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Abstract: Mycoplasma capricolum subsp. Capricolum (Mcc) is an important member of the Mycoplasma
mycoides cluster (Mm cluster) and causes caprine contagious agalactia. Mcc can infect goats of all
age groups, especially pregnant ewes and kids. It can cause the abortion in pregnant ewes and the
death of goat kids, leading to enormous losses in the goat breeding industry. To date, the prevalence
of epidemic Mcc strains on Hainan Island, China, remains unclear. This study aimed to isolate and
identify Mcc strains endemic to Hainan Island, China. Genome sequencing and comparative genomic
analysis were performed to reveal the molecular characteristics and evolutionary relationships of
the isolated strain. Mcc HN-B was isolated and identified in Hainan Island, China. The Mcc HN-B
genome consists of a 1,117,925 bp circular chromosome with a 23.79% G + C content. It contains 912
encoding genes, 3 gene islands, and 14 potential virulence genes. The core genome with the features
of the Mm cluster and the specific genes of Mcc HN-B were identified by comparative genomic
analysis. These results revealed the evolutionary relationship between Mcc HN-B and other members
of the Mm cluster. Our findings provide a reference for further studies on the pathogenic mechanism
and local vaccine development of Mcc.

Keywords: Mycoplasma capricolum subsp. capricolum; Mycoplasma mycoides cluster; gene islands;
virulence factor; Hainan Island; comparative genomics

1. Introduction

The Mycoplasma mycoides cluster (Mm cluster) is a group of several mycoplasmas that
have close genetic relationships and the same pathogenic characteristics [1,2]. It includes
pathogenic mycoplasmas, such as Mycoplasma mycoides subsp. capri (Mmc), Mycoplasma
mycoides subsp. mycoides large colony (MmmLC), Mycoplasma capricolum subsp. capricolum
(Mcc), Mycoplasma capricolum subsp. capripneumoniae (Mccp), Mycoplasma mycoides subsp.
mycoides small colony (MmmSC), and Mycoplasma leachii (Ml) [3]. Mccp is the causative
agent of contagious caprine pleuropneumonia, which can lead to huge economic losses in
the goat breeding industry [4,5]. MmmSC can cause contagious bovine pleuropneumonia,
presenting an enormous threat to the cattle industry [6]. Mcc, Mmc, and MmmLC can cause
mastitis, arthritis, keratoconjunctivitis, pneumonia, and septicemia (MAKePS) syndrome
in ruminants and are also the causative agents of contagious agalactia [4,7]. In addition,
Mcc is highly virulent and pathogenic in goats. It can infect goats of all age groups and
cause abortion of ewes and death of cubs [8]. Nicolas et al. [9] found that MmmLC and
Mcc can be interspecifically transmitted between different taxa of ruminants, which may
cause great losses in the breeding industry.

With the development of bacterial isolation and culture and molecular diagnostic
techniques, Mcc has been found in many countries and regions, such as Spain, Portugal,
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and the United States [8,10,11]. Researchers have used various methods to study Mcc
to prevent and treat Mcc-related diseases. Using PCR and restriction enzyme digestion
technologies, Rodriguez et al. [12] established an approach to differentiate Mcc from other
members of the Mm cluster. Based on the suppression subtractive hybridization technology,
Maigre et al. [13] developed a specific PCR diagnostic method for Mcc. In addition,
comparative genomic analysis has been performed to reveal the genetic relationship and
variation between different strains of Mcc and between Mcc and other mycoplasmas [14,15].
Moreover, antimicrobial susceptibility tests of Mcc have been carried out, and further
studies have investigated its drug resistance mechanisms [16,17].

To date, a total of five Mcc genomes can be found in the National Center for Biotech-
nology Information (NCBI, 24 September 2022), yet only one genome has been completely
assembled. The complete genome of Mcc-endemic strains is a fundamental prerequisite for
studying their molecular characteristics and pathogenic mechanisms. It has an important
reference value for Mcc evolutionary relationship research, epidemiological investigations,
and regional vaccine development.

In the present study, Mcc HN-B was isolated and identified for the first time on
Hainan Island, China. We obtained a high-quality Mcc HN-B genome using whole-genome
sequencing. All members of the Mm cluster (Mmc HN-A, MmmLC 95010, Mcc ATCC 27343,
Mccp M1601, MmmSC PG1, and Ml PG50) were selected to perform comparative genomic
analysis with Mcc HN-B. This study provides a valuable reference for acquiring strain
information on Mcc, analyzing the molecular characteristics of the Mcc HN-B genome in
detail, and revealing the genetic evolutionary relationships among all members of the Mm
cluster. In addition, it will help foster regional prevention, pathogenic mechanism research,
and drug development for Mcc.

2. Materials and Methods
2.1. Isolation and Identification of Mcc HN-B

In a black goat breeding factory, a two-month-old female lamb suffered from elbow
swelling of the left forelimb, limp, ataxia, and other symptoms. A sterile syringe was used
to draw the liquid inside the cyst of the elbow joint to isolate and identify the bacteria.
The volume of the joint fluid was approximately 100 µL, which was clear with a light-
yellow clot. It was stored by the Hainan Key Laboratory of Tropical Animal Breeding and
Disease Research.

We added 50 µL of joint fluid to 450 µL of sterile PBS and mixed thoroughly. This
procedure was repeated thrice. Then, different concentrations of 100 µL of articular fluid
were inoculated into 10 mL of mycoplasma liquid medium, which included 0.03 g glucose,
0.025 g yeast powder, 0.02 g sodium pyruvate, 0.21 g pleuropneumonia-like organism
(PPLO) broth (Difco, Tucker, GA, USA), 8000 IU penicillin G (BioFroxx, Einhausen, Ger-
many), 2 mL horse serum (Solarbio, Beijing, China), and 25 µL of 0.4% phenol red solution
(Amresco, Boise, ID, USA). In addition, 1.5% agar powder (BioFroxx, Einhausen, Germany)
was added to the mycoplasma liquid medium to prepare a mycoplasma solid medium.
After inoculation, the medium was placed in a cell incubator (37 ◦C and 5% CO2) for
culturing.

Changes in the mycoplasma liquid and solid media were observed and recorded.
When the liquid medium became yellow or cloudy, the medium was filtered through a
filter with a pore size of 0.45 µm. The filtered medium was seeded and subcultured in fresh
medium at 10% volume. Purified bacteria were obtained by repeated passaging (three
times). The inoculated mycoplasma solid medium was observed daily under an ordinary
light microscope. Once suspicious colonies were found, they were cloned and purified on
new solid medium over time. Giemsa staining was performed, and the cells were observed
and photographed under a microscope.

The synthetic universal primers for the bacterial 16S rRNA gene [18] were F, 5′-
AGAGTTTGATCCTGGCTCAG-3′ and R, 5′-GGTTACCTTGTTACGACTT-3′. Purified
colonies were selected for amplification and identification of the 16S rRNA gene. The PCR
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system included upstream and downstream primers (20 pmol each), ddH2O (20 µL), 2× Taq
PCR Mix (25 µL), and 1 µL of DNA template. The PCR procedure involved predenaturation
at 94 ◦C for 5 min, denaturation at 94 ◦C for 30 s, annealing at 56 ◦C for 50 s, extension at
72 ◦C for 90 s, 32 cycles of circulation, and termination of extension at 72 ◦C for 10 min.

2.2. Mcc HN-B Strain Culture and Genomic DNA Extraction

Purified colonies were selected and inoculated into 100 mL of mycoplasma liquid
medium for expanded culture. The genome of Mcc HN-B was extracted using a HiPure
Bacterial DNA Kit (Magen, Guangzhou, China). Qubit (Thermo Fisher Scientific, Waltham,
MA, USA) and NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA) were used to test
the DNA quality.

2.3. ONT Sequencing and Illumina Sequencing

After the DNA quality test, DNA libraries for Oxford Nanopore Technology (ONT)
sequencing and Illumina sequencing were constructed. First, according to the protocol
offered by ONT, the genomic DNA was broken into segments averaging approximately
10 kB using G-tubes (Covaris, Woburn, MA, USA). Next, NEBNext End Repair/dA-Tailing
Module reagents (E7546, NEB, USA) and the NEBNext FFPE DNA Repair kit (M6630, NEB,
USA) were used for end repair. NEBNext Quick Ligation Module reagents (E6056, NEB,
USA) were used for joint connection. Finally, we used the AMPure XP system (Beckman
Coulter, Brea, CA, USA) to purify the DNA library and performed sequencing using
the long-read sequencing platform Oxford Nanopore PromethION (Oxford Nanopore
Technologies, Oxford, UK).

In accordance with the instructions of the NEBNext® MLtra™ DNA Library Prep
Kit for Illumina (NEB, USA), the genomic DNA segmented by random ultrasound was
subjected to end repair, polyA tail processing, and adaptor ligation. Then, the PCR and
AMPure XP systems (Beckman Coulter, Brea, CA, USA) were employed for enrichment
and purification of the library. After qualification testing using a 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA), paired-end technology (PE 150) was applied for sequencing on an
Illumina NovaSeq 6000 sequencer.

2.4. Genome Assembly and Genome Component Annotation

Flye (version 2.8.1-b1676) [19] was used to acquire long reads from the ONT sequencing
and assemble from scratch. FASTP (version 0.20.0) [20] was used to filter the original data
from the Illumina platform. Finally, Pilon (version 1.23) [21] was used to correct the genome
sequence via filtered reads and obtain the final genome sequence.

The Mcc HN-B composition prediction involves open reading frames (ORFs), rRNAs,
tRNAs, sRNAs, gene islands (GIs), clustered regularly interspaced short palindromic repeats
(CRISPR), transposons, interspersed repeat elements, tandems, and prophages. They were
predicted using the NCBI prokaryotic genome annotation pipeline [22], RNAmmer (version
1.2) [23], tRNAscan (version 1.3.1) [24], cmscan (version 1.1.2) [25], IslandPath-DIMOB (version
1.0.0) [26], CRISPRFinder (4.2.17) [27], TransposonPSI (version: 20100822) [28], RepeatMasker
(version 4.0.5) [29], TRF (version 4.09) [30], and PHAST (version 2.0) [31], respectively.

2.5. Gene Function Analysis

Based on the screening standard of E-value < 1 × 10−5, databases, such as non-
redundant protein sequence database (Nr), UniProt/Swiss-Prot, Kyoto Encyclopedia of
Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), Carbohydrate-Active
EnZYmes database (CAZy), Transporter Classification Database (TCDB), Pathogen–Host
Interactions database (PHI), and Virulence Factors of Pathogenic Bacteria database (VFDB),
were used to analyze the genomic sequence of Mcc HN-B in a comparative manner and
annotate the gene function. According to the default software parameters, the Gene Ontol-
ogy database (GO), Pfam database (version 32.0) and Comprehensive Antibiotic Resistance



Microorganisms 2022, 10, 2298 4 of 19

Database (CARD) were used to predict DNA functions. The software information is listed
in Table S1.

In addition, secreted and transmembrane proteins were predicted using SignalP4.0 [32]
and TMHMM (version 2.0) [33], respectively. Type three secretion systems (T3SSs) and
secondary metabolic gene clusters were predicted using EffectiveT3 (version 1.0.1) [34] and
antiSMASH (version 4.1.0) [35]. We also predicted the two-component systems (TCSs) of
Mcc HN-B.

2.6. Collinearity Analysis and SNP/InDel/SV Statistics

As the target genome, Mcc HN-B belongs to one of the members of the Mm cluster.
The six genomes selected were different subspecies within the Mm cluster. First, MUMmer
(version 3.1) [36] was used to compare the target and reference genomes to identify the
large-scale collinearity between genomes. Subsequently, SyRI (version 1.4) [37] was applied
to test the local position arrangement of the samples.

Single-nucleotide polymorphisms (SNPs) and insertions–deletions (InDels) were
tested and analyzed using MUMmer (version 3.1). Structural variation (SV) was examined
and analyzed using SyRI (version 1.4).

2.7. Gene Family Analysis

In accordance with the bidirectional best-hit standard (80% of the shortest protein
sequence has 40% amino acid similarity), gene family analysis was performed on the target
and reference genomes. Diamond [38] (version 2.0.7) and OrthoMCL (version 1.4) [39] were
used to perform a comparison and similarity clustering of their amino acid (or nucleotide)
sequences. Finally, homologous gene clusters and species distributions of each protein
cluster were obtained.

2.8. Core/Pan-Genome Analysis

The pan-genome includes both core and dispensable genomes. Among them, the
genes present in all strains constitute the core genome, and genes excluding these common
genes constitute the dispensable genome. In dispensable genomes, genes that are unique to
only one strain are named ‘unique genes’; a gene that is shared by more than one strain,
but not all, is named an ‘accessory gene’.

Core/pan-genome analysis was performed using Mcc HN-B and the six reference
genomes. Strain-specific genes of Mcc HN-B and reference strains were counted according
to the gene family clustering results in Section 2.7. Strain-specific genes included genes in
strain-specific gene families and genes that were not involved in the above clustering.

2.9. Phylogenetic Tree Analysis and ANI Analysis

Considering the homologous gene cluster analysis results of Mcc HN-B and the refer-
ence genomes, we selected homologous genes with single copies. Multiple sequence align-
ment and alignment quality control were performed using MUSCLE [40] (version 3.8.31)
and Gblocks [41] (version 0.91B), respectively. IQ-Tree [42] (version 1.6.3) was used to
construct phylogenetic trees according to the maximum likelihood method.

The average nucleotide identity (ANI) value refers to the average base similarity
between homologous segments of two microbial genomes. Normally, an ANI value of
95% is used as the classification threshold to distinguish between different species, which
shows a high degree of discrimination among closely related species. We used Pyani [43]
(version 0.2.7) to calculate the ANI value of the alignment region between the Mcc HN-B
genome and each reference genome.

2.10. GenBank Accession Number

The annotated whole-genome sequence of the Mcc HN-B strain was submitted to the
GenBank database under accession number CP101903.
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3. Results and Discussion
3.1. Results of Mcc HN-B Isolation and Identification

The joint fluid was cultured in mycoplasma liquid medium. After 17 h, the color of
the liquid medium changed from red to yellow. After 25 h, the liquid medium became
turbid and precipitated. After 48 h, the color of the liquid medium did not change, and
the precipitation reached its maximum. Simultaneously, the joint fluid was inoculated
into the mycoplasma solid medium. Small transparent colonies began to appear 24 h after
inoculation. After 36 h, the colonies continued to grow, and the color became milky white.
After three subcultures, we successfully isolated and purified the mycoplasma strain.

Under the low-power microscope, the colonies were mostly round, and the central
umbilicuses were obvious (Figure 1A). Single colonies of this strain were selected for
Giemsa staining and observed under magnification of 1000 times (Figure 1B); purple
particles were observed in the microscopic field, and the isolated strains were spherical or
arc shaped.
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Figure 1. Mcc HN-B isolation and identification. (A) The morphology of the isolated strain, magnified
40 times (scale bar = 250 µm); (B) Giemsa staining results of the isolated strain, magnified 1000 times
(scale bar = 10 µm): the top left picture results from the red-framed area magnified three times.
(C) Agarose gel electrophoresis results of the 16S rRNA gene: (M) D2000 Marker, (Line 1) the isolated
strain, (Line 2) blank control.

The 16S rRNA gene of the isolated strain was successfully amplified and sequenced
(Figure 1C). The NCBI analysis results showed that the 16S rRNA gene sequence of the
isolated strain had the highest homology (99.71%) with Mcc 14DD0024. The strain was
identified as Mcc by culture characteristics, morphological characteristics, and PCR amplifi-
cation, and named “Mcc HN-B.”

3.2. General Characteristics of the Mcc HN-B Genome

To ensure the accuracy and reliability of the subsequent information analysis, the
original data generated by the ONT and Illumina sequencing platforms were filtered and
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processed to obtain valid data. The Illumina sequencing data and ONT sequencing data of
Mcc HN-B were 1.6 Gb (~1428.57×) and 1.12 Gb (~1000×), respectively. Through genome
assembly and correction, the complete genomic sequence of Mcc HN-B, with a total length
of 1,117,925 bp, was obtained. Combined with the prediction results of the coding genes,
the Circos software (version 0.69–9) was used to draw the genome circle map of Mcc HN-B
to comprehensively display its genome characteristics (Figure 2).
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Figure 2. Whole-genome circle map of Mcc HN-B. The circles’ diagram from outside to inside is plus
and minus strand gene (gray), plus and minus strand COG, plus and minus strand KEGG, plus and
minus strand GO, ncRNA, GC content, and GC skew. KEGG uses the topmost category, represented
by five colors. Genes that correspond to more than one category are assigned the sixth color. GC
and GC skew are positive outward and negative inward, respectively. The window and step size are
both 1000.

The whole genome of the Mcc HN-B strain with a 23.79% G + C content includes
912 coding genes, 3 GIs, 175 tandem repeats, and 1 DNA transposon (Table 1). We first
predicted six potential CRISPRs in Mcc HN-B (Table S2), which require further validation.
Additionally, 912 proteins were encoded by the Mcc HN-B genome, including 12 transmem-
brane proteins (Table S3) and 46 secreted proteins (Table S4). The results of the functional
annotation of the Mcc HN-B genome are shown in Table S5.



Microorganisms 2022, 10, 2298 7 of 19

Table 1. General characteristics of the Mcc HN-B genome.

Item Number Item Number

Genome size (bp) 1,117,925 Number of rRNA genes 6
Genome GC content (%) 23.79 Number of tRNA genes 31

Number of genes 912 Number of sRNA genes 1
Length of gene (bp) 45–5895 Number of interspersed repeats 6

Total length of gene (bp) 983,931 Number of short interspersed elements 4

Average length of gene (bp) 1078.87 Number of long interspersed
repeated sequences 1

GC content of gene region (%) 23.95 Number of DNA elements 1
Total length of gene/genome (%) 88.01 Number of tandem repeats 175

Total length of intergenic
region/genome (%) 11.99 Total bases in tandem repeats 20,145

GIs number 3 Number of prophages 0
Total GI length (bp) 69,172 Average length (bp) 23,057.33

3.2.1. GIs

Three GIs were first identified in the Mcc HN-B genome. Among them, 9, 32, and
26 genes were included in GI1 (GI_1), GI2 (GI_2), and GI3 (GI_3), respectively (Figure 3,
Table S6).
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On GI_1, NO343_00050, NO343_00060, and NO343_00070 encode three membrane
proteins; NO343_00075 encodes one lipoprotein; and NO343_00055, NO343_00080, and
NO343_00085 encode three hypothetical proteins. The DUF285 family protein encoded by
NO343_00055 may be related to the adhesion of Mcc HN-B. NO343_00065 encodes a DnaJ-
domain-containing protein [44]. It could act as an auxiliary molecular chaperone of heat
shock protein 70 (HSP70) to participate in different physiological processes. NO343_00090
encodes a DDE transposase, which may provide a basis for inserting sequence transposition
activity and promoting the evolution and environmental adaptation of bacteria [45].

GI_2 and GI_3 had similar compositions. Among them, 20 genes encode proteins that
are structurally and functionally similar and arranged in highly similar positions. These
genes encode hypothetical proteins, membrane proteins, and lipoproteins that are related
to the virulence of Mcc HN-B. NO343_02020 in GI_2 and NO343_04000 in GI_3 encode
transposases of the IS3 family. We speculated that GI_2 and GI_3 have undergone gene
transfer in related species or the same species as Mcc, eventually leading to their similar
structure and genetic composition.

Additionally, compared with GI_3, GI_2 encodes more proteins, including three
ATP-binding proteins (NO343_02160, NO343_02165, and NO343_02170), two membrane
proteins (NO343_02145 and NO343_02150), three hypothetical proteins (NO343_02135,
NO343_02155, and NO343_02175), and one TIR-domain-containing protein (NO343_02015).
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Comparatively, GI_3 encodes an extra hypothetical protein (NO343_04030) and two mem-
brane proteins (NO343_04020 and NO343_04025).

3.2.2. Virulence Factors

VFDB is a database dedicated to the study of pathogenic factors in bacteria, chlamy-
dia, and mycoplasma. Fourteen genes in the Mcc HN-B genome were annotated to the
VFDB database. Among them, six and three genes were annotated to surface lipopro-
teins and capsules, respectively (Table S7). NO343_00170, NO343_03810, NO343_04655,
NO343_04660, NO343_04665, and NO343_04670 encode six Vmm proteins, which are all
surface lipoproteins, contributing to high-frequency phase variation in immunodomi-
nant antigens. The proteins encoded by GalU (NO343_02230), OppF (NO343_02495), and
MSC_0991 (NO343_02500) belong to the capsule. Only one gene was annotated to GAPDH,
hemolysin, elongation factor thermal unstable (EF-Tu), streptococcal enolase, or pyruvate
dehydrogenase E1 beta subunit (PDH-B).

gapA (NO343_00195) encodes the GAPDH protein of Mcc HN-B. Recent studies [46]
have indicated that the GAPDH protein is not only a key enzyme in the glycolytic metabolic
pathway but also involved in intracellular digestion, DNA repair, apoptosis, and other
life processes. Hoelzle et al. [47] reported that the MSG1 protein with GAPDH activity in
Mycoplasma suis (M. suis) also functions in adhesion to porcine erythrocytes. We speculated
that NO343_00195 plays an adhesive role in the Mcc HN-B strain to enhance Mcc infection
in the host.

Hemolysin is a common exotoxin that can cause the dissolution of red blood cells,
leading to capillary necrosis [48]. hlyA often exists in Listeria monocytogenes [49] and
Vibrio cholerae [50]. Additionally, some pathogenic mycoplasma genomes contain genes
encoding hemolysin A, such as Mycoplasma hyopneumoniae (M. hyopneumoniae), Mycoplasma
ovipneumoniae, Mccp [51], and Mycoplasma conjunctivae. In the present research, we found
that hlyA (NO343_02185) also exists in the Mcc HN-B genome, with a sequence homology
rate of 98.02% compared with hlyA (MCAP_0055) in the Mcc ATCC 27343 genome submitted
in 2005.

PDHB is an important component of pyruvate dehydrogenase. EF-Tu is an indispens-
able functional protein for life activities, accounting for approximately 10% of the total
protein of Mycoplasma pneumoniae (M. pneumoniae) [52]. Pinto et al. [53] identified EF-Tu
and PDHB as highly antigenic proteins of M. hyopneumoniae by Western blotting, which
can be recognized by the host immune system. Dallo et al. [54] demonstrated that EF-Tu
and PDH-B, two surface proteins of M. pneumoniae, could bind to fibronectin, which is
a component of extracellular matrix, and affect mycoplasma adherence to the host and
infection [55]. pdhB (NO343_02990) and tuf (NO343_02670) were identified in the Mcc HN-B
genome, which might also facilitate the adhesion and infection of Mcc to the host.

α-enolase exists on the surface of many bacteria, has good immunogenicity in M. suis,
and can enhance the adhesion ability of bacteria to the host [56]. Esgleas et al. showed that
α-enolase is a surface protein with fibronectin-binding activity that plays a role in bacterial
adhesion and invasion [57,58]. The potential virulence gene eno (NO343_02925) was also
identified in Mcc HN-B, which may be important for Mcc to invade the host.

We also found that NO343_03060 and NO343_03295 encode two kinds of peptidase
S41 in the Mcc HN-B genome. A study demonstrated [59] that S41 peptidase is closely
related to the proteolytic phenotype of Mmc. Deletion of the S41 peptidase can cause the
phenotypic change in Mmc and increase the production of hydrogen peroxide. Therefore,
NO343_03060 and NO343_03295 may be vital for the proteolytic phenotype and virulence
sensitivity of Mcc HN-B.

Finally, a type I restriction modification (RM) system was identified in the Mcc HN-
B genome. HsdR is encoded by NO343_01990, HsdM by NO343_01975, and HsdS by
hsdS (NO343_01985, NO343_02000, NO343_04805, NO343_04810). This system contains
repeated hsdS genes, and Mcc HN-B may change its phenotype through phase variation [60].
Meanwhile, the type I RM system may influence the virulence of Mcc HN-B by regulating
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the expression of virulence genes [61,62]. NO343_01175 and NO343_03390 of Mcc HN-B
encoding two type II RM system-related proteins were also identified.

3.2.3. Metabolism

The histidine phosphocarrier protein (HPr) is a component of the phosphotransferase
system (PTS). Kundig [63] et al. reported its function in hexose phosphorylation in 1964. The
PTS system has been found in an increasing number of fungi, archaea, and bacteria. Most
of the known PTS systems have similar structures, consisting of the enzyme I complex (EI),
HPr, and enzyme II complex (EIIA, EIIB, EIIC, EIID). The main function of the PTS system
is to mediate the absorption and phosphorylation of carbohydrates and to participate in
the regulation of carbon metabolism and bacterial virulence [64].

In this study, we identified 20 Mcc HN-B genes involved in the PTS system. Two
cytosolic phosphotransferases, EI and HPr, are encoded by NO343_03025 and NO343_00615,
respectively. NO343_03030 encodes EIIAGlc. NO343_01255, NO343_01260, NO343_01275,
NO343_01560, and NO343_02375 encode EIICBGlc. NO343_01870 and NO343_03925 en-
code EIIAMtl. NO343_01860 and NO343_03920 encode EIICBMtl. NO343_01610 encodes
EIICLev. NO343_04645 encodes an ascorbate PTS system EIIB component. NO343_04650
encodes the ascorbate PTS system EIIA or EIIAB component. NO343_02540 encodes the
N-acetylglucosamine PTS system EIICBA or EIICB component. NO343_02675 encodes
the sucrose PTS system EIIBCA or EIIBC component. NO343_04795 encodes the sucrose
PTS system EIIBCA or EIIBC component. NO343_01605 and NO343_04800 encode 1-
phosphofructokinase.

Ten different types of EII were identified in Mcc HN-B. These enzymes enable the
PTS system of Mcc HN-B to transport a wide range of carbohydrates. The major glucose
transport system in Mcc HN-B was the glucose PTS system. Mcc also contained mannitol
PTS, N-acetylglucosamine PTS, sucrose PTS, and fructose PTS. Studies have shown that
N-acetylglucosamine PTS is more effective in promoting glucose transport and utilization
than maltose PTS and β-glucoside PTS in the absence of glucose PTS, mannose PTS, and
glucokinase [65]. Christine et al. proved that when fructose is the only carbon source, the
fructose PTS of Clostridium acetobutylicum becomes the main fructose uptake system [66].
Combined with the PTS characteristics of Mcc HN-B, we hypothesized that the N-acetyl
glucosamine PTS could act as a substitute to promote glucose transport when Mcc HN-B
lacks glucose PTS and glucokinase. Moreover, the presence of fructose PTS in Mcc HN-B
may make it possible to use fructose as a carbon source, thus enhancing the environmental
stress resistance of the strain.

Additionally, 33 Mcc HN-B genes were involved in the metabolic process of the ATP-
binding cassette (ABC) transporters, including a general nucleoside transport system, a
phosphonate transport system, and an oligopeptide transport system. Twenty-seven Mcc
HN-B genes were involved in the glycolysis/gluconeogenesis metabolic pathway. The
metabolic pathways of glucose and pyruvate were intact, which may allow Mcc to generate
energy under the hypoxic conditions.

3.3. Results of Comparative Genomic Analysis
3.3.1. Collinearity Analysis Results

We first confirmed the genomes of six strains (Mcc ATCC 27343, Mccp M1601, Mmc
HN-A, MmmLC 95010, MmmSC PG1, and Ml PG50) in the Mm cluster as the target
genomes (Table 2). The Mcc HN-B genome was used as the reference genome for collinearity
analysis with target genomes.
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Table 2. Basic information on each strain of the Mm cluster.

Mcc HN-B Mcc ATCC 27343 Mccp M1601 Mmc HN-A MmmLC 95010 MmmSC PG1 Ml PG50

Accession
number CP093215 CP000123.1 CP017125.1 CP093215 FQ377874.1 BX293980.2 CP002108.1

Isolation place China USA China China France Sweden USA
Host goat goat goat goat goat cattle cattle

Collection date 2022 2005 2016 2021 1995 2003 2010
Size (bp) 1,117,925 1,010,023 1,016,707 1,084,691 1,153,998 1,211,703 1,008,951
G + C (%) 23.79 23.8 23.67 23.76 23.81 24.0 23.8

The collinearity results were statistically analyzed (Table S8). A plot of the parallel
collinearity results was drawn based on these results (Figure 4). The relationships between
Mcc ATCC 27343, Mccp M1601, and Mcc HN-B were the closest, followed by Ml PG50.
MmmSC PG1 had the farthest genetic relationship with Mcc HN-B, followed by Mmc HN-A
and MmmLC 95010. Many reverse-matching regions were found between the genomes
of Mycoplasma capricolum and Mycoplasma mycoides. However, this phenomenon was not
observed in Ml. Thus, the evolutionary distance between Ml and Mycoplasma capricolum
genomes was closer than that between Ml and Mycoplasma mycoides genomes.
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3.3.2. Statistical Results of SNPs, InDels, and SVs

The number of SNPs, InDels, and SVs between Mcc HN-B and the target strains was
determined and analyzed (Table 3). The figure of the variation types is shown (Figure S1).

Table 3. Statistical results of SNPs, InDels, and SVs between Mcc HN-B and target strains.

SNPs Insertions Deletions SVs

Mcc ATCC 27343 17,885 500 497 98
Mccp M1601 19,302 634 652 104
Mmc HN-A 32,999 806 841 123

MmmLC 95010 33,126 849 912 122
MmmSC PG1 25,573 613 683 141

Ml PG50 33,196 703 792 97

As shown in Table 3, the genomes of Mcc HN-B and Mcc ATCC 27343 had the lowest
numbers of SNPs, insertions, and deletions. In addition, there was one more SV between
Mcc HN-B and Mcc ATCC 27343 than between Mcc HN-B and Ml PG50. Therefore, Mcc
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HN-B had the lowest genome variations when compared with Mcc ATCC 27343, followed
by Mccp M1601. Combined with the picture of variation types (Figure S1), many similar
inverted regions were found between Mycoplasma capricolum and Mycoplasma mycoides.
These regions corresponded to the reverse-matching regions mentioned above. Mycoplasma
capricolum and Ml were more similar in genome structure than Mycoplasma mycoides.

3.4. Molecular Characterization of the Mm cluster

The Mm cluster is a group of mycoplasmas that belong to the genus Mycoplasma. It
includes six important pathogenic mycoplasmas for ruminants: Mmc, MmmLC, MmmSC,
Mcc, Mccp, and Ml. Therefore, finding the core genome, homologous gene family, and
other molecular characteristics of the Mm cluster is of great significance for rapid clinical
diagnosis, vaccine development, and disease treatment.

The six selected target genomes were different subspecies within the Mm cluster.
Together with the Mcc HN-B genome, we performed gene family, core/pan-genome,
phylogenetic tree, and ANI analyses to determine the molecular characteristics of the
Mm cluster.

3.4.1. Gene Family Analysis and Core Genome Identification of the Mm Cluster

We first collected the results of gene family analysis for the seven mycoplasma strains
(Table 4). A total of 580 orthologs of the Mm cluster and unique families in each strain were
identified therein (Table S9, Figure 5).

Table 4. Gene family analysis results of the Mm cluster.

Species Total Genes Gene in
Families

Unclustered
Genes Families Unique

Families

Mcc HN-B 912 849 63 818 64
Mcc ATCC 27343 825 804 21 792 21

Mccp M1601 889 796 93 773 93
Mmc HN-A 848 826 22 802 22

MmmLC 95010 927 899 28 837 30
MmmSC PG1 1,017 919 98 777 115

Ml PG50 850 809 41 789 41

Subsequently, we identified the core/pan-genomes with the characteristics of the Mm
cluster using core/pan-genome analysis. The core genome contained 580 orthologs, which
were key components for maintaining the basic vital activities and molecular character-
istics of the Mm cluster. Among them, 18 orthologs encode 13 lipoproteins, 3 putative
lipoproteins, and 2 putative prolipoproteins. These lipoproteins include one LPPA family
lipoprotein, one LPPD family lipoprotein, and one MOLPALP family lipoprotein. They
constitute the basic virulence of the Mm cluster, which provides a reference for further
exploration of their virulence and pathogenic mechanisms.

The pan-genome comprised 1363 orthologs, which showed genetic diversity within the
Mm cluster. All shared genes and specific genes of each strain were obtained (Table 5). This
provides a basis for identifying the molecular characteristics and evolutionary distances
between different subspecies within the Mm cluster.
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Table 5. Specific genes to each strain within the Mm cluster.

Species Total Genes Shared Gene
Number

Specific Gene
Number

Mcc HN-B 912 847 65
Mcc ATCC 27343 825 804 21

Mccp M1601 889 796 93
Mmc HN-A 848 826 22

MmmLC 95010 927 895 32
MmmSC PG1 1,017 835 182

Ml PG50 850 809 41

3.4.2. Phylogenetic Tree and ANI Analysis

According to the orthologs’ clustering results of the Mm cluster in Section 3.4.1, a
phylogenetic tree was constructed based on the single-copy orthologs (Figure 6). We found
that Mcc HN-B had the closest relative genetic distance to Mccp M1601, followed by Ml
PG50. This was consistent with the analysis results of the genomic structural variations of
each strain in Section 3.3.2. Moreover, Mcc HN-B had the farthest relative genetic distance
from Mmc HN-A and MmmLC 95010. Compared with the other subspecies of Mycoplasma
mycoides, the relative genetic distance between MmmSC PG1 and Ml PG50 was smaller.
They had a closer genetic relationship, and their hosts were both cattle.
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Figure 6. Phylogenetic tree based on the feature genes. The end of the branch represents different
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Additionally, we discovered that Mcc HN-B had a smaller genetic distance from Mccp
M1601 than Mcc ATCC 27343. Mccp M1601 was isolated from China in 2016, whereas Mcc
ATCC 27343 was isolated from America in 2005. This result may be due to the geographic
differences in Mcc and the consequences of the long-term evolution of these strains.

Finally, a heatmap based on ANI values was drawn to show the average base similarity
of homologous fragments between the two strains (Figure 7). The ANI values among Mcc
HN-B, Mccp M1601, and Mcc ATCC 27343 were all greater than 0.96. Comparatively, the
ANI values were all lower than 0.95 between Ml PG50 and the three strains mentioned
above. The ANI values between Mmc HN-A and MmmLC 95010 were greater than 0.95.
The ANI value of either of them with MmmSC PG1 was lower than 0.95, which could
effectively distinguish them. Mcc HN-B showed the highest ANI value with Mccp M1601,
which is in accordance with the phylogenetic tree analysis results.
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3.5. Molecular Characterization of the Mycoplasma Capricolum Genome

Mcc HN-B, Mccp M1601, and Mcc ATCC 27343 belong to Mycoplasma capricolum.
Orthologs of the three genomes listed in Table S9 were selected for comparison. A Venn
diagram was constructed to show the results (Figure 8).
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Through comparative analysis, we identified 692 orthologs (Table S10) and 1058
orthologs in the core genome and pan-genomes of Mycoplasma capricolum, respectively.
In the core genome, 36 orthologs encode 24 lipoproteins, 2 prolipoproteins, 8 putative
lipoproteins, and 2 putative prolipoproteins. Apart from the common LPPA and LPPD
family lipoproteins, one VmcF lipoprotein, one PARCEL family lipoprotein, and three
MOLPALP family lipoproteins were predicted to exist in Mycoplasma capricolum.

Compared with the lipoproteins in the core genome of the Mm cluster, the 18 extra
lipoproteins in Mycoplasma capricolum, such as VmcF lipoprotein and PARCEL family
lipoprotein, may enhance the virulence of Mycoplasma capricolum. Additionally, they could
be markers of Mycoplasma capricolum. Moreover, specific genes in the genomes of Mcc
HN-B, Mcc ATCC 27343, and Mccp M1601 were also found, which added support for their
specific identification.

Finally, Mcc HN-B shared 767 orthologs with Mcc ATCC 27343, which is 75 more
orthologs than those in the core genome of Mycoplasma capricolum. These 75 orthologs were
specific to Mcc and were of great significance for distinguishing between Mcc and Mccp.
Meanwhile, it is of particular concern that Mcc HN-B shares 721 orthologs with Mccp
M1601, which is 29 more orthologs than those in the core genome of Mycoplasma capricolum.
As both Mcc HN-B and Mccp M1601 were isolated from China, these 29 orthologs may
have regional characteristics in China.

3.6. Identification of Caprine-Host-Specific Orthologs

The hosts of Mcc, Mccp, and Mmc are all goats. To explore the caprine-host-specific
orthologs of these strains in China, the orthologs of the three strains (Mcc HN-B, Mccp
M1601, and Mmc HN-A) isolated from China were selected for comparison (Table S9). The
results are shown in a Venn diagram (Figure 9).

The core and pan-genomes of the caprine-host strains contained 653 and 1133 or-
thologs, respectively (Figure 9). Caprine-host-specific orthologs were included in this
core genome. Subsequently, MmmSC PG1 and Ml PG50, both with bovine hosts, were
selected for further screening (Figure 9). The core and pan-genomes of the bovine-host
strains had 695 and 1011 orthologs, respectively. Finally, the caprine-specific core genome
was compared with the bovine-specific core genome to obtain the number of caprine-host-
specific orthologs in China.
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Finally, 63 orthologs were identified as caprine-host-specific orthologs in China (Ta-
ble S11). In total, 105 orthologs were identified as bovine-host-specific orthologs (Table S12).
Among the caprine-host-specific orthologs, 11 orthologs encode seven lipoproteins, one
prolipoprotein, and three putative lipoproteins. Five orthologs encode three membrane
proteins and two putative membrane proteins. The other orthologs encode proteins, such
as M17 peptidase, ATP-binding cassette transporter permease subunit, type I RM system
subunit M, and type I RM system subunit R. We speculated that these genes might play
an important role in host recognition, virulence regulation, substance transportation, and
energy generation when goats are infected with Mcc, Mccp, or Mmc. These results provide
a reference for the further study of the specific infection mechanisms of Mcc, Mccp, and
Mmc in goats.

4. Conclusions

In this study, the Mcc HN-B strain was successfully isolated and identified from
Hainan Island, China, for the first time. According to whole-genome sequencing analysis,
we first identified three GIs in the Mcc HN-B genome. At the same time, we analyzed
the type I RM and PTS systems of Mcc HN-B, revealing 14 potential virulence factors of
the strain, which provides a theoretical basis for subsequent studies on their pathogenic
mechanisms and vaccine development for Mcc.

By comparative genome analysis of Mcc HN-B and the other six members within
the Mm cluster, the core genome of the Mm cluster and unique families of each strain
were identified. The phylogenetic tree and heatmap of ANI analysis revealed evolutionary
and affinity relationships between the members of the Mm cluster. This provides a new
perspective for understanding the key biological functions and main molecular charac-
teristics of all members within the Mm cluster. Moreover, the core genome provides a
reference for virulence research and drug development against the Mm cluster. The specific
genes identified in each strain can be applied as new markers to diagnose and distinguish
members of the Mm cluster.

Finally, the core genome of Mycoplasma capricolum, represented by Chinese isolates and
63 caprine-host-specific orthologs, was identified. These findings could provide material
support for the pathogenic mechanism research, rapid diagnosis, and drug development
for Mycoplasma capricolum.
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