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Abstract: Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the
only known source of infections. Interference with sporulation is therefore a promising way to manage
A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and
melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9
was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green
fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and
sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9
editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and
non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2
gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective
sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee.
To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been
efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive
set of procedural references that contributes to A. apis gene function studies and consequent control
of chalkbrood disease.

Keywords: honey bee; Ascosphaera apis; CRISPR/Cas9; sporulation; versicolorin reductase gene
(StcU-2)

1. Introduction

Honey bee (Apis mellifera L.) broods are subjected to several diseases caused by
pathogenic microorganisms. Ascosphaera apis (Maassen ex Claussen) (A. apis) fungus,
which causes chalkbrood disease [1], is one of the most serious fungal diseases affecting
honey bees [2]. Ascosphaera apis is a common pathogen in honey bee colonies around the
world and cause economic losses in apiculture [3,4]. After larvae have ingested spores of A.
apis, the disease weakens the entire honey bee colony by reducing the number of newly
emerged bees, weakening workers, and decreasing honey production [5–8]. Under certain
circumstances, A. apis can kill the entire colony [9].

Many techniques and chemicals, both artificial and natural, have been used to manage
A. apis [10–13]; however, there is no completely effective way to control the disease [14]. The
DNA sequencing has revealed many fungal genome sequences, including those of A. apis,
revealing previously unknown gene clusters [15,16]. These data provide a basis for further
studies on the molecular control of this disease. Genome annotation of A. apis has revealed
several genes encoding homologs of well-known toxins and the enzymes involved [16,17].
For example, the sterigmatocystin biosynthesis pathway gene, versicolorin reductase gene
(StcU-2). StcU-2 (ver-lA homolog) is a ketoreductase protein that catalyzes the conversion
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of versicolorin A (VA) into sterigmatocystin (ST) [18]. ST is a mycotoxin and carcinogenic
secondary metabolite produced by Aspergillus species [19–21].

The StcU-2 gene is involved in the biosynthesis pathway of ST/aflatoxin (AF)/
(polyketides), which are toxic, mutagenic, and carcinogenic natural products [22,23] and
are part of mycotoxin biosynthesis in A. apis [17]. ST serves as a penutimate intermediate
in AF biosynthesis, which is synthesized as an end-product by many ascomycetes [24,25].
The StcU-2 gene is directly involved in the conversion of VA into ST in AF biosynthesis in
Aspergillus parasiticus [26]. Thus, disruption of the StcU-2 gene can block ST production and
the accumulation of vercicolorin in A. paraciticus [27]. The direct involvement of StcU-2 in ST
biosynthesis in Aspergillus nidulans was confirmed by disruption of the StcU-2 gene [28,29].
In addition, disruption of StcU-2 in Aspergillus also resulted in the accumulation of VA,
demonstrating the specific requirement of StcU-2 for the conversion of VA into ST [30,31].
Coordinating the production of the toxic secondary metabolite ST with sporulation has
also been mentioned [30]. AF/ST production is closely tied to sporulation [32]. Therefore,
interference of StcU-2 gene expression may be an effective measure for the control of honey
bee chalkbrood disease.

Characterization of cryptic gene clusters in A. apis were previously difficult due to
the lack of appropriate gene manipulation methods [33,34]. However, the underlying
mechanisms affecting A. apis virulence to honey bee brood, based on specific targeted gene
editing, could aid in honey bee disease control. We developed restricted enzyme mediated
integration (REMI)-constructed stable A. apis random mutants and studied the in vitro
pathogenicity changes to honey bee worker larvae [12]. Notable in vitro pathogenicity
differences were confirmed among selected REMI mutants and wild-type samples [35].
Transcriptome analysis of these REMI constructed mutants and the wild A. apis strain
helped elucidate the mechanism of pathogenicity [34]. However, REMI produces random
mutants that are not specific to major pathogenicity genes.

The CRISPR/Cas9 system has been successfully applied in a number of organisms
including yeast, fishes, plants, and mammalian cells [36–41]. Though CRISPR/Cas9 molec-
ular gene editing systems are well-developed for many model fungal systems [42–45], it
has not yet been developed for the study of A. apis gene functions. The genetic engineering
tools for A. apis are still underdeveloped. A rapid method to accurately manipulate A. apis
genome and gene expression levels could accelerate the development efforts to improve
the control of virulence factor genes and lead to reduced pathogenicity. The main objective
of this study is the successful editing and functional evaluation of the A. apis StcU-2 gene
using the CRISPR/Cas9 system.

2. Materials and Methods
2.1. Fungal Strain, and Culture Conditions

Honey bee larval mummies were collected from Institute of Apicultural Research,
Chinese Academy of Agricultural Sciences, soaked in 70% ethanol for 1 min, rinsed three
times with sterile distilled water, then inoculated on 20 mL potato infusion dextrose agar
(PIDA) medium (50% potato infusion v/v, 20% D-glucose w/v, 0.4% yeast extract w/v,
agar powder 1.5% w/v) base on Pitt fungal medium formula [46], containing 30 µg/mL
streptomycin to suppress bacterial growth. The normal mycelial growth and amount of
hygromycin B antibiotic level to suppress A. apis growth was determined by incubating
plates at 30 ◦C in darkness.

2.2. Determining Hygromycin B Antibiotic Resistance Level of Ascosphaera apis

A hygromycin phosphotransferase (hph) gene was inserted in a single-guide RNA-CRISPR/
Cas9 plasmid during A. apis gene editing to select for antibiotic (hygromycin B) resistance.
Thus, the level of hygromycin B antibiotic completely suppressing wild A. apis mycelial
growth was first tested by growing 0.5 cm diameter parental wild A. apis mycelia on dif-
ferent levels of hygromycin B antibiotic concentrations at 0 µg/mL, 10 µg/mL, 25 µg/mL,
50 µg/mL, 75 µg/mL, and 100 µg/mL. Each level was replicated in 20 PIDA plates fol-
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lowing previously published protocols [47,48] and incubated at 30 ◦C for 7 d. The fungal
growth was observed every 12 h, and the growth on different concentrations were com-
pared. The wild A. apis mycelial growth limiting hygromycin B concentration level was
used for the selection of transformants during CRISPR/Cas9 gene editing.

2.3. Screening of the A. apis Target Gene to Be Edited
2.3.1. Primer Designing and Synthesis

To confirm the target gene of A. apis and intended genes in the plasmid, different
primers were designed using a primer designing tool developed by Primer Quest (https:
//www.idtdna.com/PrimerQuest/Home/Index, accessed on 25 August 2022) and were
synthesized by Sangon Biotech Co. Ltd. (Shanghai, China), (Table 1).

Table 1. List of primers to amplify targeted gene.

Type of Gene Forward Primer (F) Reverse Primer (R) Band Size

EGFP GCTGACCCTGAAGTTCATCTG CACCTTGATGCCGTTCTTCT 367 bp
hph GATATGTCCTGCGGGTAAA CCGTCAACCAAGCTCTGATA 710 bp

StcU-2 GTCGGCTGTCAAGTTCCTCA AGACCCTGACGCAGAACAAG 613 bp

2.3.2. Specific Target Gene Amplification

The specific PCR for the selected target gene was run to check the presence of the
targeted gene sequence that matched the protospacer and protospacer adjacent motif (PAM)
sequences of the reference genome. PCR amplification was accomplished as follows: 1 µL
of the template genomic DNA at 40 ng diluted concentration was added to 9.5 µL double-
distilled water, and 12.5 µL T5 PCR mix, and 1 µL of each primer (10 µM working dilution)
was mixed. The PCR conditions were held at initial denaturing at 98 ◦C for 3 min, 30 cycles
of 30 s at 98 ◦C, 30 s at 59 ◦C, and 30 s at 72 ◦C. The final extension time was set to 72 ◦C
for 5 min. The DNA template from the untransformed wild strain sample was used as a
positive control, template DNA free mix was used as negative control, and the DNA from
transformed A. apis mutant mycelia was used as experimental material during the PCR
amplification reaction. The reaction products were analyzed using gel electrophoresis on
a 2% agarose gel. Once the intended gene location was amplified in a specified region,
the amplified PCR product was sequenced. The sequence result of A. apis wild strains
was analyzed compared to the A. apis reference genome sequence [16] to determine if any
single nucleotide polymorphism affects the designed literal StcU-2 protospacer and PAM
sequences. The sequence result was checked, and the new adjusted protospacer and PAM
sequence for the StcU-2 gene was designed from the first exon region to be synthesized
as sgRNA.

2.4. Establishment of the CRISPR/Cas9 for A. apis Gene Inactivation
2.4.1. Designing of Experimental sgRNA

To use CRISPR/Cas9 for A. apis genome editing, a sgRNA plasmid, enabling expres-
sion of the gene of interest, was constructed [49]. The reporter gene of enhanced green
fluorescent protein (EGFP), the selectable gene of ampicillin, and the hph gene were incorpo-
rated to report and screen the successfully transformed plasmids. To design the sgRNA, the
experimental target gene site was screened using NGG protospacer adjacent motif (PAM),
and the selected sgRNA was ranked for on-target efficiency (Doench et al., 2014) and for
off-target effect (Hsu et al., 2013). As a first proof-of-principle of the functionality of the
system, the versicolorin reductase gene (StcU-2) (AAPI15087) was chosen for encoding
gene inactivation.

The 10 best-scoring protospacers, preferably at the first exon and near the start
codon of the StcU-2 gene, were manually curated using BLAST analysis on the A. apis
reference genome [16]. Then, the three best-scoring protospacers with no predicted
off-target actions were selected. A final 20-nucleotide-long protospacer sequence with
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the 3’-PAM, AGG was chosen at the start of the first exon CDS. The selected proto-
spacer sequence was GTACAGTTTGGCCGCCACAG. The designed PAM and proto-
spacer sequences were synthesized into an all-in-one circular sgRNA plasmid, pFungi-
argB promotor-hph-terminator-tef1 promotor-NLS-Cas9-Linker-EGFP-NLS-HH ribozyme-
sgRNA-backbone-HDV-ribozyme-terminator, which contained the Aspergillus nodulous
codon-optimized Cas9, EGFP, and hygromycin B phosphotransferase (hph) coding se-
quences (SyngenTech Laboratory of Synthetic Biology, Beijing, China) (Figure 1).
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Figure 1. CRISPR-Cas9-based gene disruption all-in-one circular plasmid.

The sgRNA sequence was flanked by two ribozyme sequences: hammerhead (HH) on
the 5’-end and hepatitis delta virus (HDV) at the 3’-end. The ribozyme sequences ensured
the liberation of the sgRNA from the transcript in the nucleus. The expression of the
sgRNA containing transcript was controlled by the strong constitutive A. nidulans argB
promoter and the tef1 terminator. The circular plasmid was transformed into A. apis genes
via protoplast transformation. The transfected plasmid was self-replicating and did not
require integration into the genome. This allowed for easier isolation of cured mutants
after growth on non-selective media. The resulting mutants were hygromycin sensitive
and could be transformed again using the same screen gene.

2.4.2. Protoplast Isolation and Transformation of A. apis

Protoplast isolation was conducted following Wubie 2014, with slight modification [50].
Actively growing mycelia from solid PIDA media were transferred into 70 mL of potato
infusion dextrose liquid media (PIDB) containing 30 µg/mL streptomycin at 30 ◦C and
140 rpm. The growing mycelia were harvested by filtering through a 47 µm nylon filter,
washed with 0.7 M NaCl solution and digested in a driselase lysing enzyme (Sigma Aldrich
Chemicals, Beijing, China) dissolved in 0.8 M citric acid monohydrate: NaCl solution
(50:50 v/v). The mycelia–driselase suspension containing 20 mg/mL was shaken at 90 rpm
and 30 ◦C for 3 h to remove the fungal cell wall.

Protoplasts from the lysed mycelia–protoplast suspension were recovered through
filtering two loose layers of 30 µm nylon filter, diluted with an equal volume of STC
Solution (1 M/L sorbitol, 100 mM/L CaCl22H2O, 50 mM/L of 1 M/L Tris-HCl, pH 7.4),
and precipitated at 2800 g for 5 min at 4 ◦C. The driselase solution was discarded, and
the pelleted protoplasts were again washed two or three times with 10 mL STC buffer
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solution at 2800 g for 5 min at 4 ◦C by discarding the supernatant. Finally, 1 mL of STC
buffer solution was added to the pelleted protoplasts as stabilizer. Protoplast counts per mL
were checked using hemocytometer (Beyotime Institute of Biotechnology, Beijing, China)
to the final concentration of 5 × 107 protoplasts/mL. The isolated A. apis protoplasts were
used as recipients for transformation. All the transformation steps were completed under
aseptic conditions.

For CRISPR/Cas9 gene editing, about 100 µL of protoplasts (106) were added to
2 mL test tubes. About 10 µg DNA of all-in-one circular plasmid sgRNA diluted in sterile
distilled water was added and vortexed 10 times for 1 s each, and 50 µL of 40% (w/v)
PEG 4000 solution was added to the protoplast–plasmid mixture and vortexed 5 times
1 s each, followed by 30 min of chilling on ice. DNA uptake was induced with PEG as it
clumps and fuses protoplasts, facilitating the trapping of DNA to the fungal protoplasts.
The vector–protoplast mixture was then diluted dropwise with an additional 1 mL of 40%
PEG 4000 at about 5 cm high. The mixture was gently swirled and incubated at room
temperature for another 15 min. After 15 min, the volume was increased to 1.75 mL with
STC. The PEG-treated protoplast suspension in the 2 mL test tubes was then centrifuged at
2880× g for 10 min at 4 ◦C, and the supernatant was discarded. About 500 µL of LRM (1 M
sorbitol, 0.2% yeast extract w/v, 0.2% Tryptone w/v) was added to the pelleted protoplast
for cell wall recovery and incubated in a dark 25 ◦C incubator overnight while shaking at
70 rpm.

2.4.3. Screening of Target Gene Edited A. apis Mutants, Mating Test, and
Sporulation Verification

After 24 h of cell wall recovery, the whole protoplast was inoculated onto solid re-
generation agar medium (1 M sorbitol, 0.2% yeast extract w/v, 0.2% Tryptone w/v, 0.9%
agar w/v) in sterile distilled water containing a concentration of 25 µg/mL hygromycin B
antibiotic to suppress the growth of non-transformed colonies and incubated for another
24 h at 30 ◦C. After 24 h of regeneration in a dark incubator, another thin layer of same
solid regeneration agar medium furnished with 25 µg/mL hygromycin B was overlaid and
incubated at 30 ◦C until effectively transformed protoplasts were grown and penetrated the
overlay. A 30 µg/mL streptomycin treatment was applied to all solid regeneration media
to suppress bacterial growth. Then, 20 rapidly growing hygromycin B-resistant single
colonies were chosen and transferred to PIDA agar containing 25 µg/mL hygromycin B
for further isolation and analysis. The continuously and rapidly growing colonies were
maintained on selection medium for more than five consecutive screenings. They were
then isolated by expression of EGFP in the vector DNA construct using a laser scanning
microscope. A confocal laser scanning microscope (CLSM) TCS SP2 (Leica Microsystems
GmbH, Wetzlar, Germany) was used for microscopic observation of mycelial EGFP. EGFP
excitation was achieved with 488 nm argon krypton laser emissions, and observations
were made using a 0.8 numerical aperture 20× oil immersion lens. Transformants were
microscopically detected and screened at the early mycelial growth stage. For analysis of
EGFP expression, individual hygromycin B-resistant and EGFP-marker-positive colonies
were analyzed using PCR amplification to check EGFP, hph gene, and target gene site of
genomic DNA for the mutants and wild-strain alleles. Amplified target gene PCR products
of putative transformants and wild-strain were analyzed using gel electrophoresis and
sequenced to verify gene editing [51]. Multiple sequence alignment analysis was conducted
using NCBI and UGENE-Clustal W software [52,53].

Sporulation tests between different Cas9-edited A. apis mutants were carried out by
growing multiple mutant cultures of StcU-2 in single PIDA Petri dishes between the two
mutant inocula and checked for the presence of a thick black spore barrage formed at the
interface of the opposite mating-type colonies in a single Petri dish.
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3. Results
3.1. Determination of Hygromycin B Resistance

The minimum A. apis growth limiting concentration of hygromycin B for CRISPR/
Cas9-based gene editing using hph gene-incorporated plasmids was 25 µg/mL (Figure 2a).
The mycelial growth was highly limited, and the initially inoculated 0.5 cm in diameter
mycelia slowly regressed within 4–5 d. The concentration level was determined after testing
multiple hygromycin B concentrations. On the same medium, the control (hygromycin
B furnishing was zero) wild-strain mycelial inocula were well grown and sporulated
(Figure 2b). Hygromycin B, at a concentration of 25 µg/mL, was adequate to restrict the
growth of wild A. apis mycelia and function in transformant selection (Figure 2c,d).
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(a) Graphical hygromycin B resistance level test of A. apis; (b) 0 µg/mL hygromycin B; (c) 10 µg/mL
hygromycin B; (d) 25 µg/mL hygromycin B.

3.2. Laser Scanning Microscopic Analysis of CRISPR/Cas9-Edited A. apis Mutant Colonies

The total CRISPR/Cas9-gene-edited mutant development efficiency in A. apis, based
on hygromycin B antibiotic-resistant colonies, was 0.011% per 106 protoplasts. EGFP
expression of A. apis transformants was confirmed by generating emission spectrum profiles
(CLSM lambda scan, wavelengths: 500–530 nm) for StcU-2 mutants (Figure 3a,b) compared
to the wild strain group (Figure 3c,d).
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3.3. PCR and Sequence Analysis of Transformants

All eight CRISPR/Cas9-gene-edited A. apis mutants for the StcU-2 gene gave specific
bands of EGFP (Figure 4a) and hph genes (Figure 4b), except for the wild-strain DNA
templates and the negative control (−Ve). The detection of bands for EGFP and hph genes
from the PCR products of all eight hygromycin B antibiotic-resistant transformants of StcU-
2 genes confirmed the proper insertion of the all-in-one plasmid inside the transformants’
nucleus. As a result, proper all-in-one plasmid gene insertion into the nucleus of protoplasts
indicated A. apis gene editing. The PCR amplification of EGFP and hph genes confirmed
successful insertion of the EGFP and hph gene carrier all-in-one plasmid into the nucleus of
A. apis transformed mutants.
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for EGFP gene integration. (b) Bands of wild-strain, eight stably selected Cas9-gene-edited StcU-2
mutants of A. apis, and negative control for hph gene integration. (c) Bands of wild-strain, eight
stably selected Cas9-gene-edited StcU-2 mutants of A. apis, and negative control for StcU-2 gene
being edited. For all: M denotes the DNA Marker 700 ladder; WT denotes A. apis wild strain. Lanes
1–8 denote different independent StcU-2 transformant mutants; AAStcU-2-1911-1, AAStcU-2-1911-2,
AAStcU-2-1911-3, AAStcU-2-1911-4, AAStcU-2-1911-5, AAStcU-2-1911-6, AAStcU-2-1911-7, and
AAStcU-2-1911-8. –Ve denotes the negative control, which is a mix of sterile, double-distilled water
and PCR without a template.

The target gene of successful individual transformant colonies, resistant to hygromycin
B gold, expressing EGFP, and incorporating hph gene, was PCR amplified to verify the
insertion or deletion of specific nucleotides. Primers designed for the screening of the initial
protospacer incorporating target site were used for the verification of correct chromosomal
mutations during the mutants’ genomic DNA PCR amplification. The anticipated specific
StcU-2 gene band size for wild-strain A. apis colonies was 613 bp. During PCR amplifica-
tion of effective mutants, specific and nonspecific bands were identified due to the loss
and insertion of nucleotides. For all effective mutants, the resulting band sizes showed
differences compared with the expected band size of the wild-strain A. apis (Figure 4c).

The EGFP expression, hph gene insertion, and Cas9-induced, targeted-gene-specific
site mutations were verified through sequence analysis. The PCR product sequencing
results of the EGFP gene for different mutants’ alignment showed the same sequence as the
anticipated plasmid EGFP reference gene sequence.

The PCR products amplified from the putative target-gene-edited mutants were then
sequenced (Biomed, Beijing, China) and analyzed for sequence matching using NCBI and
Clustal W sequence alignments. Mutant and wild-strain sequence mismatches at targeted-
gene-editing site sequences were considered as indicators of successful CRISPR/Cas9 gene
editing. Thus, the analysis of the target gene sequence results showed that transformed A.
apis mutants were successfully generated via CRISPR/Cas9 gene editing.

Targeted gene-editing sequences between eight different A. apis Cas9 mutants for the
selected genome site showed variation in individual NHEJ effects and consequent gene
editing. Bi-allelic, tri-allelic, and multiple loci deletions were visualized among different
StcU-2 mutants’ genome sequences (Figure 5). The sequence analysis of the corresponding
PCR fragments revealed deletions or replacements of 1 to 613 base pairs for StcU-2 mutants.
Due to the larger targeted gene section deletion events in some mutants, there were no
PCR-amplified bands compared to the wild A. apis strain.
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Figure 5. Clustal W sequence alignment of StcU-2 gene-edited mutants. AA Wild-Strain denotes
Ascosphaera apis (A. apis) wild-strain protospacer sequence and PAM sequence. AAStcU-2-1911-1,
AAStcU-2-1911-2, AAStcU-2-1911-3 AAStcU-2-1911-4, AAStcU-2-1911-5, AAStcU-2-1911-7, and
AAStcU-2-1911-8 denote different independent StcU-2 gene-edited mutant protospacer sequences
and PAM sequence site editing.

3.4. Growth Observation and Sporulation of Mutants

We observed the growth and sporulation characteristics of each selected StcU-2-edited
A. apis mutant. Compared to the wild-strain of the fungus, the mycelial growth of the
selected StcU-2 edited A. apis was active and fluffy (Figure 6a). The spore-cyst production
characteristic of mutants was also greatly reduced (Figure 6b). When observed using a
60×light microscope, the mutants showed high number of regressed albino spore-cysts, all
under-developed, unlike the large spore-cyst balls of the control wild-strain A. apis colonies
(Figure 6c).

Mating type compatibility tests among different Cas9-edited A. apis StcU-2 mutants
were conducted by growing eight mutant cultures in a single (PIDA) plate with a distance
of 3 cm between the two inocula and checking for the presence of a thick black spore
barrage formed at the interface of the opposite mating type colonies. The edited mutants
did not form a black spore-cyst barrage at their interface lines (Figure 6d).

The same mating type compatibility test between different A. apis wild-strain groups
was conducted by growing multiple wild A. apis strain cultures in single PIDA plates and
checking for the presence of a thick black spore barrage at the interface of the opposite
mating type colonies. This test produced multidirectional black spore-cyst lines at the
junctions (Figure 6e), indicating effective mating and sporulation.
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Figure 6. Mating type compatibility test and effective sporulation of different Ascosphaera apis (A. apis)
strain. (a) Sporeless fluffy mycelial growth structure of A. apis mutant colonies. (b) Matured and
remarkably small sized A. apis mutants spore cysts. (c) Effective matured A. apis wild strain asco-
spores. (d) Mating type compatibility and asco-spore development test among different Cas9 edited
StcU-2 mutant A. apis colonies. Arrows show line of spore cyst barrage for StcU-2 mutants, and
wild strain A. apis after mating. Numbers denote individual mutants. Black dots denote initial
mycelial inoculation sites. (e) Effective mating and sporulation of wild strain. Arrows show line of
spore-cyst barrage.

4. Discussion

Fungi are common pathogens of insects. A. apis causes chalkbrood disease and is a
major pathogen of the honey bee. Its incidence and severity are increasing due to global
climate change [11,54]. Many treatments, including fungicides [55], plant essential oils [56],
and biological strategies [13,57], have been used to control chalkbrood disease. However,
some of these approaches are not healthy for honey bees and contaminate the wax and
honey. There are no effective measures to reliably control chalkbrood. Exploring effective
and bee-friendly chalkbrood controlling approaches remain significant for apiculture and
the environment. Spores are the primary infective agents of chalkbrood disease. Therefore,
interference with spore production may help to control the disease. We used CRISPR/Cas9
gene-editing approaches and found that the StcU-2 gene functions in the sporulation and
melanin biosynthesis in A. apis. Mutations of StcU-2 gene have substantial effects on
spore-cyst production and can greatly reduce spore production. These results indicate
that interfering with StcU-2 gene expression can interrupt sporulation in A. apis and that
CRISPR/Cas9 can be successfully used in A. apis gene editing. This study provides baseline
data for genes engineered using the Cas9/sgRNA-mediated method in A. apis. The results
increase understanding of the function and mechanisms of different A. apis genes.

4.1. Successful Mutation of the StcU-2 Gene Inhibits A. apis Sporulation and Melanin Production,
Which Provides an Effective Way to Control Diseases Caused by Ascosphaera

Although A. apis alone is rarely fatal for honey bee colonies, it can kill colonies that
are also interacting with other fungi [58–60]. Additionally, Ascosphaera contains 28 species,
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which are all specialized to infect bees or bee colonies, The susceptibility of honey bees and
other economic bee species to Ascosphaera varies [61–63]. Outbreaks of chalkbrood in the
alfalfa leafcutting bee (Megachile rotundata) caused by A. aggregata can cause great economic
losses [64]. Hence, an effective way to prevent chalkbrood disease will benefit A. apis
and the control of other Ascosphaera. The mechanism used by A. apis to be a successful
entomopathogenic fungus depends on invasion and colonization strategies based on the
production of an excessive number of spores. Spores germinate and survive after being
ingested by larvae [65]. Cadavers of infected hosts are used to optimize the production
and dispersion of asco-spores [66], which are the unique infective stage [50]. To cause
pathogenicity, the population of asco-spores in the gut of the host should be 5 × 105 asco-
spores/larva [3] and kill the host (larvae) [66]. Thus, a reduction in the quality and number
of spores of A. apis will be related to reduced spread and a consequent reduction in A. apis’s
pathogenicity to managed honey bees. In this study, A. apis mutants of the StcU-2 gene
caused effective spore-cyst production loss and inhibited spore production in laboratory
culture. These results are in line with the finding that decreasing the spore formation
reduces the infection of Verticillium dahliae [67] and Aspergillus species [68].

Melanin of some fungi is spore extracellular matrices or part of the spore wall, and
they can help the pathogenic fungi to invade, trick the host recognizing antigen, and block
their immune system [69,70]. In A. apis, melanin is compacted as an electrodense layer
throughout the entire cell wall of the spore and provides the necessary force to promote the
mycelium’s penetration of the larvae’s gut wall barrier during the invasion process [71].
Additionally, A. apis’s melanin might help spores survive under adverse environments and
enable A. apis to survive and remain infectious after mummy larvae have been dead for a
long time [72]. In this study, all stable A. apis StcU-2 mutants grown from single protoplasts
showed the expected phenotype of the colonies. They had albino spore-cysts that lacked
melanin production, indicating that successive inactivation of the StcU-2 gene was highly
related to melanin biosynthesis. Therefore, the successful inhibition of melanin of A. apis
via interrupting the StcU-2 gene will reduce the A. apis’s pathogenicity.

4.2. CRISPR/Cas9 Can Be Used for A. apis Gene Function Studies

The recent advancements in sequencing technology have revealed a number of previ-
ously unknown genes of A. apis [16,73]. Characterizations of these cryptic genes’ functions
in A. apis were greatly hampered due to the lack of handy gene manipulation methods.
CRISPR/Cas9-mediated gene editing is a powerful tool for uncovering gene functions [74].
However, there is no record for CRISPR/Cas9 used in A. apis. A. apis-targeted gene disrup-
tions using CRISPR/Cas9 nuclease at a specific genomic location induced effective DNA
double-strand breaks, which were then repaired via the error-prone NHEJ DNA repair
pathway. This resulted in insertions and/or deletions (indels) of nucleotides, which then
changed gene function [75]. An early exon DSB would easily be repaired via NHEJ repair,
causing indels or resulting in a frame shift which will ultimately lead to a premature stop
codon or will most likely lead to no protein product being translated at all [76]. Even though
a truncated protein is produced, it will be non-functional, as the sequence is altered at an
early stage [77]. Thus, the first coding exon region intended sgRNA of A. apis produced
successful cleavage of the StcU-2 gene with varied nucleotide indels and phenotypic and
functional changes in sporulation. These results demonstrated that CRISPR/Cas9-mediated
gene editing of the A. apis genome shows the potential of using CRISPR/Cas9 in different
A. apis gene function studies. In this study, we edited components of molecular pathways
likely to contribute to melanin biosynthesis (sporulation) pathways. In comparison to
traditional gene deletion approaches, the CRISPR/Cas9 mutagenesis approach for A. apis
was advantageous, as the system remained active and successively mutagenized the target
genes. Hence, the method provides the opportunity to retransform the cured strain using
the same selection marker to obtain double-mutant strains.
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4.3. Minimum Growth-Limiting Level of Hygromycin B Antibiotic to Wild-Strain A. apis Colonies
Was Determined

The minimum growth-limiting level of hygromycin B antibiotic to wild-strain A. apis
colonies, which was critical for the selection of transformant colonies after CRISPR/Cas9
gene editing, was 25 µg/mL. The previous hygromycin B concentration level in PDA
media was suggested to be 50 µg/mL [35,50], but there was no spore or mycelial growth
observed in the wild-strain A. apis in the referred media in this study. The protocol helps
to identify A. apis transformants from non-transformed colonies. Hygromycin B-resistant
A. apis colonies can easily be identified by their ability to grow on PIDA plates containing
25 µg/mL hygromycin B. At hygromycin B levels below 25 µg/mL, some colonies have
restricted growth, but at 25 µg/mL, all wild-strain A. apis colonies were completely inhibited
and regressed. This level was used for CRISPR/Cas9 transformants, which incorporated the
hph gene in the Cas9 enzyme carrier all-in-one plasmids. The contradiction with previous
studies regarding hygromycin B [50], might be due to the temperature of the PDA media
during the introduction of the hygromycin B antibiotic, which could denature the antibiotic.
Though there are thermo-resistant hygromycin B antibiotic strains that resist denaturing
above 60 ◦C [78], the ordinary hygromycin B antibiotic denatures at temperatures above
50 ◦C [79]. In this study, the hygromycin B antibiotic was added when the medium’s
internal temperature was 48 ◦C.

5. Conclusions

We, for the first time, have demonstrated effective CRISPR/Cas9-mediated StcU-2
gene editing in A. apis and confirmed that the StcU-2 gene was related to sporulation and
melanin biosynthesis. This result provides a promising way to reduce pathogenicity and
the spread of A. apis though CRISPR/Cas9.
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