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Abstract: White Spot Syndrome Virus (WSSV) has emerged as one of the most prevalent and lethal
viruses globally and infects both shrimps and crabs in the aquatic environment. This study aimed
to investigate the occurrence of WSSV in different ghers of Bangladesh and the virulence of the
circulating phylotypes. We collected 360 shrimp (Penaeus monodon) and 120 crab (Scylla sp.) samples
from the south-east (Cox’s Bazar) and south-west (Satkhira) coastal regions of Bangladesh. The VP28
gene-specific PCR assays and sequencing revealed statistically significant (p < 0.05, Kruskal–Wallis
test) differences in the prevalence of WSSV in shrimps and crabs between the study areas (Cox’s
Bazar and Satkhira) and over the study periods (2017–2019). The mean Log load of WSSV varied
from 8.40 (Cox’s Bazar) to 10.48 (Satkhira) per gram of tissue. The mean values for salinity, dissolved
oxygen, temperature and pH were 14.71 ± 0.76 ppt, 3.7 ± 0.1 ppm, 34.11 ± 0.38 ◦C and 8.23 ± 0.38,
respectively, in the WSSV-positive ghers. The VP28 gene-based phylogenetic analysis showed an
amino-acid substitution (E→G) at the 167th position in the isolates from Cox’s Bazar (referred to as
phylotype BD2) compared to the globally circulating one (BD1). Shrimp PL artificially challenged
with BD1 and BD2 phylotypes with filtrates of tissue containing 0.423 × 109 copies of WSSV per
mL resulted in a median LT50 value of 73 h and 75 h, respectively. The in vivo trial showed higher
mean Log WSSV copies (6.47 ± 2.07 per mg tissue) in BD1-challenged shrimp PL compared to BD2
(4.75 ± 0.35 per mg tissue). Crabs infected with BD1 and BD2 showed 100% mortality within 48 h
and 62 h of challenge, respectively, with mean Log WSSV copies of 12.06 ± 0.48 and 9.95 ± 0.37 per
gram tissue, respectively. Moreover, shrimp antimicrobial peptides (AMPs), penaeidin and lysozyme
expression were lower in the BD1-challenged group compared to BD2 challenged shrimps. These
results collectively demonstrated that relative virulence properties of WSSV based on mortality rate,
viral load and expression of host immune genes in artificially infected shrimp PL could be affected by
single aa substitution in VP28.

Keywords: VP28; WSSV; phylotypes; real-time PCR; viral load

1. Introduction

Shrimp aquaculture is one of the major earning sources in many countries including
Bangladesh and plays a vital role in enlightening community advancement, food security,
employment opportunities and poverty reduction [1,2]. In Bangladesh, shrimp aquaculture
provides livelihood to around 85 million people (mostly coastal people) and serves as
the second most foreign currency-earning source, which contributes about 5% to national
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GDP [3,4]. Black tiger shrimp (Penaeus monodon) contributes 26% to the total aquacultural
production in Bangladesh, while crabs contribute 6% [5]. Studies suggested that P. monodon
can adapt to a wide range of salinity from 4 to 40 ppt, dissolved oxygen from 4 to 7 ppm,
temperature from 25 ◦C to 32 ◦C, and pH from 7.5 to 9 [6,7]. The mud crab, Scylla spp., is
distributed widely throughout the Indo-Pacific region [8]. Recently, mud crab (Scylla oli-
vacea) farming has had an increasing trend in the coastal areas of Bangladesh due to their
higher disease resistance capacity and market values [9]. Among the marine crustaceans,
crabs are supposed to be less vulnerable to the effects of climate change and deterioration
of water quality. To date, more than 98 species have been found as hosts or carriers of
WSSV [10], and of them, mud crabs have been considered to be a particularly potential
threat to shrimp farms because of their carrier status [10–12]. Moreover, mud crabs may
well suppress viral replication by inducing the apoptosis of hemocytes [13].

The WSSV is one of the major threats to the shrimp industry over the past two decades
globally. This is a very fast reproducing, wide spreading and highly virulent crustacean
pathogen [14,15]. Studies have demonstrated the widespread pathogenicity of WSSV
among many marine crustaceans, including shrimp, crayfish and crabs [13,16]. The out-
break of WSSV depends on the interactions among the pathogen, host and environment [17],
and thus, the interaction between WSSV and the hosts have been a research focus in recent
years. This virus can be transmitted both horizontally and vertically [12,18], and once an
outbreak of WSSV occurs, it wipes out the entire population in many aquatic farms within
a few days [14]. Infection of the WSSV in shrimp is characterized by a rapid mortality of up
to 100% within 7–10 days [19]. Up to now, there is no completely efficient method to protect
the shrimp from WSSV infection. Appropriate protective management is enormously im-
portant for reducing WSSV infections in shrimp farms [20]. In Bangladesh, eggs are hatched
in the hatcheries from mother shrimps collected from the Bay of Bengal, and shrimp post
larvae (PL) from these hatcheries are distributed throughout the country. PL traders directly
catch and sell to shrimp farmers as well. Breeding of the WSSV-resistant types should
be the most effective approach towards solving the virus disease problem [15]. However,
comprehensive study regarding the physicochemical parameters of ghers (shrimp ponds)
of Cox’s Bazar and Satkhira districts of Bangladesh, and identification of circulating WSSV
in those areas are lacking.

The circular genome of the WSSV is approximately 275 nm in length and 120 nm in
width with tail-like appendages at one end, and composed of five known major structural
proteins: VP28, VP19, VP26, VP24 and VP15 [19,21]. Studies on WSSV viral proteins have
demonstrated that VP28 and VP19 are associated with the virion envelope [21,22], while
VP26 acts as a tegument protein linking the two nucleocapsid-associated proteins VP24
and VP15 to the envelope [17,23]. The VP28 is required for WSSV entry into host cells
by endocytosis, cell-to-cell infection and virus propagation [22]. Moreover, this envelop
protein plays a significant role in initiating the WSSV infection in shrimp [22]. The VP28
gene of WSSV is suggestively involved in endosome escape through its interaction with
the host Rab7 [24], and has been identified as a potent target for dsRNA treatment in
comparative studies [25]. Previous analyses of strain variability reported that competitive
fitness depends on the size of the genome [26,27]; however, these studies are far from
enough to illustrate all the mechanisms of WSSV pathogenesis. The on-going mutations in
the structural proteins such as VP28 could explain most phenotypic variance of WSSV for
certain traits [15,28]. Siddique and colleagues confirmed a mutation at amino acid position
167 of the VP28 gene of WSSV in Bangladesh with glycine instead of glutamic acid on that
position [29]. However, the virulence properties of different phylotypes of WSSV remain
unknown. Therefore, this study investigated the impact of physicochemical parameters on
the prevalence of WSSV, the virulence properties of circulating phylotypes of WSSV based
on mortality observation and the viral load count in shrimp PL artificially infected with
two circulating phylotypes of WSSV.
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2. Materials and Methods
2.1. Sampling and Measurement of Physicochemical Parameters

Shrimp (P. monodon) and crab (Scylla sp.) samples were collected from Sadar Upazilla
of Cox’s Bazar District and 5 Upazillas namely: Satkhira Sadar (SS), Debhata (D), Asassuni
(A), Kaliganj (K) and Shyamnagar (S) of the Satkhira District which are situated in the
south-east and south-west coastal regions of Bangladesh (Figure 1). Satkhira is situated
in the southernmost coastal region of Bangladesh, and approximately 32% of the area
of this district (nearly 66,800 hectors out of 211,000 hectors) consists of shrimp farms
and contributes 34% (23,400 metric ton out of 69,000) of the entire shrimp production.
Cox’s Bazar is situated in the south-east coastal region of Bangladesh where most of the
shrimp hatcheries are situated and approximately 41,594 ha is under shrimp and crab
aquaculture [5]. In this study, samples were collected from 20 ghers during the period
when farmers reported the presence of WSD in the area (five from Cox’s Bazar and fifteen
from Satkhira). A total of 360 shrimps and 120 crabs were grossly collected after farmers
complained of the death of the crustaceans in their farming ghers (shrimp ponds) during
monsoon season (May-June) in 2017 to 2019. We also continued our sampling in post-
monsoon season (October) during the three-year study period (2017–2019) when no death
of crustaceans reported in the study ghers by the respective farmers. Data on temperature,
pH, dissolved oxygen and salinity were collected from the study ghers.
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Figure 1. South-east and south-west coastal regions of Bangladesh (marked using blue colour) where
shrimp ghers are located.

2.2. DNA Extraction

After initial screening considering symptoms of disease, tissue DNA was extracted
from the collected samples (from both shrimp and crabs) by an automated DNA extraction
system (MaxWell 16® Tissue DNA Purification kit; AS 1030, Promega, Madison, WI, USA),
according to manufacturer’s instruction [29]. In addition, DNA was also extracted from
artificially challenged shrimp PL tissues. For this, challenged shrimp PL tissue were
collected in sterile 1.5 mL microfuge tubes and mashed into fine particles with a glass rod
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prior to DNA extraction. DNA concentration and purity were measured by Nano-Drop
2000 (Thermo Scientific, Waltham, MA, USA) [20].

2.3. Conventional and Quantitative Real-Time PCR (qPCR) Assay

The extracted DNA underwent conventional PCR assay for the amplification of VP28
gene using GoTaq 2 ×Hot Start Colorless Master Mix (Promega, Madison, WI, USA) with
forward and reverse primers [29,30]. The conventional PCR reactions included denaturation
at 95 ◦C for 50 min, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 45 s, and repeated for
30 cycles with a final extension of 5 min at 72 ◦C. We used 1.0% agarose gel (with ethidium
bromide staining) in TAE buffer to separate and visualize the PCR-amplified products.
Following electrophoresis, the bands were photographed under UV light (Figure S1A).

The real-time qPCR was performed with primer pair WSSV-q28F 5′-TGTGACCAAG
ACCATCGAAA-3′ and WSSV-q28R 5′-CTTGATTTTGCCCAAGGTGT-3′ following pre-
viously developed methods [29] with a few adjustments. In the current study, recombi-
nant plasmid-based standard was used instead of the purified PCR product-based stan-
dard [29,31]. The recombinant plasmid that contained the VP28 gene (TOPO TA Vector
with complete CDS of VP28 gene as an insert) was gel purified by using the Wizard® SV
Gel and PCR Clean-Up System (Promega, Madison, WI, USA). From a serial dilution of
the purified recombinant plasmid, the standard was prepared in a linear logarithmic scale
of 1.0 × 109 to 102 copies per reaction. In brief, all the qPCR reactions had a final volume
of 25 µL and were run in the Applied Biosystems® 7500 Real-Time PCR system (Foster
City, CA, USA) by using 2 × SYBR® Green PCR Master Mix (Applied Biosystems, Foster
City, CA, USA), 100 nM of the forward and reverse primers and variable quantity of each
template DNA. The parameters for thermal cycling were set for an initial denaturation
step at 95 ◦C for 10 min followed by 40 cycles at 95 ◦C for 15 s for DNA denaturation with
subsequent annealing and extension at 53 ◦C for 30 s. The melt curve was analyzed to dif-
ferentiate the specific amplicon formed by primer dimer or generation of any non-specific
product. Furthermore, the qPCR products were electrophoresed in agarose gel to invalidate
the existence of any spurious amplicon. The experiment was performed with duplicate
replication for the purpose of quantifying the viral load. The WSSV load per gram of tissue
sample was calculated using the following equation:

Viral load per gram tissue = [viral load per reaction × (Final Elution volume/volume of
template DNA per reaction) × dilution factor] ± Standard Deviation (SD).

To evaluate the standard curve’s reproducibility, standard reactions were performed
three times separately, including duplications of each reaction. The data obtained from
real-time PCR run were analysed using 7500 software, version 2.0.6 (Applied Biosystems,
Foster City, CA, USA). Statistical program Microsoft Excel 2020 was used to analyze the
data, which were presented as mean ± SD. The standard deviation of the viral load per
reaction was considered during the viral load calculation. For relative virulence study, viral
copy numbers in the challenged shrimp PL were quantified per reaction with the same
amount of the initial concentration of DNA. The VP28 gene amplified through real-time
PCR produced a 148 bp product (Figure S1B).

2.4. Sequencing of VP28 Protein, Phylogenetic and Mutation Analyses

Conventional PCR-amplified products were purified with the Wizard® SV Gel and
PCR Clean-Up System (Promega, Madison, WI, USA), and the seven (shrimp = 5; crab = 2)
purified PCR products were exposed to an automated dideoxy cycle sequencing reac-
tion using BigDye® Terminator v3.1 cycle sequencing kit (Applied Biosystems®, Fos-
ter City, CA, USA) according to manufacturer’s instruction [20]. A sequence cleaner
(https://github.com/metageni/Sequence-Cleaner, accessed on 20 June 2020) with set pa-
rameters of minimum length (m = 3822), percentage N (mn = 0), keep_all_duplicates, and
remove_ambiguous was used to remove all ambiguous and low-quality sequences [32].
The raw sequence data were assembled through SeqMan version 7.0 (DNASTAR, Inc.,

https://github.com/metageni/Sequence-Cleaner
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Madison, WI, USA) and the assembled sequences were compared with other entries from
NCBI GenBank [33] with BLAST [34] search to disclose the identification and matching
with VP28 gene of WSSV.

Using Molecular Evolutionary Genetics Analysis (MEGA) version 7.0 for the larger
datasets [35], the VP28 gene sequences, amplified from seven isolates, were aligned with
each other, and with relevant reference sequences from our previous study (n = 17) and
NCBI GenBank database (n = 10), with >90% taxonomic identity. A maximum-likelihood
tree was generated with the Tamura-Nei evolutionary model [35,36]. Nodal confidence
in resulting phylogenetic relationships was evaluated using bootstrap test (1000 repli-
cates) [37]. Seven VP28 sequences of WSSV different isolates of shrimp and crab and
143 reference sequences of VP28 retrieved from GenBank were subjected to multiple align-
ment through MAFFT [38], and some adjustments were made by manual editing. Repeat
units of each isolate were annotated using Geneious Prime (Trial Version), and aligned
against a reference sequence for amino-acid (aa) variability score counting [39,40].

2.5. Experimental Infection

P. monodon post larvae (PL) were collected from Meghna Shrimp Hatchery, Cox’s
Bazar, Bangladesh with a length of 1–2 cm. WSSV-free breeder wild-caught mother shrimps’
eggs were used for hatching these post larvae in the hatchery. Highly infected black tiger
shrimp tissue was used for preparing WSSV inoculum. Tissue below carapace from affected
shrimp was minced and homogenized in sterile sea water. Supernatant was collected after
centrifugation at 8515× g for five min and filtered through a 0.45 µm membrane. Stock
was diluted to prepare infective dose containing 108 copies per mL. Blank inoculums were
prepared using the same steps from a WSSV-negative shrimp sample. For in vivo chal-
lenge, we performed the previously established ‘immersion technique’ [41] as waterborne
inoculation [42]. The experimental groups were challenged by the immersion technique
in aerated glass jars (n = 180, in each jar) with WSSV solutions in three treatments. Using
the WSSV-negative inoculums, aerated jars were set to treat the negative control group
(n = 180 in each jar) with three treatments. The PL were fed with commercially available
artificial feed once a day at a rate of 10% body weight. Mortalities were checked after every
six hours, and the presence of WSSV was checked by conventional PCR (Figure S1C).

Virulence determination assay was performed in separate experiments with three
treatments of shrimp PL (n = 360, in each jar) infected with inoculums containing the
same copy number of both phylogroups (BD1 and BD2). A negative control group with
three treatments (n = 360, in each jar) was maintained with inoculum prepared from the
WSSV-negative tissue. So, the total number of jars used was nine. Thus, inocula were
prepared using the abovementioned procedure from tissue with same copy numbers of
the virus (4.27 × 109) from both groups and added in the small aquariums for treatments.
Infective doses consisted of filtrates from the tissue of both groups containing 0.423 × 109

and 0.423 × 107 copies of WSSV per mL in sterile sea water. The temperature of the
experimental tanks’ water ranged between 28–29 ◦C, while the salinity and dissolved
oxygen were 18 ppt and 5–6 ppm, respectively, throughout the experiment. Time-dependent
mortality rates were measured by counting the number of dead PL in every six-hour interval.
DNA from challenged PL (infected and control) were extracted and tested for viral load
estimation by real-time PCR. CT values and copy number of WSSV obtained from different
samples were compared.

Another pilot study of infection assay was conducted on 45 mud crabs using the
tissues from both phylotypes (BD1 and BD2) through the ingestion method. The crabs
were collected from a certified WSSV-free crab farm of Satkhira district. Moreover, we
also tested the health status of the crabs through conventional PCR before experimental
infection. The crabs were divided into three groups: Group-1 = 15 crabs challenged with
BD1, Group-II = 15 crabs challenged with BD2, and Group-III = 15 crabs, serving as control.
The crabs were of 6 months of age, and each group was kept in a separate tank containing
5 crabs in each. Crabs of the treated groups were fed with infected crab tissue (Day 1) and
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trash fish (from Day 2), while crabs of the control group were given beef liver from the first
day [42]. Tissues containing both groups of WSSV (1.0 × 109) were used to feed the crabs
of the experimental groups. Standard experimental conditions were similar to the shrimp
PL virulence experiment other than the salinity, which was maintained at a higher level
(28–30 ppt).

2.6. RNA Extraction and Preparation of cDNA

RNA was extracted from the challenged PL at the moribund stage using QIAgen’s
QIAamp Viral RNA mini kit according to the protocol of manufacturer. The purity and
concentration of the extracted RNA were assessed by Nanodrop-2000 spectrophotometer.
The extracted RNA was reverse-transcribed to cDNA using New England Biolab’s cDNA kit
(PhotoScript II First Strand cDNA Synthesis Kit, New England Biolabs, Ipswich, MA, USA).

2.7. Gene Expression Analysis

Real-time PCR was used for the analysis of expression of two immunity genes of
shrimps (Penaeidin and Lysozyme). Quantitative PCR was run with one cycle of initial
denaturation at 95 ◦C for 60 s and 45 cycles of denaturation at 95 ◦C for 15 s and extension
at 60 ◦C for 30 s using New England Biolab’s Luna Universal qPCR master mix according
to the protocol of manufacturer. The primers used are presented in Table 1. Average-
fold difference in gene expression was analysed by comparative delta CT method [43].
Housekeeping gene beta-actin was used for normalization that provided the CT values
as internal (endogenous) control. Control treatments were inoculated with inoculum
prepared from WSSV-negative tissue, and the samples were considered for gene expression
if there was any amplification. Delta CT has been calculated by deducting CT value of
endogenous control from the gene of target, and finally, mean delta CT was calculated from
this standardized delta CT value. Delta CT was calculated with reference to the control
by deducting the mean delta CT of the control from the mean delta CT of the target gene.
Changes in average-fold gene expression in challenged PL was calculated to 2-delta delta C

T
values.

Table 1. Primers used in the current study.

Name of Gene Primer Sequence (5′-3′) Reference

Penaeidin F: TGGTCTGCCTGGTCTTCCT
R: AAGCACGAGCTTGTAAGGG [44]

Lysozyme F: TGGTGTGGCAGCGATTATG
R: GATCGAGGTCGCGATTCTTAC [44]

Beta-actin F: CCCTGTTCCAGCCCTCATT
R: GGATGTCCACGTCGCACTT [45]

VP28 F: GCGCGCGGATCCAATCATGGATCTTTCTTTCAC
R: GCGCGCGAATTCTTACTCGGTCTCAGTGCC [30]

qVP28 F: TGTGACCAAGACCATCGAAA
R: CTTGATTTTGCCCAAGGTGT [29]

2.8. Observation of Binding Affinity of VP28 and Its Receptor Protein Rab7

The web server PRODIGY was used to observe the binding affinity of the receptor
protein Rab7 and the WSSV envelope protein VP28 of both groups from Bangladesh [46,47].
VP28 with glycine at its 167th amino acid position and VP28 with glutamic acid at 167th
amino acid position were used for docking with Rab7 of P. monodon by HADDOCK (High
Ambiguity Driven protein–protein DOCKing) [48]. For protein–protein docking, active
residues [48] were produced from both molecules. Prior to docking, the Rab7 sequences
were downloaded from the NCBI database and the homology modelling of Rab7 protein
was conducted using SWISS-MODEL and validated further by developing Ramachandran
plots [49]. PROGIDY used interactors from both proteins for producing binding affinity
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(∆G) and the dissociation constant (Kd) values. Moreover, DynaMut web server was used
to observe the impact of this mutation to the stability of the VP28 [50].

2.9. Statistical Analysis

The salinity, temperature, dissolved oxygen and pH were compared to WSSV, grouped
as present and absent. In the case of salinity, temperature and dissolved oxygen, non-
parametric independent sample tests were performed, and for pH, a parametric indepen-
dent sample test was performed. The null hypothesis of the distribution of physicochemical
parameters was the same across categories of WSSV and was retained for dissolved oxygen
and pH and rejected for salinity and temperature. When there is no significant interaction
between time and isolate, the probit model takes the form: probit (x) = α + β time + γ

isolate, where α is the intercept, β is the rate of probability change per unit change of time
(for a constant isolate), and γ is the rate of probability. Eta test statistic was used to study
the associations between WSSV (nominal variable) and the physicochemical parameters
(scale variables). Additionally, the mean prevalence of WSSV among different regions was
calculated using SPSS (SPSS, Version 23.0, IBM Corp., New York, NY, USA) [51]. Final
values for average-fold differences in gene expression were tested for significance at the 5%
level using t-test.

3. Results
3.1. Prevalence of WSSV and Physicochemical Parameters in the Study Ghers

The overall prevalence of WSSV in both crustacean population (shrimp and crab)
between the study areas (Cox’s Bazar and Satkhira) and over the study periods (2017–2019)
differed significantly (p < 0.05, Kruskal–Wallis test). The average prevalence of WSSV
during 2017 to 2019 in shrimp and crabs were 20.93% and 12.73% in the ghers of Cox’s Bazar,
and 16.73% and 9.53% in the ghers of Satkhira, respectively (Figure 2A). By comparing
the year-wise prevalence of WSSV in the shrimp between the study areas, the highest
prevalence was recorded in the shrimp ghers of both Cox’s Bazar (23.11%) and Satkhira
(18.96%) in 2017, and WSSV infection rates in shrimp population gradually decreased
thereafter in 2018 and 2019 (Figure 2A). Conversely, the prevalence of WSSV in the crab
population was found to be highest in the ghers of Cox’s Bazar (14.16%) in 2019 and
Satkhira (10.54%) in 2018 (Figure 2A). Physicochemical parameter analysis of the study
ghers showed that the mean value of salinity, dissolved oxygen, temperature and pH
ranged from 14–16 ppt, 3.6 to 3.8 ppm, 33.9 to 34 ◦C and 7.8–8.4, respectively, in the WSSV-
positive shrimp ghers, and 13–21 ppt, 2.61 to 6.06 ppm, 28.7 to 34 ◦C and 8.2 to 9.1 in
WSSV-negative ghers (Tables 2 and S1). Comparing the physicochemical parameters across
the study ghers, we found higher water temperature in WSSV-positive ghers compared to
WSSV-negative ghers. Likewise, the WSSV-negative ghers also had higher salinity than
WSSV-positive ghers (Figure 2B).

Table 2. Physicochemical parameters in the shrimp and crab ghers.

Gher ID Salinity (ppt) Dissolved Oxygen
(ppm)

Temperature
(◦C) pH Shrimp Samples

Selected
Crab Samples

Selected

Cox1 14 3.8 33.9 8.4 18 6
Cox2 21 3.75 33.7 8 18 6
Cox3 21 3.65 33.7 7.8 18 6
Cox4 20 3.90 33 8.1 18 6
Cox5 20 3.70 32.9 8.2 18 6
SS1 14 3.8 34 8.5 18 6
SS2 15 3.6 33.7 8.6 18 6
SS3 15 3.7 34 7.8 18 6
D1 19 3.8 33.8 7.8 18 6
D2 17.5 3.7 33.5 8 18 6
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Table 2. Cont.

Gher ID Salinity (ppt) Dissolved Oxygen
(ppm)

Temperature
(◦C) pH Shrimp Samples

Selected
Crab Samples

Selected

D3 20 3.6 33 8.6 18 6
A1 16.5 3.5 33.3 7.7 18 6
A2 16 3.8 33.8 7.8 18 6
A3 15 3.6 34 8 18 6
K1 14 3.8 34.6 8.6 18 6
K2 15 3.6 34.7 7.8 18 6
K3 16 3.6 33.9 7.9 18 6
S1 13 3.6 33.9 7.9 18 6
S2 16 3.8 34 8.1 18 6
S3 16 3.7 34 8 18 6

Gher prefix started with C represents the ghers from Cox’s Bazar while others represent the ghers of Satkhira districts.
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Figure 2. Prevalence of WSSV in Bangladesh. (A). The overall prevalence of WSSV in shrimp
and crabs in two different regions (Cox’s Bazar and Satkhira) of Bangladesh during 2017–2019.
(B) Mean temperature and salinity of shrimp ghers which differed significantly between WSSV+ve
and WSSV-ve ghers.
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3.2. Detection of WSSV in Scylla Olivacea

One of the hallmark findings of this study was the detection of WSSV in the mud crabs
(Scylla olivacea) in the samples of both regions, Cox’s Bazar and Satkhira. The appearance
of a 643 bp PCR product confirmed the presence of WSSV in the crabs (Figure S1A).

3.3. Viral Loads in Circulating Phylotypes of WSSV Differed in Crustacean Samples

In the current study, WSSV Log load per gram of shrimp tissue ranged from 7.62
(Cox’s Bazar) to 12.35 (Satkhira), while that of crab tissue ranged from 8.20 (Cox’s Bazar) to
10.47 (Satkhira) (Figure 3). On average, shrimp samples from Satkhira had significantly
higher (p < 0.05, Kruskal–Wallis test) viral load (10.48 ± 0.32, SEM) than that of Cox’s
Bazar (8.40 ± 0.08, SEM). The viral load in crab samples also varied significantly (p < 0.05,
Kruskal–Wallis test) in the study areas, keeping a higher load (9.92 ± 0.56, SEM) in Satkhira
compared to samples from Cox’s Bazar (8.91 ± 0.72, SEM) (Figure 3).
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Figure 3. Viral load in crustacean (shrimp and crab) samples in Cox’s Bazar and Satkhira. Error
bars represent standard deviation, and superscripts (a, b) represent significant differences (p < 0.05)
statistical analysis.

The VP28 gene-based phylogenetic analysis divided the isolates into two major phy-
lotypes (BD1 and BD2) which are currently circulating across the country. Nucleotide
sequences obtained from seven crustacean isolates according to VP28 gene sequencing
(2017–2019) along with 17 previously reported reference sequences (2014–2015) from
Bangladesh (our laboratory) and 10 reference sequences retrieved from NCBI database
were used to generate a phylogenetic tree. Two clusters (BD1 and BD2) contained 24 of the
sequences isolated from Bangladesh that mostly related to isolates from India and Vietnam.
The phylotype BD1 and BD2 contained 8 and 16 isolates of WSSV, respectively (Figure 4A).
Two isolates (MZ383193 and MZ383194) belonging to the phylotype BD1 had 98–100.0%
similarity with six VP28 gene sequences reported previously from Bangladesh (2015 and
2017), and that of two Indian sequences (Figure 4A). The isolates of the BD1 phylotype
formed a slightly distant branch with VP28 gene sequences reported from other countries
such as China, South Korea and Vietnam. On the other hand, the isolates of BD2 phylotype
(MZ383195-198) were found to be closely clustered with other VP28 sequences that was
previously reported (2014–2015) to be circulated in Bangladesh (Figure 4A).
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3.4. Variations in Amino-Acid Mutations in VP28 of WSSV

For amino acid (aa) mutation analysis, we used one VP28 reference sequence from the
Thai isolate (GenBank Accession no. AF369029). Out of 150 VP28 sequences retrieved from
the NCBI database (including 24 sequences from our laboratory), 104 (69.33%) sequences
showed aa mutations at 21 positions. Among these mutations, residue position 42 (33.33%),
114 (8%) and 167 (12.67%) were found as the major mutation sites in the VP28 sequences
of WSSV (Figures S2 and S3). However, residue position 167 showed glycine instead of
glutamic acid (E→G) in 19 VP28 sequences, including 15 from Bangladeshi and four from
Egyptian sequences (Figure S2). Of the Bangladeshi sequences, 10 were obtained from
previous studies from our laboratory [20,29], and the rest of the five (GenBank Accession
no. MZ383195-MZ383199) were from the current study. Moreover, in the current study, two
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VP28 sequences of both shrimp (GenBank Accession no. MZ383193) and crab (GenBank
Accession no. MZ383194) isolates from Satkhira had E at the 167 residue position unlike the
five sequences (GenBank Accession no. MZ383199; crab sample, and GenBank Accession no.
MZ383195-MZ383198; shrimp samples) of Cox’s Bazar with G in that position (Figure 4B).

3.5. Shrimp Post-Larvae Mortality Rates and Lethal Time Differed between Phylotypes

The survival of shrimp post larvae (PL) between control and infected groups was
statistically significant (p < 0.05, Kruskal–Wallis test) in all of our experiments of the current
study. Shrimp PL when challenged with confirmed WSSV irrespective of the mentioned
phylotypes showed a mortality rate of 96.67% at 96 h with a dose of 108 copies of WSSV
per mL of sterile seawater (Figure 5) in which the mortality observation took place every
6 h. In the present infection assay with three treatments, shrimps started to die at 48 h
and lasted till 108 h, while shrimps in the control group did not die before those were
sacrificed. By comparing the virulence assay between challenged doses, we found that
shrimp PL challenged with Dose 1 (0.423 × 109 copies of WSSV per mL) started to die after
66 h of challenge, and 100% mortality of PL occurred at 102 h after challenge with both
phylotypes. However, using Dose 2 (0.423 × 107 copies of WSSV per mL), the onset of
shrimp PL mortality started at 72 h of challenge, and 100% mortality was found after 108 h
and 114 h of challenge with BD1 and BD2, respectively (Figures 6 and S1C). The average
median LT50 values were observed to be 73 and 75 h post infection (hpi), respectively, in
BD1- and BD2-challenged shrimp PL with Dose 1, and 82 and 84 hpi with Dose 2 (Figure 6).
However, this difference in median LT50 between the two phylotypes with both doses
was not statistically significant (p > 0.05). In addition to these factors, doses and viral
phylotypes, the shrimp PL’s physiological conditions and capacity to adapt in aquariums
could also be the factors engaged in mortality. For that reason, viral load count in the
infected PL tissue might help in revealing the study goal more accurately. Additionally,
from that perspective, the quantification of the virus using real-time PCR assay was a major
part of this study.
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3.6. Quantitative Detection of WSSV in Challenged Shrimp PL

The mean Log viral copy numbers were 6.47 and 4.75 per mg of tissue, respectively
in BD1- and BD2-treated PL, which was statistically significant (p < 0.05, Kruskal–Wallis
test) with Dose 1 (Figure 7). In this study, we found an average CT value of 20.01 and 25.32
in BD1- and BD2-challenged PL, respectively (Table 3, Figure S1B). Figure 8 shows the
positive amplifications in samples challenged with both phylogroups, positive controls
and standards. In this quantitative assay, an extensive range of the mean viral Log load in
challenged shrimp PL was observed, and the results showed that amplification curves were
specific for samples, standards, negative controls and positive controls. No noteworthy
fluorescence signal was noted for the negative control (NTC). CT values for NTC were
outside determination index, and CT values in all positive samples had a quantitative index
in qPCR, ranging from 7.19 to 33.48 (Figure 8A). Standard qPCR using the qVP28F and
qVP28R primers revealed a single amplicon of 148 bp after agarose gel electrophoresis,
indicating a specific amplification product. The standard curve generated was linear
from log starting quantity of 2 to 9. The mean upper and lower quantification limits
in challenged shrimp PL were 1.10 × 1010 and 3.31 × 102 WSSV copies per mg tissue,
respectively (Figure 8A,B).
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Table 3. CT values and corresponding WSSV copies from the quantitative real-time PCR (E and G of
sample IDs mean samples challenged with BD1 and BD2).

Sample
ID CT CT CT Mean CT SD WSSV

Copies
WSSV
Copies

Mean WSSV
Copies/Reaction

Mean WSSV
Copies/mg

Tissue

G1 27.09 27.21 27.15 0.085 2.74 × 103 2.52 × 103 2.63 × 103 2.59 × 104

G2 25.61 25.9 25.755 0.205 7.53 × 103 6.21 × 103 6.87 × 103 8.41 × 104

G3 28.80 29.02 28.91 0.156 8.50 × 102 7.35 × 102 7.93 × 102 1.03 × 104

G4 25.83 25.77 25.80 0.042 6.45 × 103 6.74 × 103 6.60 × 103 7.76 × 104

G5 25.29 25.38 25.34 0.064 9.37 × 103 8.78 × 103 9.08 × 103 5.56 × 104

G6 26.05 25.77 25.91 0.198 5.55 × 103 6.72 × 103 6.14 × 103 6.94 × 104

G7 25.30 25.35 25.325 0.035 9.31 × 103 8.98 × 103 9.15 × 103 1.28 × 105

G8 26.10 26.67 26.385 0.403 5.37 × 103 3.64 × 103 4.51 × 103 4.16 × 104

G9 28.21 28.47 28.34 0.184 1.27 × 103 1.07 × 103 1.17 × 103 1.30 × 104

G10 25.89 26.05 25.97 0.113 6.20 × 103 5.58 × 103 5.89 × 103 6.93 × 104

G11 25.74 24.49 25.12 0.884 6.87 × 103 1.61 × 104 1.15 × 103 6.89 × 104

G12 25.85 26.09 25.97 0.17 6.36 × 103 5.40 × 103 5.88 × 103 7.20 × 104

G13 25.64 25.86 25.75 0.156 7.36 × 103 6.34 × 103 6.85 × 103 7.34 × 104

G14 25.32 25.36 25.34 0.028 9.16 × 103 8.89 × 103 9.03 × 103 6.85 × 104

G15 24.30 24.52 24.41 0.156 1.83 × 104 1.58 × 104 1.71 × 104 2.44 × 105

G16 25.70 25.46 25.58 0.170 7.07 × 103 8.33 × 103 7.67 × 103 7.55 × 104

G17 24.52 24.70 24.61 0.127 1.58 × 104 1.40 × 104 1.49 × 104 1.82 × 105

G18 27.10 26.92 27.01 0.127 2.72 × 103 3.07 × 103 2.89 × 103 3.77 × 104

G19 27.40 27.04 27.22 0.255 2.22 × 103 2.83 × 103 2.5 × 103 2.95 × 104

G20 24.90 24.68 24.79 0.156 1.22 × 104 1.42 × 104 1.32 × 104 8.06 × 104

G21 24.27 24.37 24.32 0.071 1.88 × 104 1.75 × 104 1.81 × 104 2.05 × 105

G22 23.98 23.48 23.73 0.354 2.29 × 104 3.22 × 104 2.71 × 104 3.79 × 105

G23 24.00 24.26 24.13 0.184 2.26 × 104 1.89 × 104 2.06 × 104 1.91 × 105

G24 26.53 27.03 26.78 0.354 4.01 × 103 2.85 × 103 3.38 × 103 3.76 × 104

G25 23.85 24.35 24.1 0.354 2.50 × 104 1.78 × 104 2.10 × 104 2.48 × 105

G26 20.95 21.23 21.09 0.198 1.81 × 105 1.49 × 105 1.64 × 105 9.87 × 105

G27 24.63 25.09 24.86 0.325 1.47 × 104 1.07 × 104 1.25 × 104 1.54 × 105

G28 23.50 23.88 23.69 0.269 3.17 × 104 2.45 × 104 2.79 × 104 2.99 × 105

G29 23.60 24.08 23.84 0.339 2.96 × 104 2.14 × 104 2.52 × 104 1.91 × 105

G30 22.22 22.62 22.42 0.283 7.61 × 104 5.79 × 104 6.63 × 104 9.48 × 105
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Table 3. Cont.

Sample
ID CT CT CT Mean CT SD WSSV

Copies
WSSV
Copies

Mean WSSV
Copies/Reaction

Mean WSSV
Copies/mg

Tissue

E1 33.48 23.65 28.565 6.951 3.48 × 101 4.24 × 104 2.12 × 104 9.50 × 104

E2 32.19 32.35 32.27 0.113 8.44 × 101 7.54 × 101 7.99 × 101 8.88 × 102

E3 31.15 29.51 30.33 1.16 1.71 × 102 5.24 × 102 3.48 × 102 1.86 × 103

E4 12.37 7.65 10.01 3.338 6.0 × 107 1.59 × 109 8.25 × 108 1.10 × 1010

E5 18.23 18.11 18.17 0.085 1.16 × 106 1.25 × 106 1.21 × 106 9.04 × 106

E6 30.63 24.20 27.415 4.547 2.44 × 102 1.97 × 104 9.97 × 103 1.03 × 105

E7 7.19 28.84 18.015 15.31 2.17 × 109 8.29 × 102 1.09 × 109 7.15 × 109

E8 16.38 16.58 16.48 0.141 4.10 × 106 3.56 × 106 3.83 × 106 2.74 × 107

E9 26.82 26.59 26.705 0.163 3.30 × 103 3.86 × 103 3.58 × 103 3.07 × 103

E10 23.36 23.65 23.505 0.205 3.48 × 104 2.85 × 104 3.17 × 104 1.62 × 105

E11 20.76 20.74 20.73 0.014 2.06 × 105 2.08 × 105 2.07 × 105 5.18 × 105

E12 22.48 22.08 22.28 0.283 6.37 × 104 8.33 × 104 7.35 × 104 1.91 × 105

E13 16.22 15.60 15.91 0.438 4.57 × 106 6.99 × 106 5.78 × 106 4.08 × 107

E14 16.92 21.17 19.05 3.005 3.38 × 107 1.56 × 105 1.70 × 107 7.78 × 107

E15 32.60 31.65 32.125 0.672 6.35 × 101 1.21 × 102 9.23 × 101 3.31 × 102

E16 23.96 23.34 23.65 0.438 2.32 × 104 3.54 × 104 2.87 × 104 1.28 × 105

E17 12.21 12.53 12.27 0.226 7.06 × 107 5.67 × 107 6.78 × 107 7.53 × 108

E18 23.23 23.73 23.48 0.354 3.82 × 104 2.71 × 104 3.22 × 104 1.72 × 105

E19 12.05 12.69 12.37 0.453 7.87 × 107 5.09 × 107 6.33 × 107 8.44 × 108

E20 15.44 15.20 15.32 0.170 7.78 × 106 9.17 × 106 8.45 × 106 6.34 × 107

E21 12.00 11.26 11.63 0.523 8.15 × 107 1.35 × 108 1.05 × 108 1.09 × 109

E22 19.88 19.38 19.63 0.354 3.75 × 105 5.29 × 105 4.46 × 105 2.94 × 106

E23 12.02 12.42 12.22 0.283 8.04 × 107 6.12 × 107 7.01 × 107 5.01 × 108

E24 21.95 22.39 22.17 0.311 9.14 × 104 6.77 × 104 7.87 × 104 6.75 × 104

E25 26.40 26.82 26.61 0.297 4.38 × 103 3.29 × 103 3.80 × 103 1.95 × 104

E26 16.02 16.86 16.44 0.594 5.24 × 106 2.95 × 106 3.93 × 106 9.83 × 106

E27 12.25 11.79 12.02 0.325 6.87 × 107 9.40 × 107 8.04 × 107 2.09 × 108

E28 18.40 16.44 17.42 1.386 1.03 × 106 3.93 × 106 2.01 × 106 1.42 × 107

E29 17.10 16.74 16.92 0.255 2.51 × 106 3.20 × 106 2.83 × 106 1.30 × 107

E30 16.70 16.24 16.47 0.325 3.29 × 106 4.51 × 106 3.85 × 106 1.38 × 107
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standard curve, and copy numbers of unknown samples were calculated comparing Cycle Threshold
(CT) values of samples and standards.
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3.7. Crab Mortality Rates and Viral Load Counts Differed in Treated Crabs

The LT50 and LT100 for infected crabs varied among the treatments, while no crab
died in the control group. The experiment was run till 62 days post infection (dpi) as long
as all crabs died in the experimental groups challenged with both phylotypes (BD1 and
BD2) (Figures 9 and S4). The LT50 and LT100 were 31 and 48 dpi in BD1-challenged crabs,
and LT50 and LT100 were 40 and 62 dpi for BD2-challenged crabs, respectively. The mean
viral loads in the crabs challenged with BD1 and BD2 were 12.06 ± 0.48 and 9.95 ± 0.37 per
g of tissue, respectively (Figure 10, Table S2).
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3.8. Gene Expression Profiling of Immunity Genes in Both the Infected Groups

In the current study, two important immunity genes of shrimps, penaeidin and
lysozyme, were considered for expression analysis, both of which are antimicrobial pep-
tides (AMPs). Gene expression was observed after 73 hpi in this immersion challenge
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study. Figure 11 provides the average relative expression of penaeidin and lysozyme after
exposure of shrimp PL to both the circulating phylotypes showing comparatively higher
expression of lysozyme than penaeidin in both groups. While comparing the expression in
the challenged groups, it was found that average relative expressions of these two genes
were lower in BD1-challenged PL than in BD2-challenged PL (Figure 11).
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3.9. Rab7-VP28 Binding Affinity

In the present study, the lower Kd value was observed for the binding of VP28 with
glutamic acid at the 167th position (1.6 × 10−8) than the other mutated one with glycine
on that position (5.1 × 10−8). The higher the Kd value, the lower may be the strength
of binding between proteins (Figure S5). From this in silico approach towards getting
the binding affinity in two different complexes, it was predicted that the BD1 might have
more chance to bind with the receptor protein Rab7 of P. monodon. Moreover, prediction
results from DynaMut showed an increase in molecular flexibility instead of rigidification
in VP28 of BD2 through analysing the difference in vibrational entropy (∆∆SVib ENCoM:
0.030 kcal·mol−1·K−1) (Figure S5).

4. Discussion

Penaeus monodon is considered as one of the most valuable commercially cultured
aquatic species in Bangladesh. This crustacean species has been badly affected by WSSV
in all shrimp-producing countries across Asia, including Bangladesh [20,52]. In this study,
the prevalence of WSSV infections in crustacean populations (shrimps and crabs) varied in
study areas, keeping significantly higher prevalence of this disease both in shrimp ghers of
the Cox’s Bazar district compared to Satkhira. Compared to the shrimp population, the
WSSV detection rate in crabs remained much lower, which might be associated with their
disease tolerance capacity and carrier status [9]. Unlike shrimps, mud crabs are generally
believed to be highly tolerant to WSSV and keep being infected for longer periods without
symptoms of disease. In this study, the WSSV-positive crabs were found in those ghers only
where the shrimps were also WSSV-positive. Rouf et al. reported in their study that the
mud crab species found in the coastal regions of Bangladesh was Scylla olivacea [53]. They
confirmed it by genetic analysis of the partial sequences of one mitochondrial gene, 12S
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rRNA, as well as through studying their morphological characteristics and morphometric
ratios. However, if P. monodon and Scylla spp. are co-cultured, shrimps may become
more vulnerable to WSSV infection because shrimps can be infected through horizontal
transmission of the virus from the crabs [54]. Thus, it is very important to study regularly
whether these shrimps are becoming diseased from horizontal gene transfer from carrier
crabs to control WSSV infections from shrimp ghers and eradicating the disease sources.
In a previous study, Hossain et al. reported higher prevalence of WSSV infections in the
shrimp ghers of the Satkhira district of Bangladesh [20]. The prevalence of WSSV was
23% in the wild captured crustaceans from the south-west and south-east coast of India
which included Scylla serrata, Squilla mantis, Penaeus indicus, and Metapenaeus spp. [55].
The physicochemical parameter analysis revealed that P. monodon can survive in a wide
range of salinity (13–21 ppt), pH (7.8–9.1), dissolved oxygen (2.61–6.06 ppm), temperature
(28.7–34 ◦C). Therefore, temperature and salinity were found to be changed very little, both
in WSSV-positive and WSSV-negative shrimp ghers. In a previous study, it was found that
the acceptable range of salinity, pH, dissolved oxygen and temperature can be 15–25 ppt,
pH 7.5–8.5, dissolved oxygen more than 4 ppm and temperature 28–32 ◦C, corroborating
our results [6]. We found a significant association between increase in temperature and
decrease in salinity with the presence of WSSV in shrimp ghers of both Cox’s Bazar and
Satkhira districts. In this study, dissolved oxygen values also had a significant association
in the prevalence of WSSV. Frequent fluctuations in physicochemical factors such as pH,
temperature, and dissolved oxygen make shrimps susceptible to stress, which ultimately
can lead to disease [56,57]. Several lines of evidence suggested that temperature and
salinity play a very important role in WSSV infection affecting the immune response of the
crustaceans [57,58].

In the current study, shrimp and crab samples had huge viral loads in tissue. Remark-
ably, WSSV Log load per gram of shrimp and crab tissues remained much higher in samples
of Satkhira district compared to Cox’s Bazar. However, comparing the viral load counts in
both shrimp and crab samples, we did not find any significant difference. The presence
of such high viral load risks all the shrimps in the ghers as well as the adjacent ghers,
creating a possibility for WSSV outbreak in the whole area. This study suggests that WSSV
load determination is essential because a shift in temperature due to any environmental
reason can lead to outbreak if there is even lightly WSSV-infected crustaceans in the water
body [59]. Siddique et al. reported that if few shrimps in a gher are infected with WSSV,
other shrimps might be exposed over ingestion or immersion, resulting in a rapid spread
of the disease leading to production disaster [29].

Phylogenetic analysis showed that VP28 sequences of Bangladesh and India fell into
the major clades (phylotype BD1 and BD2). In Bangladesh, the isolated viruses showed
genetic divergence falling under two different clusters (BD1 and BD2). These different
clusters consisted of WSSV samples from other countries, including India, China, South
Korea and Vietnam. In this study, the VP28 isolates (MZ383195- MZ383198) sequenced in
2018 (BD2 phylogroup) showed the closest genetic relatedness with previously reported
VP28 isolates of Bangladesh sequenced in 2014 [20]. Likewise, two VP28 isolates (MZ383193-
MZ383194) sequenced in 2019 (BD1 phylogroup) showed the closest ancestral relation to
six VP28 isolates sequenced in 2015 and 2017 from Bangladesh and two Indian isolates.
Thus, from the phylogenetic tree, it can be assumed that all of the isolates sequenced in the
present study (2018 and 2019) were quite closely related to the VP28 sequences reported
from Bangladesh in the previous years (2011–2017), and the result correlates with the
previous works [20,29].

VP28 is one of the most important structural proteins of WSSV responsible for systemic
infection and found to be crucial in cell recognition, attaching and penetration into the
shrimp cells [60]. The aa mutation analysis showed that majority of VP28 sequences (64%)
of the WSSV reported from different geographical locations (including the seven sequences
of the current study) underwent mutations at 21 positions. Several earlier studies from
Bangladesh [20,29] and neighbouring countries [61,62] also reported aa variations in VP28
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of WSSV, supporting our current findings. In addition, residue position 167 showed glycine
instead of glutamic acid (E→G) in Bangladeshi and Egyptian VP28 sequences. In both
shrimp and crab isolates from the Satkhira district of Bangladesh, the unique mutation
(E→G) at position 167 that falls between two beta strands of protein are thought to be
involved in receptor recognition [29,62]. The exclusive aa mutation at residue position
167 of VP28 were also reported in the isolates of Bangladesh collected in 2014, 2015 and
2018 [20,29]. VP28 fuses with the host protein (PmRab7), which is the beginning of the virus–
host relationship, and the viral nucleocapsid is then transported to the nucleus of host cell
where the replication of the viral genome starts [62]. Sritunyalucksana et al. first mentioned
that the Rab7 protein of penaeid shrimp is involved in binding an envelope protein of
WSSV known as VP28 [63]. Our prediction results using DynaMut for molecule flexibility
analysis had the impression that there could be rigidification in binding interactions for
VP28 of BD1, and also generated a sense of possibility of stronger binding affinity with
the VP28 of BD1. Kd values help to presume that there could be higher binding affinity in
Rab7-VP28 complex when shrimps are infected with the BD1 phylotype. As transgenically
engineered VP28 had been used in studies to build innate immunity in shrimp for its
capacity to localize on host epithelial cells and attention has been given to drug designing
using molecular docking and simulation studies [64], the role of mutations in VP28 are
crucial to be reflected upon.

Infection assay of shrimp PL with dilution containing 108 WSSV showed 97% mortality
rates at 96 h of challenge irrespective of challenge with any group. Mortality patterns of PL
also showed variation when exposed to different loads when challenged with both groups
of WSSV. The onset of death and lethal time 50 (LT50) in the experimental PL was found
inversely proportional to the dilution stock (earlier death time with less diluted stock).
The mean LT50 values for the challenged PL differed between the phylogroups (BD1 and
BD2) of WSSV, and remained higher in BD2-challenged shrimp PL. The average median
LT50 remained lower in the case of BD1-challenged shrimp PL. Mean Log viral copy num-
bers were found to differ between both groups challenged PL, staying statistically higher
(6.47 per mg tissue) in BD1-treated PL. Mud crabs were found to be carriers and vectors of
WSSV in different countries and used for virus infectivity experiments in studies [41,42]. In
our study, crabs were infected through ingestion, and it was found that crabs infected with
BD1 died earlier than the ones challenged with BD2. The viral loads in all infected samples
showed higher copy numbers in BD1-challenged crabs, such as BD1-challenged PL. The
differences in viral load have also been stated by other authors [65,66] and can possibly
be elucidated by differences in the degree of virus replication, physiological state, and
defense response of the host. Higher WSSV copies and lower Ct values in BD1-challenged
samples indicated that this phylotype of WSSV might contain more virus copies at the later
stage of infection. There are indications that susceptibility to WSSV may differ between life
stages, species and different decapods [67,68]; however, the use of a known dose of different
phylotypes of WSSV is critical to demonstrate these differences. An immersion challenge
to shrimp PL with an inoculum of known virus content showed that a minimum of five
logs of WSSV copies is necessary to establish disease and produced a LT50 of 52 h [68]. The
ingestion method for crab infections was followed in the study of Gunasekaran et al. [42]
who reported that in case of crabs, the ingestion method resulted in faster deaths than the
water-borne method. Although shrimps and crabs were challenged using two different
methods of infection, crabs died later in our study. This may be because the crabs are
a hardy species and carry the virus for a long time, and on the other hand, shrimps die
quickly within 3–10 days after infection, and it is also of utmost important to consider that
we infected the post larvae of shrimps which are not so resilient to diseases as those in early
stage of life. Cumulative mortality was observed in shrimp infection assays using immer-
sion or per os inoculation to be 100% at 108 hpi with different doses and the LT50 of low to
high doses were 65, 57 and 50 hpi in a study conducted by Escobedo-Bonilla et al. [10].

Gene expression profiling of penaeidin and lysozyme was performed to support the
findings of infection assays of the current study. Penaeidin is an antimicrobial peptide
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explicitly observed in penaeid shrimp. which are commonly known to show antibacterial
and antifungal actions, and was reported to perform a potential part in antiviral immunity
of shrimps exposed to WSSV [69]. It was observed that in P. monodon PL-challenged groups,
there was a differential pattern of gene expression, which suggested that transcription
could be due to two stages of protection mechanism, killing of microorganisms and wound
healing [70–74]. Penaeidin’s C-terminal cysteine-rich domain with its amphipathic shape
may perform as the domain for the binding pathogen. Lysozyme is another important AMP
that is involved in the host-resistance arrangement of invading microorganisms [75–77].
In a previous study with blue shrimp (Litopenaeus stylirostris), lysozyme was found to be
upregulated in WSSV-infected shrimp, suggesting its involvement in the innate immune
response of shrimp to WSSV [78]. In the current study, the average relative gene expressions
of penaedin and lysozyme in both infected groups expressed at a low level in the BD1-
challenged PL with 100% mortality were quicker at producing more virus copies.

5. Conclusions

The current study investigated the prevalence and virulence properties of circulating
WSSV in Bangladesh. The prevalence of WSSV was found to differ significantly according
to hosts (i.e., shrimp and crabs), geographic locations of the ghers (Cox’s Bazar vs. Satkhira
districts), and also during the time periods (2017 to 2019). The in vivo infection assay of the
shrimp PL with BD1 phylotype showed an earlier LT50 and LT100 and higher viral load
compared to those challenged with BD2. The AMP, penaeidin and lysozyme expression
was lower in the BD1-challenged group compared to BD2. The findings of the present
study revealed that the relative virulence properties of the WSSV could vary depending on
the VP28 gene-based phylotypes (BD1 > BD2). Extensive investigation on the prevalence of
WSSV throughout the country recruiting a larger sample group and geoclimatic conditions
could illustrate more about the occurrence of this deadly virus in the semi-intensive and
improved traditional ghers of Bangladesh. Moreover, changes or fluctuations in different
physicochemical parameters are crucial to be observed regularly in the ghers, which could
be important factors related to WSSV infection, and to understand the vibrant biological
systems of host crustaceans infected with different groups of WSSV. Although it is still
early to draw a conclusion on the virulence of these phylotypes, the results of the present
study would be worthwhile for taking precautions in shrimp farms against WSSV and
may shed new light to mitigate the huge economic loss every year in the shrimp farming
of Bangladesh.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10010191/s1. Figure S1: A. Lane 2: positive
shrimp sample from Satkhira, lane 3: positive shrimp sample from Cox’s Bazar, lane 4: positive
Scylla olivacea sample from Satkhira, lane 5: positive Scylla olivacea sample from Cox’s Bazar, lane
6: positive control, lane 7: (Negative control) sample in which WSSV was not detected; B. 148 bp
products represent detection confirmation in real-time PCR products from both challenged groups (E
and G represent samples of BD1 and BD2, respectively); C. Lane 2–3: Samples from control group
showing no band, lane 4: No template control, lane 5–14: Challenged PL positive in conventional
PCR, and lane 15: positive control (Lane 1s in A, B and C represent 100 bp ladder). Figure S2:
Major mutations of VP28 reported from different countries and hosts (our sequences and previously
published sequences downloaded from NCBI were used for the analysis). Figure S3: VP28 sequences
retrieved from previously published whole genome sequences used for making phylogenetic tree
using Geneious Prime Trial version 2020. Figure S4: Lane 1: 100 bp ladder, lane 2–11: infected crabs
after exposure to WSSV, and lane 12: crab from control group (no band in the control confirmed
samples of other lanes showing bands were positive). Figure S5: A. Glycine to Glutamic Acid signifies
rigidification and B. Glutamic Acid to Glycine at 167th amino acid position signifies gaining flexibility
using DynaMut web server. ‘Blue’ signifies a rigidification of the structure (G167E) (Figure S5A) and
‘Red’ represents a gain in flexibility (E167G) (Figure S5B). Table S1: Physicochemical parameters in
the shrimp ponds when no WSSV was reported in the areas. Table S2: CT values and mean WSSV

https://www.mdpi.com/article/10.3390/microorganisms10010191/s1
https://www.mdpi.com/article/10.3390/microorganisms10010191/s1


Microorganisms 2022, 10, 191 20 of 23

copies from the quantitative real-time PCR of crab ingestion challenge pilot experiment (E and G
prefixes of Sample IDs represent samples challenged with BD1 and BD2).
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