
to function where it is designed to operate best, while expanding the operations when outside the
existing conditions. The use of the AIS in these areas will need extensive study before any potential
improvement claims can be verified.

3. Example Implementation of an Artificial Immune System

To demonstrate how an AIS can be implemented for fault-tolerant control, an example was built in
MATLAB. For simplicity in the setup, the Optimization Toolbox was used to test many of the functions
required. MATLAB’s Optimization Toolbox contains a customizable genetic algorithm function that
can be used directly, or through a GUI. The function allows the user to define any necessary function
for selection, crossover, mutation, and migration as well as optional functions to be called after each
generation. Since the plasma population is managed through a real-valued genetic algorithm, it
is highly advisable to ensure all custom functions operate as expected by using the Optimization
Toolbox’s built-in functions.

Eventually, however, the AIS will need to be generated independently of the toolbox. For this
example, consider a four-wheeled rover controlled by 6 actuators: 4 in-hub drive motors and 2 steering
motors, one for the front wheels and one for the rear wheels. The vehicle dynamics are beyond the
scope of this paper. Suffice it to say that the equations of motion are highly complex and nonlinear since
they do not necessarily follow the standard bicycle model. The rover was simulated in MATLAB to
avoid the issues that arise in physical testing, such as sensor noise. The system is overactuated to ensure
the system retains full mobility after a failure. While nothing prevents the AIS from being applied to
just-actuated or underactuated systems, the target system here is designed to still be functional if an
actuator experiences complete failure. In other instances, the system’s limited maneuvering envelope
would need to be compensated for through additional mechanics.

The algorithm will attempt to compensate for faults in the actuators by considering them to be
changes in the effective control signal. That is, if a motor is 50% effective, the control signal would
need to be doubled to generate the same output. This will essentially mean the control signal can
be represented by a six-entry column vector (u) that gets multiplied by a 6 × 6 matrix (B). When all
actuators are operating normally, the B matrix is an identity matrix as shown in Equation (8).

u′ = B × u =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∗

u1

u2

u3

u4

u5

u6

. (8)

This matrix can allow for full actuator failures, partial actuator failures, actuators influencing
each other, and so forth. These are not all possible effects, but they represent a large swath of possible
failures. Each entry in the B matrix will have a maximum allowable value of 2.55 and a minimum
value of −1. This was selected based on the limitations of the hardware that this algorithm could be
implemented on in future work. These numerical limitations are highly application dependent.

The number of effects that the algorithm can account for can be increased by incorporating these
issues as additional control effects. This has been demonstrated previously [53]. For this work, a
demonstration of the abilities of the AIS, only the B matrix will be used. It should also be noted that this
paper will address the use of the AIS to identify the fault so that it could be appropriately compensated
by a controller. The mechanics of this compensation is beyond the scope of this work. As such, it is
assumed that a simple pseudo-inverse can be used to generate a compensating matrix to counter the
effects included in the B matrix.

Actuators 2019, 8, 53 20 of 26

The fault that the AIS will be attempting to solve is shown in Equation (9).

B =

0.9 0 0 0 0 0
0 0.5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. (9)

This corresponds to a 90% fault in actuator one and a 50% fault in actuator two. The front-left
motor and front-right motor are actuators one and two respectively.

For the AIS implementation, an individual will consist of 36 real-valued variables that represent
the entries in the B matrix. Known faults will be included in the memory population by generating the
individuals that represent those faults. For example, any motor could be completely non-responsive.
The B matrix representing these faults will have one value on the diagonal set to zero instead of one.
For partially effective motors, the entries on the diagonal can be set to a value between zero and one.

The fitness of the candidates is calculated through the location discrepancy between the trajectory
predicted by a given individual and the trajectory travelled by the faulted vehicle, the difference in
shape between the two trajectories, and the number of entries in the matrix that differ from the identity
matrix. The location error is determined by subtracting the location of each data point along the
trajectory. The shape error is determined through a Procrustes analysis. Including the number of
entities different from the identity matrix in the fitness function minimizes the complexity of the matrix.
Each of these factors has a weighting factor which is determined through testing.

For the purpose of this example, the initial population and memory population were not given
useful a priori information and were intentionally lacking candidates that had any noticeable changes
in the first two diagonal entries in the B matrix. This was done to make sure the algorithm has a
sufficiently difficult task to work on. Other than this constraint, the individuals in the initial plasma and
memory population were generated randomly save for the first individual in the memory population.
This individual will represent the unfaulted system. The plasma and memory populations will both
have 100 individuals in them. Unfortunately, this is less than the recommended number, but this
number of candidates was chosen to make the calculations finish in a reasonable timeframe. The gene
library will have 100 random elements and 100 elements that correspond to portions of the memory
population. The random elements were generated by creating elements of randomized length and
values that could be added directly to any individual.

Once all these portions of the algorithm are initialized, the fitness of all individuals in the memory
and plasma populations is evaluated. If the fitness is outside the acceptable threshold, then the
individuals in the plasma population are ranked by their fitness. The top 5 individuals of the plasma
population are passed on to the child generation directly, corresponding to a 5% elitism rate.

The selection process to generate the crossover children was implemented as stochastic uniform
selection. In total, 130 individuals were selected to generate 65 children. These 65 new children
correspond to a 65% crossover rate. The 130 individuals were randomly reordered and consecutive
pairs were chosen for reproduction through crossover.

Crossover was performed through a uniform crossover coefficient applied on the entire candidate.
The B matrix of the first individual paired for reproduction was subtracted from the B matrix of the
second individual. The difference between these two was then multiplied by a random coefficient
between 0.5 and 1.5 before being added to the first individual.

Mutation is implemented by randomly selecting 13 individuals from the children produced by
crossover, corresponding to a 20% mutation rate. A random entry in the B matrix is selected and
changed to a value between the maximum and minimum allowable values, 2.55 and −1, respectively.

The remaining 30 individuals in the child population are generated through the migration of
clones from the memory population. The cloning process was instigated by ranking the individuals in

Actuators 2019, 8, 53 21 of 26

the memory population by their fitness. Stochastic uniform selection was then used to select the best
individuals from the memory population for cloning. Since 30 individuals were to be added to the
child population, 30 individuals were selected from the memory population to be cloned. Random
elements from the gene library were added to 90% of the clones. There is some debate about whether
the memory individual selection should be done over the entire population, over a high-performing
subpopulation, or if only the single best individual should be used. These individuals are then added
to the child population directly.

The memory population is updated before the children are allowed to mature into a new parent
population. A new blank candidate is added to the memory population as the 101st individual.
This individual will be used to store the eventual solution to the problem at hand. The individual with
the best fitness from the plasma and memory population is stored in the blank candidate as the best
solution to date. The gene library has an entry added to it as well. This 201st gene library segment will
always store the traits that define the best solution to date.

Because this example did not have any useful a priori data stored in the memory population
or the gene library, the randomly generated individuals and gene library segments are regenerated.
That is, individuals 1 through 100 in the memory population were replaced by randomly generated
individuals. The 101st individual was not changed. Gene library segments 2–100 were recalculated
according to the traits that defined the first hundred new memory individuals. Gene library segments
101 through 200 were replaced by randomly generated segments. The 201st segment was not changed.

After the memory update is complete, the child population is matured by moving them into the
plasma population, replacing the previous generation. The fitness of the new plasma population is
calculated. If any value is below the threshold indicating a solution has been found, the algorithm
is terminated and the plasma individual with the lowest fitness is returned as the solution to the
problem. If this does not occur, then selection, crossover, and mutation are implemented in the plasma
population as explained previously.

However, at the end of this phase, the memory update must be performed differently. Firstly,
when the fitness of the memory population is evaluated, the fitness of all nonrandom individuals in
the population is evaluated compared to their previous values. In this stage of this application, the 1st
and 101st individuals are nonrandom. If the fitness values change substantially, then a new fault is
considered to have occurred. In that case, a 102nd individual is created in the memory population
and a 202nd segment is added to the gene library. Otherwise, the algorithm continues through clonal
selection as discussed previously.

Assuming the fault state has not changed, the 101st memory candidate is updated with the best
performing individual from the plasma population. The 201st gene library segment is updated based
on this individual.

This process continues until the threshold indicating a solution has been found, the algorithm
converges, or a limit has been reached—such as a maximum number of generations or maximum
computation time.

The results of this algorithm are shown in Figures 10–12. Figure 10 shows the trajectory of the
vehicle. The control signals passed to the system were cyclical, generating the S-curved path shown.
The black line represents the desired path of the vehicle. This is the path the vehicle would take if no
actuator faults occurred. The red trajectory shows the path that the vehicle travelled when the actuators
were faulted. This is the original path the vehicle followed before any compensation was performed.
Using this data, the AIS ran until termination. A compensating controller was generated from the
output of the AIS and the simulation was rerun with the same signals being fed to the compensating
controller, which then sent commands to the vehicle with the faulted actuators. The blue dotted line
indicates the path that the vehicle travels when the compensating controller is sending commands to
the vehicle.

Actuators 2019, 8, 53 22 of 26Actuators 2019, 8, 53 22 of 26

Figure 10. The desired trajectory of the vehicle (black) along with the original path the faulted vehicle
(red) the path the vehicle would follow after compensation from the AIS (blue dots).

Figure 11 shows an enlarged version of Figure 10, focusing on the final moments of the vehicle.
The black line is nearly indistinguishable from the blue dots, indicating that the vehicle is following
the trajectory extremely closely. The location error between the desired path and the compensated
path oscillates due to the variation in the control signal and steadily increases. However, it is never
more than 0.1 meters. This is significant as the vehicle travels over 300 meters.

Figure 11. An enlarged view of the end of the trajectories in Figure 10. The desired trajectory of the
vehicle (black) is shown along with the original path the faulted vehicle (red) the path the vehicle
would follow after compensation from the AIS (blue dots).

Unfortunately, the solution is not exact. The AIS ran for 46 generations and evaluated 4600
individuals in the plasma population. The algorithm took 1 hour and 48 min to complete on a
Lenovo T530 laptop with a quad-core Intel i7-3720QM processor running at 2.60 GHz with 16 GB of
RAM. Due to the length of the trial required, the threshold for acceptable solutions was set low

Figure 10. The desired trajectory of the vehicle (black) along with the original path the faulted vehicle
(red) the path the vehicle would follow after compensation from the AIS (blue dots).

Figure 11 shows an enlarged version of Figure 10, focusing on the final moments of the vehicle.
The black line is nearly indistinguishable from the blue dots, indicating that the vehicle is following
the trajectory extremely closely. The location error between the desired path and the compensated
path oscillates due to the variation in the control signal and steadily increases. However, it is never
more than 0.1 meters. This is significant as the vehicle travels over 300 meters.

Actuators 2019, 8, 53 22 of 26

Figure 10. The desired trajectory of the vehicle (black) along with the original path the faulted vehicle
(red) the path the vehicle would follow after compensation from the AIS (blue dots).

Figure 11 shows an enlarged version of Figure 10, focusing on the final moments of the vehicle.
The black line is nearly indistinguishable from the blue dots, indicating that the vehicle is following
the trajectory extremely closely. The location error between the desired path and the compensated
path oscillates due to the variation in the control signal and steadily increases. However, it is never
more than 0.1 meters. This is significant as the vehicle travels over 300 meters.

Figure 11. An enlarged view of the end of the trajectories in Figure 10. The desired trajectory of the
vehicle (black) is shown along with the original path the faulted vehicle (red) the path the vehicle
would follow after compensation from the AIS (blue dots).

Unfortunately, the solution is not exact. The AIS ran for 46 generations and evaluated 4600
individuals in the plasma population. The algorithm took 1 hour and 48 min to complete on a
Lenovo T530 laptop with a quad-core Intel i7-3720QM processor running at 2.60 GHz with 16 GB of
RAM. Due to the length of the trial required, the threshold for acceptable solutions was set low

Figure 11. An enlarged view of the end of the trajectories in Figure 10. The desired trajectory of the
vehicle (black) is shown along with the original path the faulted vehicle (red) the path the vehicle
would follow after compensation from the AIS (blue dots).

Unfortunately, the solution is not exact. The AIS ran for 46 generations and evaluated 4600
individuals in the plasma population. The algorithm took 1 hour and 48 min to complete on a Lenovo
T530 laptop with a quad-core Intel i7-3720QM processor running at 2.60 GHz with 16 GB of RAM. Due
to the length of the trial required, the threshold for acceptable solutions was set low enough to permit

Actuators 2019, 8, 53 23 of 26

inexact solutions. In part, this was a design choice. Fault-tolerant control needs to be able to safely
control the system, not optimally control the system. If the algorithm continued, a better solution could
have been obtained, but the performance of the system with the inexact solution would be acceptable
for most applications.

Because the solution is inexact, the algorithm neither follows the correct trajectory perfectly, but
also has an error in thrust. The thrust error is shown in Figure 12. This is calculated as the difference
between the forward thrust provided by the wheels and the thrust the desired system would provide.
As can be seen, system provides significantly better thrust than the original system, but it is noticeably
incorrect. Because the error oscillates, the overall vehicle follows an accurate path overall as the times
the thrust is high and low balance over time.

Actuators 2019, 8, 53 23 of 26

enough to permit inexact solutions. In part, this was a design choice. Fault-tolerant control needs to
be able to safely control the system, not optimally control the system. If the algorithm continued, a
better solution could have been obtained, but the performance of the system with the inexact
solution would be acceptable for most applications.

Because the solution is inexact, the algorithm neither follows the correct trajectory perfectly, but
also has an error in thrust. The thrust error is shown in Figure 12. This is calculated as the difference
between the forward thrust provided by the wheels and the thrust the desired system would
provide. As can be seen, system provides significantly better thrust than the original system, but it is
noticeably incorrect. Because the error oscillates, the overall vehicle follows an accurate path overall
as the times the thrust is high and low balance over time.

Figure 12. Error in thrust is shown for both the original and compensated vehicles compared to the
unfaulted vehicle. Only the last 10 seconds of the vehicle’s simulation are shown.

One of the major advantages of the AIS is the ability to learn from previously encountered
faults and neutralized them quickly when they are encountered again. To demonstrate this, at the
end of the experiment shown above, the fault was removed. The AIS identified that the fault state
changed and identified the unfaulted candidate—the one stored as the first individual in the
memory population—as the optimal solution. As a result, it returned this as the final solution
immediately. When the fault was reintroduced, the previous solution—the one stored as the 101st
individual in the memory population—was returned as the solution immediately. While this
candidate was not optimal, it was within the performance threshold to be returned as an acceptable
solution. A full generation was not required for these computations, indicating that time will not be
a factor in compensating for these errors.

4. Conclusion

The AIS has begun to show promise for fault-tolerant control. They are still unreasonably slow
when used on standard CPUs as indicated by the runtime of a little under two hours in the example
above. Again, it should be noted that 100 individuals were used in the example despite the literature
recommending 360 individuals, 10 for each variable to be solved for.

However, because the majority of the calculations within the AIS are not mutually dependent,
the AIS can be highly parallelized. The only nonparallelizable calculations are relatively simple, such
as the selection and fitness ranking steps. This allows the AIS to be run much faster on distributed or

Figure 12. Error in thrust is shown for both the original and compensated vehicles compared to the
unfaulted vehicle. Only the last 10 seconds of the vehicle’s simulation are shown.

One of the major advantages of the AIS is the ability to learn from previously encountered
faults and neutralized them quickly when they are encountered again. To demonstrate this, at the
end of the experiment shown above, the fault was removed. The AIS identified that the fault state
changed and identified the unfaulted candidate—the one stored as the first individual in the memory
population—as the optimal solution. As a result, it returned this as the final solution immediately.
When the fault was reintroduced, the previous solution—the one stored as the 101st individual in the
memory population—was returned as the solution immediately. While this candidate was not optimal,
it was within the performance threshold to be returned as an acceptable solution. A full generation
was not required for these computations, indicating that time will not be a factor in compensating for
these errors.

4. Conclusions

The AIS has begun to show promise for fault-tolerant control. They are still unreasonably slow
when used on standard CPUs as indicated by the runtime of a little under two hours in the example
above. Again, it should be noted that 100 individuals were used in the example despite the literature
recommending 360 individuals, 10 for each variable to be solved for.

However, because the majority of the calculations within the AIS are not mutually dependent, the
AIS can be highly parallelized. The only nonparallelizable calculations are relatively simple, such as
the selection and fitness ranking steps. This allows the AIS to be run much faster on distributed or

Actuators 2019, 8, 53 24 of 26

cloud computing setups. Depending on the complexity of the parallelizable functions, these could
even be run on GPUs or FPGAs where many computational threads are available.

With improvements to the computational speeds available as well as improvements in the speed of
the algorithms, the AIS could become a feasible alternative for real-time fault-tolerant control. Initially,
these would need to be performed in low-speed environments, such as maritime shipping where
stopping a modern cargo ship going full speed can take up to 20 min. In this application, the algorithm
can be allowed much more time to determine a solution compared to a car which can take 5 seconds to
stop safely at highway speeds.

Future work will involve trialing the algorithm in these environments, optimizing the algorithm
for increased speed, and implementing the algorithm on higher-speed machines.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control
2008, 32, 229–252. [CrossRef]

2. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault
Diagnosis With Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767.
[CrossRef]

3. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault
Diagnosis With Knowledge-Based and Hybrid/Active Approaches. IEEE Trans. Ind. Electron. 2015,
62, 3768–3774. [CrossRef]

4. Qi, X.; Qi, J.; Theilliol, D.; Zhang, Y.; Han, J.; Song, D.; Hua, C. A Review on Fault Diagnosis and Fault
Tolerant Control Methods for Single-rotor Aerial Vehicles. J. Intell. Robot. Syst. 2014, 73, 535–555. [CrossRef]

5. Fekih, A. Fault-tolerant flight control design for effective and reliable aircraft systems. J. Control Decis. 2014,
1, 299–316. [CrossRef]

6. Rotondo, D. Advances in Gain-Scheduling and Fault Tolerant Control Techniques; Springer International Publishing:
Cham, Switzerland, 2018.

7. Landau, Y.D. Adaptive Control: The Model Reference Approach; Marcel Dekker, Inc.: New York, NY, USA, 1979.
8. Djeziri, M.; Merzouki, R.; Bouamama, B.O.; Ouladsine, M. Fault Diagnosis and Fault-Tolerant Control of an

Electric Vehicle Overactuated. IEEE Trans. Veh. Technol. 2013, 62, 9869–9894. [CrossRef]
9. Cully, A.; Clune, J.; Mouret, J.B. Robots that can adapt like natural animals. arXiv 2014, arXiv:1407.3501.
10. van der Sluis, R.; Schramt, G.; Bennani, S.; Mulder, J. Stability Analysis of nonlinearly scheduled Fault

Tolerant Control System with Varying Structure. In Proceedings of the AIAA Guidance, Navigation, and
Control Conference and Exhibit, Denver, CO, USA, 14–17 August 2000.

11. Hess, R.A.; Wells, S.R. Sliding Mode Control Applied to Reconfigurable Flight Control Design. J. Guid.
Control Dyn. 2003, 26. [CrossRef]

12. Camacho, E.; Alamo, T.; de la Pena, D. Fault-tolerant model predictive control. In Proceedings of the 2010
IEEE Conference on Emerging Technologies and Factory Automation (ETFA), Bilbao, Spain, 13–16 September
2010.

13. Naghavi, S.V.; Safavi, A.A.; Kazerooni, M. Decentralized fault tolerant model predictive control of
discrete-time interconnected nonlinear systems. J. Frankl. Inst. 2014, 351, 16441–16656.

14. Dasgupta, D. Artificial neural networks and artificial immune systems: Similarities and differences.
In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997.

15. Allan, A. Benchmarking Edge Computing Comparing Google, Intel, and NVIDIA Accelerator Hardware.
A Medium Corporation. 7 May 2019. Available online: https://medium.com/@aallan/benchmarking-edge-
computing-ce3f13942245 (accessed on 21 June 2019).

16. Nvidia Corporation, Jetson Nano: Deep Learning Inference Benchmarks. 2019. Available online: https:
//developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks (accessed on 21 June 2019).

http://dx.doi.org/10.1016/j.arcontrol.2008.03.008
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1007/s10846-013-9954-z
http://dx.doi.org/10.1080/23307706.2014.960554
http://dx.doi.org/10.1109/TVT.2012.2231950
http://dx.doi.org/10.2514/2.5083
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

Actuators 2019, 8, 53 25 of 26

17. Google LLC, Edge TPU Performance Benchmarks. 2019. Available online: https://coral.withgoogle.com/

docs/edgetpu/benchmarks/ (accessed on 21 June 2019).
18. Blanke, M. Diagnosis and Fault-Tolerant Control for Ship Station Keeping. In Proceedings of the 2005 IEEE

International Symposium on Mediterrean Conference on Control and Automation, Limassol, Cyprus, 27–29
June 2005.

19. Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review.
Mech. Syst. Signal Process. 2018, 108, 334–337. [CrossRef]

20. Lv, F.; Wen, C.; Bao, Z.; Liu, M. Fault diagnosis based on deep learning. In Proceedings of the 2016 American
Control Conference (ACC), Boston, MA, USA, 6–8 July 2016.

21. Li, X.-J.; Yang, G.-H. Adaptive Fault-Tolerant Synchronization Control of a Class of Complex Dynamical
Networks With General Input Distribution Matrices and Actuator Faults. IEEE Trans. Neural Netw. Learn. Syst.
2015, 28, 559–569. [CrossRef] [PubMed]

22. Holland, J.H. Outline for a Logical Theory of Adaptive Systems. J. ACM 1962, 9, 297–314. [CrossRef]
23. de Jong, K. Learning with Genetic Algorithms: An Overview. Mach. Learn. 1988, 3, 1211–1238. [CrossRef]
24. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman

Publishing Co., Inc.: Boston, MA, USA, 1989.
25. Fitzpatrick, J.M.; Grefenstette, J.J. Geneitc Algorithms in Noisy Environments. Mach. Learn. 1988, 3, 1011–1020.

[CrossRef]
26. Maaranen, H.; Miettinen, K.; Penttinen, A. On Initial Populations of a Genetic Algorithm for Continuous

Optimization Problems. J. Glob. Optim. 2007, 37, 405–436. [CrossRef]
27. Lee, S.; Rowlands, H. An Alternative to Random Generation of the Initial Population for Genetic Optimization.

In Proceedings of the 20th ECMS 2006, Bonn, Germany, 28–31 May 2006.
28. Candan, G.; Yazgan, H.R. Genetic Algorithm Parameter Optimisation Using Taguchi Method for a Flexible

Manufacturing System Scheduling Problem. Int. J. Prod. Res. 2014, 53, 897–915. [CrossRef]
29. Diaz-Gomez, P.A.; Hougen, D. Initial Population for Genetic Algorithms: A Metric Approach. In Proceedings

of the 2007 International Conference on Genetic and Evolutionary Methods, Las Vegas, NV, USA, 25–28 June
2007.

30. Nelson, A.L.; Barlow, G.J.; Doitsidis, L. Fitness Functions in Evolutionary Robotics: A Survey and Analysis.
Robot. Auton. Syst. 2009, 57, 3453–3470. [CrossRef]

31. Harvey, I.; Husbands, P.; Cliff, D. Seeing the Light: Artificial Evolution, Real vision, in From Animals to
Animats 3. In Proceedings of the 3rd International Conference on Simulation of Adpative Behavior, Brighton,
UK, 8–12 August 1994.

32. Nakamura, H.; Ishiguro, A.; Uchikawa, Y. Evolutionary construction of behavior arbitration mechanisms
based on dynamically-rearranging neural networks. In Proceedings of the 2000 Congress on Evolutionary
Computation, La Jolla, CA, USA, 16–19 July 2000.

33. Baker, J.E. Reducing Bias and Inefficiency in the Selection Algorithm. In Proceedings of the 2nd International
Conference on Genetic Algorithms and Their Application, Cambridge, MA, USA, 28–31 July 1987.

34. Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2004.
35. Janikow, C.Z.; Michalewicz, Z. An Experimental Comparison of Binary and Floating Point Representations

in Genetic Algorithms. In Proceedings of the 4th International Conference on Genetic Algorithms, San Diego,
CA, USA, 13–16 July 1991.

36. Rawlins, G. Foundations of Genetic Algorithms; Morgan Kaufmann: San Mateo, CA, USA, 1991.
37. Goldberg, D.E. Real-Coded Genetic Algorithms, Virtual Alphabets, and Blocking; University of Illinois: Urbana,

IL, USA, 1990.
38. Hollinger, G.A.; Gwaltney, D.A. Evolutionary Design of Fault-Tolerant Analog Control for a Piezoelectric

Pipe-Crawling Robot. In Proceedings of the 2006 Genetic and Evolutionary Computation Conference
GECCO, Seattle, WA, USA, 8–12 July 2006.

39. Yang, B.; Fan, S.; Shi, M. Research on Fault-Tolerant Controller for Mobile Robot. In Proceedings of the 3rd
International Conference on Natural Computation, Haikou, China, 24–27 August 2007.

40. Janeway, C.A.J.; Travers, P.; Walport, M.; Shlomchik, M. Immunobiology, 5th ed.; Garland Science: New York,
NY, USA, 2001.

https://coral.withgoogle.com/docs/edgetpu/benchmarks/
https://coral.withgoogle.com/docs/edgetpu/benchmarks/
http://dx.doi.org/10.1016/j.ymssp.2018.02.016
http://dx.doi.org/10.1109/TNNLS.2015.2507183
http://www.ncbi.nlm.nih.gov/pubmed/26731779
http://dx.doi.org/10.1145/321127.321128
http://dx.doi.org/10.1007/BF00113894
http://dx.doi.org/10.1007/BF00113893
http://dx.doi.org/10.1007/s10898-006-9056-6
http://dx.doi.org/10.1080/00207543.2014.939244
http://dx.doi.org/10.1016/j.robot.2008.09.009

Actuators 2019, 8, 53 26 of 26

41. Villaseñor, C.; Rios, J.D.; Arana-Daniel, N.; Alanis, A.Y.; Lopez-Franco, C.; Hernandez-Vargas, E.A. Germinal
Center Optimization Applied to Neural Inverse Optimal Control for an All-Terrain Tracked Robot. Appl. Sci.
2018, 8, 31. [CrossRef]

42. Dasguptaa, D.; Yu, S.; Nino, F. Recent Advances in Artificial Immune Systems: Models and Applications.
Appl. Soft Comput. 2011, 11, 1574–1587. [CrossRef]

43. Yang, S. A Comparative Study of Immune System Based Genetic Algorithms in Dynamic Environments.
In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, NY,
USA, 8–12 July 2006.

44. Gao, X.Z.; Ovaska, S.J.; Wang, X. Genetic Algorithms-Based Detector Generation in Negative Selection
Algorithm. In Proceedings of the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems, Logan,
UT, USA, 24–26 July 2006.

45. Forrest, S.; Perelson, A.; Allen, L.; Cherukuri, R. Self-nonself discrimination in a computer. In Proceedings of
the 1994 IEEE Symposium on Research in Security and Privacy, Oakland, CA, USA, 16–18 May 1994.

46. Coelho, G.P.; von Zuben, F.J. omni-aiNet: An Immune-Inspired Approach for Omni Optimization.
In Proceedings of the ICARIS 2006 5th International Conference on Artificial Immune Systems, Oeiras,
Portugal, 4–6 September 2006.

47. Halavati, R.; Shouraki, S.B.; Heravi, M.J.; Jashmi, B.J. An Artificial Immune System with Partially Specified
Antibodies. In Proceedings of the GECCO 2007 9th Annual Conference on Genetic and Evolutionary
Computation, London, UK, 7–11 July 2007.

48. de Castro, L.N.; von Zuben, F.J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans.
Evol. Comput. 2002, 6, 239–251. [CrossRef]

49. Matzinger, P. The Danger Model: A Renewed Sense of Self. Science 2002, 296, 301–305. [CrossRef] [PubMed]
50. Greensmith, J.; Aickelin, U.; Cayzer, S. Introducing dendritic cells as a novel immune-inspired algorithm for

anomaly detection. In Proceedings of the ICARIS 2005 4th International Conference on Artificial Immune
Systems, Banff, AB, Canada, 14–17 August 2005.

51. Wang, M.; Feng, S.; Li, J.; Li, Z.; Xue, Y.; Guo, D. Cloud Model-Based Artificial Immune Network for Complex
Optimization Problem. Comput. Intell. Neurosci. 2017, 2017. [CrossRef] [PubMed]

52. de Castro, L.N.; Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach;
Springer-Verlag: London, UK, 2002.

53. Kidd, R. Genetic Multi-Model Fault-Tolerant Control of an Over-Actuated Autonomous Vehicle under
Known and Unknown Faults. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2015.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app8010031
http://dx.doi.org/10.1016/j.asoc.2010.08.024
http://dx.doi.org/10.1109/TEVC.2002.1011539
http://dx.doi.org/10.1126/science.1071059
http://www.ncbi.nlm.nih.gov/pubmed/11951032
http://dx.doi.org/10.1155/2017/5901258
http://www.ncbi.nlm.nih.gov/pubmed/28630620
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on Fault-tolerant Control
	Background on Bioinspired Algorithms

	Genetic Algorithms
	The Binary Genetic Algorithm
	The Real-Valued Genetic Algorithm
	The Artificial Immune System

	Example Implementation of an Artificial Immune System
	Conclusions
	References

