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Abstract: The aim of this study is developing an analytical solution for the free vibration of
piezoelectric bimorph and unimorph doubly curved panels with a porous substrate. The panel
is assumed to be relatively thick, and the effects of its shear deformation are taken into account.
Nonlinear models are considered to describe the variation of mechanical properties and of the electric
potential within porous host and piezoelectric layers, respectively. Furthermore, short and open
circuit electrical conditions are studied to predict the frequency response for sensing and actuation
applications. Employing the first-order shear deformation theory (FSDT), in conjunction with the
Hamilton’s variational principle and Maxwell’s equation allows deriving six highly coupled partial
differential equations to describe the system dynamics under electromechanical coupling. After
analytically solving those equations for simply supported panels, the system frequency response is
investigated, for various values of design parameters such as porosity, electrical boundary conditions,
and geometry. Moreover, some types of smart panels, including bimorphs and unimorphs layouts,
are analyzed. The analysis confirms that the above-mentioned parameters play major roles in the
natural frequency response of this system and must be carefully considered in the mechatronic design
of this smart structure, although they allow to tailor the system behaviour to the selected application.

Keywords: structural mechatronics; electromechanical coupling; analytical methods; system
dynamics; porous material; piezoelectric material; doubly curved shells

1. Introduction

Due to the excellent features of porous materials, such as low density and high strength, they have
attracted widespread attention for many engineering applications, especially where lightweight is of
concern. For instance, having special capabilities, metal foams have been widely used in lightweight
structures in aerospace, automotive, energy absorbing and civil engineering [1–6]. Introducing internal
pores into the microstructure of porous media makes it possible to tailor the local density of the
structure to improve the structural performance and achieve the desired properties [7]. On the
other hand, piezoelectrics are nowadays very common smart materials, which have interrelated
mechanical and electrical properties, and are sometimes exploited in really extreme applications.
Integrating piezoelectric layers with beams, plates, and shells results in smart bimorphs and unimorphs
being capable of sensing and actuation, which are widely used for vibration and shape control,
health monitoring and noise control [8–14]. Therefore, having the properties of porous materials,
a combination of porous structures with piezoelectric layers leads to smart porous systems, with
controllable characters and, consequently, with unique applications in industry. Piezoelectric bimorphs
and unimorphs are also hugely used in mechatronic systems such as vibration piezoelectric energy
harvesters [15–20], piezoelectric transducers [21], mechatronic handling devices [22], adaptive optics in
space telescopes [23–25], damping systems [26,27], and continues monitoring systems [28,29]. Hence,
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analyzing the dynamic characteristics of piezoelectric coupled structures may help to design efficient
mechatronic systems.

In recent years, many studies have been performed to investigate the static and dynamic response
of porous structures. Among them, Magnucki et al. [30] performed the bending and buckling analysis
of simply supported porous rectangular plates, considering the effect of shear deformation based
on a nonlinear displacement model. Analytical, numerical, and experimental investigations were
carried out by Jaison et al [31] to study the critical buckling load of sandwich porous plates and beams
made of metal foam and layers of perfect materials. Employing Timoshenko’s beam theory, Chen and
co-authors [32,33] conducted the free and forced vibration analysis of single-layered and sandwich
porous beams with various types of porosity distribution. The same authors used the first-order shear
deformation theory (FSDT) and Chebyshev–Ritz’s method to study the buckling and bending problems
of sandwich rectangular plates, with porous core [34]. Recently, Rezaei et al. [35–39] proposed some
analytical methods to study the static and dynamical behaviors of porous plates according to different
mechanical displacement models. Kamranfard et al. [40] developed an exact solution to investigate the
free vibration and buckling behavior of annular porous plates within the Hamilton’s principle and
FSDT. Wang and co-authors [41,42] conducted research studies on the nonlinear vibration of FGM
rectangular plates with porosities moving in a thermal environment and contacting with liquid. In
their works, they assumed the geometrical nonlinearity based on von Karman’s nonlinear theory and
used Galerkin’s method to solve the equations of motion. Based on FSDT, Xue et al. [43] analyzed
the free vibration behavior of porous square, circular, and rectangular plates with central hole using
isogeometric approach. They considered different types of porosity distribution along the thickness
and in-plane directions of the plate. Thang et al. [44] performed the elastic buckling and free vibration
analyses of porous plates according to FSDT. Qin et al. [45] developed an analytical model to predict
the dynamic behavior of fully clamped sandwich plates, with metal foam core subjected to low-velocity
impact. Wang and Wu [46] performed the free vibration analysis of porous circular cylindrical shell
with different immovable boundary conditions. They considered a sinusoidal shear deformation
theory in conjunction with the Rayleigh-Ritz’s method to derive the equations of motion. The free
vibration of functionally graded porous cylindrical micro-shells subjected to thermal environment was
examined by Ghadiri and Safarpour [47] based on FSDT and modified couple stress theories. Belica
and Magnucki [48] studied the dynamic stability of simply supported cylindrical shells made of porous
media subjected to external pressure and axial loads. Ghasemi and Meskini [49] employed Love’s shell
theory and Navier’s solution to investigate the free vibration of porous laminated rotating cylindrical
shells with simply supported boundary condition.

Limited works have been concerned with the mechanical response of porous structures coupled
with piezoelectric layers. For instance, Jabari et al. [50–54] studied the elastic and thermal buckling
analysis of circular plates made of saturated porous materials integrated with piezoelectric patches,
using linear and nonlinear displacement models, respectively. In their studies, they exploited several
plate theories, such as the classical, the first-order, and the higher-order shear deformation displacement
models, to write the governing equations of motion. Arshid et al. [55] used the classical plate theory to
study the free vibration response of porous circular plates integrated with piezoelectric actuators by
means of the differential quadrature method. There is a paucity of investigations dealing with the free
vibration problem of porous shells integrated with piezoelectric layer. Furthermore, since employing
shear deformation theories leads to highly-coupled and complicated governing equations, most of the
published papers studied dynamic response of smart coupled structures through numerical methods,
and analytical approaches are mostly limited to classical theories. Therefore, considering the effects of
shear deformation, an exact solution for the free vibration of relatively thick porous doubly curved
bimorphs and unimorphs under various electrical conditions could provide a benchmark to check the
precision of numerical methods in this field of study.

It is realized that a lack of information holds about the electromechanical coupling in vibration of
porous doubly curved panels integrated with piezoelectric sensors and actuators. This work develops
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a preliminary analytical model to predict the eigenfrequency response of bimorph and unimorph
shells, composed of porous substrate and piezoelectric layers, both in case of short circuit (SC) and
open circuit (OC). The internal porosities are distributed within the host layer based on an asymmetric
model with respect to the mid-surface. In addition, the electric potential is considered to have a
nonlinear variation along the thickness of the piezoelectric layer. Using Hamilton’s principle and
Maxwell’s equation applied to electrostatics allows deriving the electromechanically coupled equations
of motion, based on FSDT. Navier’s method is then applied to analytically solve those equations and
to calculate the system natural frequencies. Finally, for various porous piezoelectric structures with
spherical, hyperbolic, paraboloidal, and cylindrical or plate geometries, the exact eigenfrequencies
are calculated. After validation of procedure and formulation, the results are examined to identify
the effects of porosity parameter, geometry dimensions, and electrical conditions on the vibration
characteristics of the coupled piezoelectric porous doubly curved panels.

2. System Modelling

2.1. Kinematic Assumptions

The layouts of the bimorph and unimorph doubly curved panels made of porous media and
piezoelectric materials are depicted in Figure 1a,b, respectively. As is shown, the bimorph structure is
composed of a porous core integrated with two identical thickness-poled piezoelectric layers (hpt = hpb),
while the unimorph panel has only one piezoelectric layer (hpb =0) mounted on the top surface of
its substrate. Both the panels have arc lengths L1 and L2, and Rx and Ry are the curvature radii
of the mid-surface of the substrate layer. Also, 2h is the thickness of the substrate and hpt and hpb
are corresponded to the top and bottom piezoelectric layers’ thickness, respectively. To extract the
mathematical formulations, the origin of the coordinate system (x, y, z) is located on the middle-surface
of the substrate layer.

It should be noted that in both bimorph and unimorph sandwich structures considered in this
study, the piezoelectric layers and the substrate are assumed to be perfectly bonded together with an
adhesive layer of negligible thickness, therefore there is no relative displacement between the layers of
the sandwich panel. This assumption has been considered in a wide range of published works in this
field [15,50–54,56–66].
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Figure 1. Sketch of porous bimorph (a) and unimorph (b) doubly curved panels.

It is assumed that the material properties such as elasticity modulus and mass density in the
host layer are varied through the thickness direction due to the existence of internal pores. Various
rules are presented in the literature to model the variation of mechanical properties in porous
materials [30,35–40,65–67]. However, the effective Young’s modulus E(z), shear elastic modulus G(z)
and mass density ρ(z) within the porous substrate are considered to have the following nonlinear
variations along the thickness [67]:
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where subscripts “1” and “0” show the properties corresponding to the top and bottom surfaces of the
host layer, respectively.

The relationship between shear modulus and Young’s modulus is E(z) = 2G(z)(1 + ν) in which
ν is the Poisson’s ratio. Moreover, e (0 ≤ e < 1) denotes the porosity volume fraction for the Young’s
modulus and e’ is the dimensionless parameter of effective mass density. According to relations (1), the
maximal and minimal values of mechanical properties occur at the top and bottom surfaces of the
substrate layer, respectively.

2.2. Constitutive Equations and Electric Potential

Piezoelectrics are intelligent materials, which convert electrical and mechanical excitations to
each other. In this study, the piezoelectric layers are assumed to be made of transversely piezoelectric
materials in which mechanical stresses and electrical displacements are modeled as a combination of
electrical and mechanical variables. In addition, porous media are isotropic materials within which
their stress–strain relations simply obey Hook’s law [67]. Thus, the constitutive equations for porous
core and piezoelectric layers are taken to be [60]:

{σ} = [C]s{ε}
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{σ} = [C]p{ε} − [e]T{E}, (2)

{D} = [e]{ε} − [Ξ]{E}

where superscripts “s” and “p” are introduced for the variables corresponded to the substrate and
piezoelectric layers of the smart porous panel, respectively; {σ} and {ε} are the mechanical stress and
strain tensors, {D} is the electric displacement and {E} represents the electric field within piezoelectric
layers. [C], [e] and [Ξ] represent matrices of elastic constants, electromechanical coupling and dielectric
permittivity, respectively.

The relation between electric field (
→

E) and potential (φ) in piezoelectric layers is defined as follows:

→

E = −
→

∇φ, (3)

in which
→

∇ shows the gradient vector.
Furthermore, it is assumed that the electric potential has nonlinear variations with respect to

z-coordinate [57]. In relations 4(a) and 4(b), the electric potential functions are given for the top and
bottom piezoelectric layers, respectively:

φ(x, y, z, t) = A(x, y, t)z + B(x, y, t) +

1−
(

2z− 2h− hpt

hpt

)2φ0(x, y, t), (4a)

φ(x, y, z, t) = C(x, y, t)z + D(x, y, t) +

1−
(
−2z− 2h− hpb

hpb

)2φ0(x, y, t), (4b)

where function φ0 is the electric potential function in the mid-surface of piezoelectric layers; A, B, C and
D are four unknown functions, which will be obtained by satisfying the electrical boundary conditions.

Two common electrical conditions SC and OC are considered for piezoelectric layers, as shown in
Figure 2.
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applying relations (5) to Equations (4) leads to:

A = B = C = D = 0, (6)

(II) OC (open circuit):

φ = 0 at z = ±h
Dz = 0 at z = −

(
h + hpb

)
, z = +

(
h + hpt

)
,

(7)

By imposing the above conditions in Relations (4), the functions A, B, C, and D are obtained as:

B = −Ah
D = +Ch

A =
e31
Ξ33

(
u0,x + v0,y + (h + hpt)

[
ψx,x +ψy,y

]
+

(
1

Rx
+ 1

Ry

)
w0

)
+

4φ0
hpt

C =
e31
Ξ33

(
u0,x + v0,y − (h + hpb)

[
ψx,x +ψy,y

]
+

(
1

Rx
+ 1

Ry

)
w0

)
−

4φ0
hpb

, (8)

2.3. Electromechanically Coupled Equations of Motion

Based on FSDT, the components of the mechanical displacement field (u, v, w) at any point of the
hybrid panel are defined as follows [68]:

u(x, y, z, t) = u0(x, y, t) + zψx(x, y, t)
v(x, y, z, t) = v0(x, y, t) + zψy(x, y, t)

w = w0(x, y, t)
, (9)

where u0, v0, and w0 are the mechanical displacements of any point of the shell mid-surface along
the orthogonal curvilinear coordinates. The functions ψx and ψy represent the rotations of normal to
mid-plane about y and x axes, respectively, and t is the time variable.

Considering linear relations of strain-displacement as well as Equation (9), the following
expressions are given for the components of mechanical strain field [68]:

εxx = u0,x + zψx,x + w0/Rx

εyy = v0,y + zψy,y + w0/Ry

εzz = 0
γxy = u0,y + v0,x + z

(
ψx,y +ψy,x

)
γxz = ψx + w0,x − u0/Rx

γyz = ψy + w0,y − v0/Ry

, (10)

where and hereafter, a comma shows partial differentiation versus the corresponding coordinates.
As seen from Relation (10), it is assumed that the transverse shear deformation is constant between
layers of the panel, thus the sandwich panels are modeled as continuous and uniform systems within
its volume.

Employing Hamilton’s principle, the following five equations of motion are obtained based on
the FSDT for doubly curved shells [68]:

Nxx,x + Nxy,y + Qxz/Rx = I0
..
u0 + I1

..
ψx

Nxy,x + Nyy,y + Qyz/Ry = I0
..
v0 + I1

..
ψy

Mxx,x + Mxy,y −Qxz = I1
..
u0 + I2

..
ψx

Mxy,x + Myy,y −Qyz = I1
..
v0 + I2

..
ψy

Qxz,x + Qyz,y −Nxx/Rx −Nyy/Ry = I0
..
w0

, (11)
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where the stress resultants Nij, Mij and Qij, and the mass inertias Iij are defined as follows:

(
Nxx, Nxy, Nyy

)
=

+h+hpt∫
−h−hpb

(
σxx, σxy, σyy

)
dz

(
Mxx, Mxy, Myy

)
=

+h+hpt∫
−h−hpb

(
σxx, σxy, σyy

)
zdz

(
Qxz, Qyz

)
=

+h+hpt∫
−h−hpb

(
σxz, σyz

)
dz

(I0, I1, I2) =

+h+hpt∫
−h−hpb

ρ(z)
(
1, z, z2

)
dz

, (12)

With the help of the Maxwell’s equation about electrostatics [60], the last equation of motion can
be derived as follows:

β1

(
ψx,x +ψy,y +∇2w0 −

u0,x
Rx
−

v0,y
Ry

)
+ β2

(
ψx,x +ψy,y

)
+ β3ϕ0 + β4∇

2ϕ0

+η1

(
∇

2(u0,x) +∇
2
(
v0,y

)
+

(
1

Rx
+ 1

Ry

)
∇

2w0

)
+ η2

(
∇

2(ψx,x) +∇2
(
ψy,y

))
= 0

, (13)

where ∇2( . . . ) is the Laplace operator and coefficients βi (i = 1, 2, 3, 4) and η j (j = 1, 2) are defined for
both the SC and OC electrical conditions, in Relations (A1) to (A3) of the Appendix A.

2.4. Solution Procedure

To derive the electromechanical governing equations, the stress resultants are written in terms of
mechanical displacement components (u0, v0, w0) and electric potential (φ0), through substitution of
Relations (2) and (10) into Relations (12), as follows:

Nxx = a11u0,x + a12v0,y + b11ψx,x + b12ψy,y + p11w0 + β5φ0

Nyy = a12u0,x + a11v0,y + b12ψx,x + b11ψy,y + p′11w0 + β5φ0

Nxy = a66
(
u0,y + v0,x

)
+ b66

(
ψx,y +ψy,x

)
Mxx = b11u0,x + b12v0,y + d11ψx,x + d12ψy,y + q11w0 + β6φ0

Myy = b12u0,x + b11v0,y + d12ψx,x + d11ψy,y + q′11w0 + β6φ0

Mxy = b66
(
u0,y + v0,x

)
+ d66

(
ψx,y +ψy,x

)
Qxz = a55(ψx + w0,x − u0/Rx) + β7φ0,x + β8

(
u0,xx + v0,yx + w0,x/Rx + w0,x/Ry

)
+β9

(
ψx,xx +ψy,yx

)
Qyz = a55

(
ψy + w0,y − v0/Ry

)
+ β7φ0,y + β8

(
u0,xy + v0,yy + w0,y/Rx + w0,y/Ry

)
+β9

(
ψx,xy +ψy,yy

)

, (14)

where the constant coefficients aij, bij, dij, pij, qij and βi (i = 5, 6, 7, 8, 9) are given in Relations (A4) to
(A8) of the Appendix A.

Introducing Relations (14) into Equations (11) leads to the following, highly coupled partial
differential equations:(

a11 +
β8
Rx

)
u0,xx + a66u0,yy +

(
a12 + a66 +

β8
Rx

)
v0,xy +

(
b11 +

β9
Rx

)
ψx,xx

+b66ψx,yy +
(
b12 + b66 ++

β9
Rx

)
ψy,xy −

a55
Rx2 u0 +

a55
Rx
ψx

+
(
p11 +

a55
Rx

+
β8

Rx2 +
β8

RxRy

)
w0,x +

(
β5 +

β7
Rx

)
φ0,x = I0

..
u0 + I1

..
ψx

, (15a)
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(
a12 + a66 +

β8
Ry

)
u0,xy +

(
a11 +

β8
Ry

)
v0,yy + a66v0,xx +

(
b12 + b66 +

β9
Ry

)
ψx,xy

+
(
b11 +

β9
Ry

)
ψy,yy + b66ψy,xx −

a55
Ry2 v0 +

a55
Ry
ψy

+
(
p′11 +

a55
Ry

+
β8
Ry

+
β8

RxRy

)
w0,y +

(
β5 +

β7
Ry

)
φ0,y = I0

..
v0 + I1

..
ψy

, (15b)

(b11 − β8)u0,xx + b66u0,yy + (b12 + b66 − β8)v0,xy + (d11 − β9)ψx,xx

+d66ψx,yy + (d12 + d66 − β9)ψy,xy +
a55
Rx

u0 − a55ψx

+
(
q11 − a55 −

β8
Rx
−
β8
Ry

)
w0,x + (β6 − β7)φ0,x = I1

..
u0 + I2

..
ψx

, (15c)

(b12 + b66 − β8)u0,xy + (b11 − β8)v0,yy + b66v0,xx + (d12 + d66 − β9)ψx,xy

+(d11 − β9)ψy,yy + d66ψy,xx +
a55
Ry

v0 − a55ψy

+
(
q′11 − a55 −

β8
Rx
−
β8
Ry

)
w0,y + (β6 − β7)φ0,y = I1

..
v0 + I2

..
ψy

, (15d)

(
a55 +

β8
Rx

+
β8
Ry

)
∇

2w0 + β7∇
2φ0 −

(
a11
Rx

+ a12
Ry

+ a55
Rx

)
u0,x −

(
a12
Rx

+ a11
Ry

+ a55
Ry

)
v0,y

−

(
b11
Rx

+ b12
Ry

)
ψx,x −

(
b12
Rx

+ b11
Ry

)
ψy,y + a55ψx,x + a55ψy,y −

(
p11
Rx

+
p′11
Ry

)
w0

−

(
β5
Rx

+
β5
Ry

)
φ0 + β8∇

2u0,x + β8∇
2v0,x + β9∇

2ψx,x + β9∇
2ψy,y = I0

..
w0

, (15e)

To solve Maxwell’s equation (13) and the dynamic Equations (15), mechanical and electrical
boundary conditions are needed. In this study, simply supported mechanical boundary conditions are
assumed for all the four edges of the doubly curved panel. Also, it is considered that all the edges are
electrically grounded to zero potential for both bimorph and unimorph structures. With the help of the
variational method and divergence theorem, these conditions can be determined as follows:

v0 = ψy = w0 = Nxx = Mxx = φ0 = 0 at x = 0, x = L1,
u0 = ψx = w0 = Nyy = Myy = φ0 = 0 at y = 0, y = L2,

(16)

Here, the Navier’s method is employed to have an analytical solution. Based on this approach, the
unknown mechanical displacement components u0, v0, w0, ψx and ψx as well as the electric potential
φ0 are assumed to have the following trigonometric expansions:

u0(x, y, t) =
∞∑

m=1

∞∑
n=1

cos(µmx) sin(µny)ηu0
mn(t)

v0(x, y, t) =
∞∑

m=1

∞∑
n=1

sin(µmx) cos(µny)ηv0
mn(t)

w0(x, y, t) =
∞∑

m=1

∞∑
n=1

sin(µmx) sin(µny)ηw0
mn(t)

ψx(x, y, t) =
∞∑

m=1

∞∑
n=1

cos(µmx) sin(µny)ηψx
mn(t)

ψy(x, y, t) =
∞∑

m=1

∞∑
n=1

sin(µmx) cos(µny)η
ψy
mn(t)

φ0(x, y, t) =
∞∑

m=1

∞∑
n=1

sin(µmx) sin(µny)ηφ0
mn(t)

, (17)

Moreover, relations (17) satisfy the boundary conditions (16). In equations (17), the parameters
µm and µn are equal to mπ/L1 and nπ/L2, respectively, and m and n are number of half-waves through
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x and y directions, respectively. By assuming a harmonic motion for the system, the functions ηmn(t)
can be defined as follows: 

ηu0
mn
ηv0

mn
ηw0

mn

η
ψx
mn

η
ψy
mn

η
φ0
mn


=



Su0
mn

Sv0
mn

Sw0
mn

Sψx
mn

S
ψy
mn

Sφ0
mn


eiωt, (18)

where i =
√
−1 and ω is the natural frequency of the smart doubly curved panel.

The substitution of Relations (17) and (18) into Equations (13) and (15) results in the following
eigenproblem:





k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66


−ω2



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66







Su0
mn

Sv0
mn

Sw0
mn

Sψx
mn

S
ψy
mn

Sφ0
mn


=



0
0
0
0
0
0


, (19)

where [k] and [m] are the stiffness and inertia matrices, respectively.
The solution of the eigenproblem (19) allows to extract the eigenfrequencies of the system. In the

next section, the natural frequencies are presented for bimorphs and unimorphs, with a wide range of
parameters as well as various geometries.

3. Numerical Results and Discussion

3.1. Verification Studies

Three validation examples are presented to assess the accuracy of the aforementioned procedure
and formulation by comparing the results just obtained with those available in literature. Due to
slight variation of Poisson’s ratio along the thickness of the substrate layer, its value is considered
to be constant and equal to 0.3. The parameter Hp in the following tables and figures represents
the total thickness of piezoelectric layers, which is equal to Hp = hpb + hpt and Hp = hpt for bimorph
and unimorph structures, respectively, as reported in Figure 1. In Table 1, SC and OC fundamental
frequencies are compared with their counterparts in [60], for a bimorph doubly curved shell, which
consisted of a homogenous core surrounded by two identical PZT-4 layers. In the study of Sayyaadi
and Farsangi [60], the authors considered shell through-thickness kinematics based on the higher-order
shear deformation theory and used a quadratic variation for the electric potential distribution in
piezoelectric layers.

Table 1. Comparison of the fundamental eigenfrequency (Hz) of a bimorph isotropic shell.

EBC L1/Rx Hp/2h Ref. [60] Present

SC
0.0

0.1 839.368 838.273
0.2 801.794 799.360

0.1
0.1 853.147 852.075
0.2 813.413 811.024

OC
0.0

0.1 856.455 854.844
0.2 833.781 829.958

0.1
0.1 870.057 868.476
0.2 845.108 841.347
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To verify the accuracy of this study to predict natural frequencies of higher vibrational modes,
the first ten SC natural frequencies of an isotropic plate with piezoelectric layers are computed and
compared with those predicted by [61,64,69], as listed in Table 2.

Table 2. Comparison of the first ten eigenfrequencies (Hz) of a bimorph isotropic plate in SC condition.

Mode (m,n) Ref. [69] Ref. [64] Ref. [61] Present

1st (1,1) 144.25 145.35 145.35 144.49
2nd (1,2) 359.00 363.05 363.06 360.89
3rd (2,1) 359.00 363.05 363.06 360.89
4th (2,2) 564.10 580.35 580.37 576.90
5th (1,3) 717.80 725.00 725.03 720.70
6th (3,1) 717.80 725.00 725.03 720.70
7th (2,3) 908.25 941.64 941.69 936.06
8th (3,2) 908.25 941.64 941.69 936.06
9th (1,4) 1223.14 1229.88 1229.96 1222.61
10th (4,1) 1223.14 1229.88 1229.96 1222.61

The last comparative study is presented in Table 3 for the SC fundamental frequencies of
the present formulations and those reported in [59], for bimorph and unimorph structures having
different geometries. In [59], the electric potential distribution within piezoelectric layers is considered
as function of z coordinate only, whereas in the current study it is modeled by a function of all
three coordinates. However, since various mechanical displacement models and electric potential
distributions are employed in the current study and the above-mentioned references, some slight
differences are observed among the results. Nevertheless, it is evident from Tables 1–3 that the results of
the present exact solution based on FSDT are in close agreement with the ones reported in the literature.

Table 3. Comparison of the fundamental eigenfrequencies (Hz) for piezoelectric bimorphs and
unimorphs with isotropic substrate.

Geometry Hp/2h Bimorph Unimorph

Ref. [59] Present Ref. [59] Present

Spherical 0.5 2652 2653 2654 2654
1.0 2405 2408 2411 2411
2.0 2211 2215 2217 2217

Cylindrical 0.5 1526 1527 1531 1531
1.0 1383 1387 1393 1393
2.0 1273 1280 1285 1285

Plate 0.5 873 875 887 887
1.0 791 797 813 813
2.0 730 743 755 755

3.2. New Results and Discussion

In the following, new results are presented for SC and OC eigenfrequencies of porous bimorph
and unimorph panels having spherical (Rx, Ry > 0), hyperbolic paraboloidal (Rx > 0, Ry < 0), cylindrical
(Rx , 0, Ry ≈ ∞) and plate (Rx ≈ ∞, Ry ≈ ∞) geometries. Aluminum (E = 70 GPa, ρ = 2700 kg/m3) and
PZT-5H (properties can be found in [59]) are assumed as the materials of the substrate and piezoelectric
layers, respectively. To be able of making comparisons among various geometries of bimorph and
unimorph panels, the same volume of materials is considered for all the considered cases.

In Table 4, for length ratio L1/L2 = 1, thickness-length ratio 2h/L1=0.05 and thickness ratio
Hp/2h = 0.2, the SC and OC resonance frequencies are listed for porous bimorph and unimorph
panels having different geometries in constant volume. The results show that increasing the porosity
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parameter causes a decrease in the value of natural frequency regardless of the type of smart panel
(i.e., bimorph or unimorph) as well as the electrical condition. This behavior is observed for all the
panel geometries and structures studied here. Actually, it is due to the fact that when the porosity
increases, the structural stiffness drops, which leads to reduce the eigenfrequencies. Furthermore, it
is seen that for the same materials composition and the constant volume, various geometries exhibit
different natural frequencies in such a way that the highest values are related to spherical shells
followed by cylindrical, plate and hyperbolic paraboloidal panels. Also, the table illustrates that both
bimorph and unimorph structures have higher frequencies in OC condition in comparison with when
the piezoelectric layers are kept at SC condition.

Table 4. Fundamental eigenfrequencies (Hz) of smart porous panels having various geometries
(L1/L2 = 1, Rx/L1 = 5, 2h/L1 = 0.05, Hp/2h = 0.2).

EBC e Spherical
(Ry/L1 = Rx/L1)

Cylindrical
(Ry/L1 =∞)

Plate
(Ry/L1 = Rx/L1 =∞)

Hyperbolic Paraboloidal
(Ry/L1 = -Rx/L1)

Bimorph

SC 0.0 280.488 253.228 244.123 242.135
0.1 277.570 251.004 242.163 240.189
0.2 274.537 248.677 240.104 238.147
0.3 271.374 246.232 237.931 235.992
0.4 268.070 243.653 235.627 233.706
0.5 264.614 240.924 233.173 231.271

OC 0.0 299.762 273.571 264.980 262.815
0.1 297.286 271.846 263.589 261.434
0.2 294.738 270.074 262.168 260.023
0.3 292.116 268.254 260.720 258.586
0.4 289.423 266.391 259.252 257.129
0.5 286.673 264.500 257.784 255.672

Unimorph

SC 0.0 281.395 254.198 245.202 243.203
0.1 276.825 250.150 241.350 239.382
0.2 271.804 245.632 237.019 235.086
0.3 266.223 240.522 232.082 230.189
0.4 259.937 234.655 226.365 224.520
0.5 252.739 227.794 219.620 217.829

OC 0.0 308.683 278.646 265.389 263.218
0.1 303.993 274.389 261.260 259.123
0.2 298.796 269.602 256.590 254.491
0.3 292.975 264.155 251.242 249.186
0.4 286.368 257.868 245.028 243.023
0.5 278.758 250.492 237.683 235.739

Fundamental natural frequencies of different bimorphs and unimorphs in SC condition are
depicted in Tables 5 and 6 for wide range of parameters including 2h/L1, Hp/2h and Rx/L1. These tables
indicate that by increasing the shell curvature, the eigenfrequencies decrease for all the studied curved
panels (i.e., spherical and cylindrical shells) except for hyperbolic paraboloidal shell in which the
natural frequency significantly rises, as the radius increases. In addition, it seems that increasing the
thickness of the substrate layer raises the natural frequency in such a manner that this growth is more
remarkable for hybrid shells with higher values of Rx/L1. For example, when Rx/L1 = 1, the natural
frequency of bimorph spherical shell has a growth of 11.5% due to increasing the thickness-length ratio
(2h/L1) from 0.1 to 0.15, while the value of this growth is about 42.5% when Rx/L1 = 10, as seen in Table 5.
Similar behaviors can be observed for other geometries. Moreover, the tables reveal that the natural
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frequencies for bimorph panels are usually greater than those of unimorphs in same composition of
materials, owing to asymmetry of unimorph structures.

Table 5. Fundamental SC eigenfrequencies (Hz) of porous bimorph panels (L1/L2 = 1, e = 0.2).

Geometry of the Smart Panel Rx/L1 = 1 Rx/L1 = 2 Rx/L1 = 5 Rx/L1 = 10

2h/L1 = 0.1, Hp/2h = 0.05

Spherical (Ry/L1 = Rx/L1) 817.439 572.816 474.190 458.105
Cylindrical (Ry/L1 =∞) 549.656 480.008 457.156 453.776
Plate (Ry/L1 = Rx/L1 =∞) 452.686 452.686 452.686 452.686
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 369.247 429.736 448.902 451.736

2h/L1 = 0.1, Hp/2h = 0.1

Spherical (Ry/L1 = Rx/L1) 794.466 564.937 473.786 459.051
Cylindrical (Ry/L1 =∞) 541.781 478.626 458.098 455.074
Plate (Ry/L1 = Rx/L1 =∞) 454.102 454.102 454.102 454.102
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 370.360 431.054 450.301 453.147

2h/L1 = 0.15, Hp/2h = 0.05

Spherical (Ry/L1 = Rx/L1) 911.460 727.852 662.487 652.559
Cylindrical (Ry/L1 =∞) 694.283 661.115 651.139 649.757
Plate (Ry/L1 = Rx/L1 =∞) 649.386 649.386 649.386 649.386
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 526.775 615.218 643.723 647.963

2h/L1 = 0.15, Hp/2h = 0.1

Spherical (Ry/L1 = Rx/L1) 889.776 720.098 660.438 651.429
Cylindrical (Ry/L1 =∞) 686.543 658.381 650.006 648.858
Plate (Ry/L1 = Rx/L1 =∞) 648.562 648.562 648.562 648.562
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 525.963 614.352 642.888 647.136

Table 6. Fundamental SC eigenfrequencies (Hz) of porous unimorph panels (L1/L2 = 1, e = 0.2).

Geometry of the Smart Panel Rx/L1 = 1 Rx/L1 = 2 Rx/L1 = 5 Rx/L1 = 10

2h/L1 = 0.1, Hp/2h = 0.05

Spherical (Ry/L1 = Rx/L1) 819.827 572.226 472.471 456.188
Cylindrical (Ry/L1 =∞) 548.928 478.424 455.241 451.794
Plate (Ry/L1 = Rx/L1 =∞) 450.657 450.657 450.657 450.657
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 367.585 427.808 446.890 449.711

2h/L1 = 0.1, Hp/2h = 0.1

Spherical (Ry/L1 = Rx/L1) 798.410 563.822 470.813 455.765
Cylindrical (Ry/L1 =∞) 540.425 475.869 454.816 451.688
Plate (Ry/L1 = Rx/L1 =∞) 450.646 450.646 450.646 450.646
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 367.510 427.764 446.872 449.698

2h/L1 = 0.15, Hp/2h = 0.05

Spherical (Ry/L1 = Rx/L1) 914.868 727.352 660.50 650.254
Cylindrical (Ry/L1 =∞) 693.449 659.300 648.835 647.317
Plate (Ry/L1 = Rx/L1 =∞) 646.825 646.825 646.825 646.825
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 524.677 612.786 641.183 645.407

2h/L1 = 0.15, Hp/2h = 0.1

Spherical (Ry/L1 = Rx/L1) 895.375 719.168 657.105 647.585
Cylindrical (Ry/L1 =∞) 685.017 655.306 646.164 644.804
Plate (Ry/L1 = Rx/L1 =∞) 644.319 644.319 644.319 644.319
Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1) 522.440 610.305 638.677 642.901
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To discuss the observed behaviors of resonance frequencies for the SC and OC electrical conditions,
the fundamental frequencies of various porous hybrid structures are listed in Table 7, for different
values of Hp/2h. In the second and fifth columns of this table, the listed frequencies are quantified by
eliminating the electrical effect of piezoelectric layers (i.e., by setting the electromechanical coupling
coefficients eij = 0 [57]) to show only the mechanical effect of piezoelectric layers on the results. By
inspecting the values in the table, one can realize that the electrical effect in SC condition is negligible,
whilst it plays a key role in the OC condition to increase the value of eigenfrequencies. It does mean
that the observed changes in natural frequency, due to mounting the SC piezoelectric layers on the
substrate, are associated with the stiffening effect of piezoelectric layers only, whereas the frequencies
are significantly influenced by the electrical part (in addition to mechanical part), when keeping
piezoelectric layers in OC condition. This behavior could be ascribed to various electric potential
distributions in SC and OC conditions, which are given in relation (4). Furthermore, both the SC and
OC natural frequencies increase by raising the thickness ratio Hp/2h, regardless of the type of structure.
It is also observed that in the case of spherical porous smart panel, the electrical effect associated with
the OC piezoelectric layer is more remarkable for unimorphs compared to that of bimorphs, while the
opposite result is seen for other geometries.

Table 7. Fundamental eigenfrequencies (Hz) of smart porous panels (L1/L2 = 1, Rx/L1 = 5, 2h/L1 = 0.1,
e = 0.3).

Hp/2h Bimorph Unimorph

(eij = 0 1) SC (Ω(%) 2) OC (Ω(%) 2) (eij = 0 1) SC (Ω(%) 2) OC (Ω(%) 2)

Spherical (Ry/L1 = Rx/L1)

0.0 468.898 468.898 (0.00) 468.898 (0.00) 468.898 468.898 (0.00) 468.898 (0.00)
0.1 467.185 467.205 (0.00) 490.957 (5.09) 461.490 461.490 (0.00) 488.044 (5.75)
0.2 473.266 473.395 (0.03) 512.563 (8.30) 464.088 464.088 (0.00) 506.619 (9.16)
0.3 483.409 483.762 (0.07) 533.559 (10.4) 472.066 472.066 (0.00) 524.660 (11.1)
0.4 495.832 496.527 (0.14) 553.864 (11.7) 483.163 483.163 (0.00) 542.115 (12.2)

Cylindrical (Ry/L1 =∞)

0.0 450.644 450.644 (0.00) 450.644 (0.00) 450.644 450.644 (0.00) 450.644 (0.00)
0.1 451.961 451.982 (0.00) 476.423 (5.41) 445.870 445.870 (0.00) 470.093 (5.43)
0.2 460.132 460.265 (0.03) 500.343 (8.74) 450.444 450.444 (0.00) 489.287 (8.62)
0.3 471.819 472.182 (0.08) 522.934 (10.8) 459.984 459.984 (0.00) 508.060 (10.5)
0.4 485.438 486.150 (0.15) 544.411 (12.1) 472.363 472.363 (0.00) 526.285 (11.4)

Plate (Ry/L1 = Rx/L1 =∞)

0.0 445.780 445.780 (0.00) 445.780 (0.00) 445.780 445.780 (0.00) 445.780 (0.00)
0.1 448.158 448.180 (0.00) 473.069 (5.56) 441.867 441.867 (0.00) 463.333 (4.86)
0.2 457.080 457.215 (0.03) 497.912 (8.93) 447.164 447.164 (0.00) 481.775 (7.74)
0.3 469.339 469.707 (0.08) 521.138 (11.0) 457.328 457.328 (0.00) 500.345 (9.41)
0.4 483.415 484.136 (0.15) 543.091 (12.3) 470.262 470.262 (0.00) 518.664 (10.3)

Hyperbolic Paraboloidal (Ry/L1 = -Rx/L1)

0.0 442.057 442.057 (0.00) 442.057 (0.00) 442.057 442.057 (0.00) 442.057 (0.00)
0.1 444.406 444.427 (0.00) 469.070 (5.55) 438.167 438.167 (0.00) 459.427 (4.85)
0.2 453.234 453.368 (0.03) 493.662 (8.92) 443.398 443.398 (0.00) 477.665 (7.73)
0.3 465.365 465.730 (0.08) 516.631 (11.0) 453.449 453.449 (0.00) 496.020 (9.93)
0.4 479.293 480.006 (0.15) 538.329 (12.3) 466.240 466.240 (0.00) 514.118 (10.3)

1 Natural frequency without piezo effect, 2 Ω =
((
ω(sc/oc) −ω(ei j=0)

)
/ω(ei j=0)

)
*100

In Figure 3a–d, for different values of porosity parameter namely 0.2 and 0.5, variations of the SC
fundamental frequency with respect to Hp/2h are plotted. Regardless of the panel geometry, it seems
that by increasing the value of Hp/2h, the shell natural frequencies considerably increase, in such a
way that this growth is more remarkable for bimorph structures. As is obvious, at any fixed value of
Hp/2h, the frequencies of bimorphs are higher than those of unimorphs and this difference increases by
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raising the porosity parameter. In addition, for the bimorph panels, the curves corresponded to e = 0.5
have greater slopes in comparison with the ones associated with e = 0.2, which means that the natural
frequency of bimorph panels with higher coefficient of porosity are more influenced by changing the
thickness ratio Hp/2h, whereas the curves related to unimorph structures seem to be parallel for the
studied values of e. By investigating the numerical results, similar trends can be observed for the OC
electrical condition.Actuators 2020, 9, 7 16 of 27 
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Figure 3. Variation of the fundamental eigenfrequency versus the thickness ratio for coupled smart
panels under SC condition.

Figure 4a–d show the effect of changes in the shell curvature on variation of the SC natural
frequencies of smart doubly curved panels, with respect to the porosity parameter. As observed,
changing the shell radius significantly affects the natural frequency. It is seen that by increasing the
value of curvature, the fundamental frequency of spherical shells decreases, while the opposite trend
is seen for hyperbolic paraboloidal shells. Moreover, those figures reveal that changing the porosity
parameter has a greater effect on the natural frequencies of unimorph panels with respect to bimorphs.
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Figure 4. Variation of the fundamental eigenfrequency with respect to porosity coefficient.

In Figure 5a,b, variations of the first two resonance frequencies of spherical smart shells with
respect to Rx/L1 are plotted for the SC and OC electrical conditions. Again, it is seen that by increasing
the shell curvature, the frequencies of both vibrational modes decrease. When the value of Rx/L1

increases from 1 to around 3, the frequencies greatly reduce, while by further increasing the curvature,
very smooth decreasing trends are observed for both Mode 1 and Mode 2.

Parameters L1 and L2 have a direct influence on the eigenfrequencies. By changing the length
ratio in constant surface area, the variation of resonance frequency versus L2/L1 is shown in Figure 6 for
spherical porous bimorphs and unimorphs in SC electrical condition. The value of L2/L1 is considered
to change from 1/5 to 5, while the surface area is kept constant (equal to L1× L2 = 1 m2). It is observed
that for any considered value of the substrate thickness, the minimum frequency is achieved at L2/L1
= 1, and the frequency response has symmetric behavior around L2/L1 = 1. This behavior originates
from the induced increase in the panel stiffness due to declining/raising the length ratio. For other
geometries and the OC electrical condition, similar results can be obtained.
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Figure 5. Variations of the first two frequencies of spherical porous bimorph and unimorph shells with
respect to Rx/L1 (L1/L2 = 1, Ry/L1 = 5, 2h/L1 = 0.05, Hp/2h = 0.5, e = 0.2).
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Figure 6. Variation of the fundamental frequency versus the length ratio (Hp/2h = 0.5, e = 0.2).

To gain a deeper insight into the effect of piezoelectric layers on the frequency response of the
system, the parameter θ representing the relative difference in frequency is defined as follows:

θ =
ω
∣∣∣With Piezoelectric Layers −ω

∣∣∣
Without Piezoelectric Layers

ω|Without Piezoelectric Layers
× 100 , (20)

For smart panels with L1/L2 = 1, 2h/L1 = 0.1, Rx/L1 = Ry/L1 = 5 and e = 0.3, the variation of θ with
respect to Hp/2h is plotted in Figure 7a–d. Those figures show that, at a fixed value of the thickness
ratio, the magnitude of θ is the most for both plate and hyperbolic paraboloidal panels and the least for
spherical shells irrespective of the electrical condition. This does mean that the addition of piezoelectric
layers to the porous substrate has quantitatively different effects on the frequencies of panels with
various geometries. Moreover, it seems that in the SC condition, by adding piezoelectric layers, the
natural frequencies of coupled panels initially decrease till Hp/2h = 0.15, and subsequently increase as
the value of Hp/2h rises. This descending/ascending trend is regarded to the changes in the effective
mass density and structural stiffness of the coupled smart panels due to increasing the thickness ratio.
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Differently, since the electrical effect of piezoelectric layers plays a significant role in the growth of OC
frequencies, only ascending trends are seen for the variation of eigenfrequencies from Hp/2h = 0 to
Hp/2h = 0.5 in OC condition. In addition, it is clear that for the same thickness of piezoelectric layers,
the value of θ for bimorphs is greater than that of unimorph panels, in both SC and OC conditions.
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Figure 7. The effect of piezoelectric layers’ thickness on the fundamental frequency of bimorphs
and unimorphs.

To investigate the influence of electrical circuits (i.e., SC and OC), thickness ratio Hp/2h and
electrical and mechanical effects of piezoelectric layers on frequencies of various vibration modes,
Figures 8 and 9 are plotted for spherical shells with 2h/L1 = 0.1, L1/L2 = 1 and Rx/L1 = Ry/L1 = 5.
Particularly in Figure 8, the variation of θwith respect to Hp/2h is presented for both spherical bimorphs
and unimorphs under SC and OC conditions. In addition, by setting eij = 0, the stiffness effect of
piezoelectric layers on the first three frequencies is examined in Figure 9a, while Figure 9b,c show the
variation of Ω versus thickness ratio Hp/2h, in which the parameter Ω (defined in Table 7) is related
to electrical effect of piezoelectric layers. From Figure 9, it can be simply observed that the natural
frequencies associated with higher vibration modes are less influenced by changing the value of Hp/2h
in comparison with the fundamental frequency. Moreover, the change in the value of natural frequency
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due to the effects of both electrical and mechanical parts of piezoelectric layers is the greatest for Mode
1 and the least for Mode 3, as is obvious in Figure 9.
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Figure 8. The effect of the thickness ratio on the first three resonance frequencies of porous bimorph
and unimorph spherical shells (e = 0.3).
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Figure 9. The mechanical and electrical effects of piezoelectric layers on the first three natural frequencies
of spherical bimorphs and unimorphs.
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In the following, the parameter Γ is defined to investigate the sensitivity of various vibration
modes to the variation of porosity:

Γ =
ω
∣∣∣Shell with Porosity −ω

∣∣∣
Shell without Porosity

ω|Shell without Porosity
× 100 , (21)

Figure 10 represents the variation of Γ with respect to e for the first three resonance frequencies of
spherical bimorph shells under SC and OC conditions. It is seen that in both SC and OC conditions,
all the three eigenfrequencies of Mode 1, Mode 2 and Mode 3 are linearly reduced by increasing the
value of porosity in such a way that the frequencies of higher modes are more sensitive to the porosity
parameter. In addition, it seems that changing the value of porosity has more effect on SC frequencies
compared to OC ones.
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Figure 10. The effect of porosity parameter on the first three resonance frequencies of porous bimorph
spherical shells (L1/L2 = 1, Rx/L1 = Ry/L1 = 5, 2h/L1 = 0.1, Hp/2h = 0.2).

4. Conclusions

The electromechanical free vibration of porous piezoelectric bimorph and unimorph doubly
curved panels has been studied via FSDT. Employing the variational principle and the Maxwell’s
equation, the governing equations have been derived in terms of mechanical displacement variables
and electric function. Assuming simply supported mechanical boundary condition on all the four
edges of the panel, the exact eigenfrequencies are extracted analytically. Finally, the influence of various
parameters such as porosity, electrical condition, thickness ratio and electrical and mechanical effects
of piezoelectric layers on natural frequencies are studied in detail.

By investigating the presented numerical simulations, the following conclusions may be drawn:

• it is necessary to consider the electrical effects for the smart panels under OC conditions unlike
the SC one;

• bimorph structures usually exhibit higher frequencies compared to the unimorph ones;
• increasing the porosity parameter reduces the natural frequencies, having a greater effect on the

frequencies of unimorphs compared to those of bimorph panels;
• by increasing the curvature, the resonant frequencies of spherical and cylindrical shells remarkably

decline, while ascending trend is seen for hyperbolic paraboloidal panels;
• keeping the volume constant, spherical shells exhibit the highest frequencies followed by

cylindrical, plate, and hyperbolic paraboloidal panels, in descending order of frequency;
• keeping the surface area L1× L2 constant, the lowest value of natural frequency is achieved when

L2/L1 = 1, irrespective of the value of curvature.
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• frequencies of higher vibration modes are more influenced by the variation of porosity and
thickness ratio, compared to the fundamental frequency.

The existence of internal pores within the substrate significantly affects the frequency response of
smart structures, so that introducing porosity makes it possible to modify the resonance frequency in a
desired manner.
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Appendix A

The coefficients βi (i = 1, 2, 3, 4) and η j (j = 1, 2) are obtained as follows:

β1 =


−h∫

−h−hpb

e15dz+
+h+hpt∫
+h

e15dz


β2 =


−h∫

−h−hpb

e31dz+
+h+hpt∫
+h

e31dz


β3 =


−h∫

−h−hpb

8Ξ33
hpb

2 dz+
+h+hpt∫
+h

8Ξ33
hpt2 dz


(A1)

SC condition:

β4 =

−
−h∫

−h−hpb

Ξ11

[
1−

(
−2z−2h−hpb

hpb

)2
]
dz−

+h+hpt∫
+h

Ξ11

[
1−

(
2z−2h−hpt

hpt

)2
]
dz

,

η1 = η2 = 0

(A2)

OC condition:

β4 =


−

−h∫
−h−hpb

Ξ11

[
1−

(
−2z−2h−hpb

hpb

)2
−

4(z+h)
hpb

]
dz−

+h+hpt∫
+h

Ξ11

[
1−

(
2z−2h−hpt

hpt

)2
+

4(z−h)
hpt

]
dz


,

η1 =


−h∫

−h−hpb

−Ξ11e31(z+h)
Ξ33

dz+
+h+hpt∫
+h

−Ξ11e31(z−h)
Ξ33

dz

,

η2 =


−h∫

−h−hpb

Ξ11e31(z+h)(h+hpb)

Ξ33
dz+

+h+hpt∫
+h

−Ξ11e31(z−h)(h+hpt)
Ξ33

dz



(A3)
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The constant coefficients aij, bij, dij, pij, and qij are expressed as follows:

{a11, b11, d11} =
−h∫

−h−hpb

Cp
11

{
1, z, z2

}
dz +

+h∫
−h

Cs
11

{
1, z, z2

}
dz +

+h+hpt∫
+h

Cp
11

{
1, z, z2

}
dz + {ζ1, ζ2, ζ3}

{a12, b12, d12} =
−h∫

−h−hpb

Cp
12

{
1, z, z2

}
dz +

+h∫
−h

Cs
12

{
1, z, z2

}
dz +

+h+hpt∫
+h

Cp
12

{
1, z, z2

}
dz + {ζ1, ζ2, ζ3}

{
p11, q11

}
=

−h∫
−h−hpb

{1, z}
(

Cp
11

Rx
+

Cp
12

Ry

)
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−h
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11
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Cs

12
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11
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12
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dz + {ζ4, ζ5}{

p′11, q′11
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12
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(A4)

SC condition:
ζ1 = ζ2 = ζ3 = ζ4 = ζ5 = 0 (A5)

OC condition:

{ζ1, ζ2, ζ3} =
−h∫

−h−hpb

e31
2

Ξ33

{
1, (−h− hpb), (−h− hpb)z

}
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2
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}
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2
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z
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( 1
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+ 1
Ry
)
{
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2
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2
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z
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(A6)

Furthermore, the coefficients βi (i=5, 6, 7, 8, 9) for both SC and OC conditions are defined as follows:
SC condition:

{
β5, β6

}
=

−h∫
−h−hpb

{1, z} 4e31
hpb

(
−2z−2h−hpb

hpb

)
dz−
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(
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)
dz

β7 =
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e15

[
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]
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[
1−

(
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hpt
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]
dz

β8 = β9 = 0
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OC condition:

{
β5, β6

}
=

−h∫
−h−hpb

{1, z}
−8e31(z+h+hpb)

hpb
2 dz−

+h+hpt∫
+h

{1, z}
−8e31(z−h−hpt)

hpt2 dz
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e15

[
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(
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)2
−
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]
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e15
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)2
+
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]
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}
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{
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(A8)
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