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Abstract: Colorectal cancer (CRC) is the third most prevalent neoplasm and the second leading cause
of cancer death worldwide. Microbiota and their products, such as bile acids (BAs), are important
causal factors for the occurrence and development of CRC. Therefore, we performed 16S ribosomal
RNA (16S rRNA) and liquid chromatography/mass spectrometry (LC–MS) to measure mucosal
microbiota and BA composition in paired cancerous and noncancerous gut tissue samples from
33 patients with CRC at a hospital in Beijing. In cancerous tissues, we detected altered mucosal
microbiota with increased levels of the genera Bacteroides, Curtobacterium, and Campylobacter and
an increase in deoxycholic acid (DCA), which was the only BA elevated in cancerous tissues. Ex
vivo coculture showed that the mucosal microbiota in cancerous tissues indeed had a stronger
DCA production ability, indicating that DCA-producing bacteria are enriched in tumors. Results
from the CCK8 and Transwell assays indicated that DCA enhances the overgrowth, migration, and
invasion of CRC cell lines, and, through qPCR and Western blot analyses, downregulation of FXR
was observed in CRC cell lines after DCA culture. We then verified the downregulation of FXR
expression in cancerous tissues using our data and the TCGA database, and we found that FXR
downregulation plays an important role in the development of CRC. In conclusion, differing mucosal
microbiota, increased amounts of mucosal DCA, and lower FXR expression were demonstrated
in cancerous tissues compared to normal tissue samples. The results of this study can be applied
to the development of potential therapeutic targets for CRC prevention, such as altering mucosal
microbiota, DCA, or FXR.

Keywords: colorectal cancer; gut microbiota; bile acid; deoxycholic acid

1. Introduction

The prevalence of colorectal cancer (CRC) is increasing annually in developing coun-
tries such as China. CRC is the third most prevalent neoplasm and the second leading cause
of cancer death worldwide [1,2]. By 2030, it is estimated that there will be about 2.2 million
new individuals with CRC, and 1.1 million people will die from CRC globally [3]. Thus, it
is becoming crucial to study the causes and mechanisms of CRC [4].

An increasing number of studies have shown that gut microbiota has a vital function
in the development of CRC [5–7]. The gut microbiota has carcinogenic or pro-carcinogenic
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effects through inflammation and immunological modulation, genotoxin formation, dietary
metabolism, and stimulation of tumor-associated signaling mechanisms [8]. Studies have
revealed that some pathogenic bacteria, such as Porphyromonas, Escherichia, Enterococcus,
Streptococcus, Peptostreptococcus, Bacteroides, Alternaria, and Fusobacterium, are enriched in
CRC patients [9–19]. Most current studies have focused on fecal microbiota due to accessi-
bility. However, there is a considerable difference between stool and mucosa community
composition [20–22]. The intestinal mucosa is the mediator that communicates the gut
microbiota with host cells, and the mucosal microbiota exhibits an earlier reaction with
the intestinal mucosa than the fecal microbiota [23]. The microbiological environments
in cancerous tissues and normal gastrointestinal mucosa are different, which leads to
divergences in microbial representation [14,16]. Therefore, studies on the differences in
colonizing microbiota in cancerous and noncancerous tissues have profound implications
for revealing the specific role of bacteria in colorectal carcinogenesis and progression.

Diet influences the incidence of CRC, especially the Western diet, characterized by a
high intake of red meat and fat, which has been proven to increase the risk of CRC [24–26].
Studies have shown that a high-fat diet stimulates the secretion of bile acids (BAs), which
are metabolized by gut microbiota [24,27]. BAs are important metabolites of the intestine
and have a vital function in the development of CRC [28]. Bacteria have an essential
role in BA metabolism. Bacteroides fragilis, Bacteroides vulgatus, Clostridium perfringens, and
Clostridium have been associated with the metabolism of BAs [29,30]. Recent studies suggest
that deoxycholic acid (DCA) and lithocholic acid may promote malignancy progression
through DNA injury and the creation of reactive oxygen species [31]. Most research has
focused on the structure of BAs in serum and feces. However, the expression patterns of
BAs in cancerous tissues have yet to be studied thoroughly, especially studies that compare
cancerous and paired noncancerous tissues simultaneously. Experiments on the action
pathway of BAs in tissues compared to that in serum and feces may be more convincing in
revealing the development of tumors.

Although there are several studies on bacteria, BAs, and CRC, the specific conditions
in the gut mucosa and their underlying pathways are still unknown [14,16,17]. In this
research, we performed 16S ribosomal RNA (16S rRNA) gene profiling of the mucosal
microbiota of paired healthy colorectal mucosae and adenocarcinomas in CRC patients. By
further analyzing the gut microbiota and BAs in paired samples, we demonstrated that
alterations in the gut mucosal microbiota led to CRC progression by metabolizing DCA,
which inhibits the expression of the farnesoid X receptor (FXR).

2. Methods and Materials
2.1. Study Design and Sample Assemblage

Individuals who were diagnosed with CRC by colonoscopy and underwent colorectal
surgery at Peking University Third Hospital were enrolled in the study from November
2020 to August 2021. Pathologists histologically confirmed the disease status. The ex-
clusion criteria were (1) patients having a history of inflammatory bowel disorder such
as Crohn’s disease and ulcerative colitis, (2) other malignancies, (3) patients who used
antibiotics and probiotics for several weeks prior to surgery, (4) patients with a history
of intestinal resection, and (5) patients receiving neoadjuvant therapy before surgery. A
total of 33 patients were included in this study. All experimentations were approved by the
Medical Ethics Research Committee of our center (IRB00006761-M2020571) in accordance
with the Declaration of Helsinki. All individuals signed informed consent forms before
their enrollment in this research.

Polyethylene glycol electrolyte powder (IV) (Staidson (Beijing) Biopharmaceutical
Co., Ltd., Beijing, China) was combined with 4 L of water for employing as a standard
mechanical bowel preparation 1 day before surgery. Cancerous and noncancerous tissues
were collected during surgery. Aseptic scarves were located in the operating area. To avoid
potential sample contamination, air in the operating area was collected as negative contrast.
A sterile saline solution was used to wash the intestinal mucosa. Aseptic surgical scissors
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were used to obtain three pieces of noncancerous tissues at the broken end (more than 5 cm
from the tumor) and three pieces of cancerous tissue. One normal tissue sample and one
tumor tissue sample were stored in a formalin tube at room temperature. The residual air
and malignant and benign growths tissue samples were put in a sterilized cryovial, and
liquid nitrogen was employed to cryopreserve them.

2.2. DNA Extraction, 16S rRNA Gene Amplification, Profiling, and Analysis

For ideal separation of bacterial DNA from malignant and healthy tissue DNA, we
utilized a silica-based column following three cycles of mechanical lysis for 30 s at 30 Hz
in a bead beater (TissueLyser; Qiagen) with 0.1 mm glass beads (MoBio; Qiagen, Hilden,
Germany), followed by purification using a QIAamp PowerFecal Pro DNA Kit. Gel
electrophoresis (1% w/w agarose in 0.5 TBE buffer) and a NanoDrop 2000 UV spectropho-
tometer were employed to assess the purity and amount of the separated DNA (Thermo
Fisher Scientific, Waltham, MA, USA). All DNA specimens were stored at −80 ◦C until
further use.

The hypervariable sections V3–V4 of the bacterial 16S rRNA gene were amplified using an ABI
GeneAmp® 9700 PCR thermocycler and the pair of primers 331F (5′–TCCTACGGGAGGCAGCAGT–
3′) and 797R (5′–GGACTACCAGGGTATCTAATCCTGTT–3′) (ABI, Foster City, CA, USA).
The final volume of the polymerase chain reaction (PCR) was 20 µL. It included 4 µL of 5×
Fast Pfu buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of Fast Pfu
polymerase, 10 ng of template DNA, and ddH2O. Initial denaturation at 94 ◦C for 10 min
was followed by 35 cycles of denaturation at 95 ◦C for 60 s, annealing at 68 ◦C for 60 s, and
extension at 72 ◦C for 60 s, along with a single extension at 72 ◦C for 10 min, and finishing
at 10 ◦C. Every sample was magnified by a factor of three. PCR product was obtained from
a 2% agarose gel using the manufacturer-recommended Axy-Prep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) purification protocol and quantified with a
QuantusTM Fluorometer (Promega, Madison, WI, USA).

In agreement with Majorbio Bio-Pharm Technology Co. Ltd., an equal number
of refined amplicons were collected and paired-end sequenced on an Illumina MiSeq
PE300 platform (Illumina, San Diego, CA, USA) (Shanghai, China). Raw sequencing
reads can be found in the NCBI Sequence Read Archive (SRA) database (Accession
Number: PRJNA865725).

Raw FASTQ files were demultiplexed using an in-house Perl script, before being
quality-filtered by fastp version 0.19.6 [32], and combined by FLASH version 1.2.7 [33]
with the following properties: (1) the 300 bp reads were cut at any location obtaining an
average quality score < 20 across a 50 bp sliding window, truncated reads less than 50 bp
were eliminated, and ambiguous character-containing reads were also removed; (2) only
overlapping patterns larger than 10 bp were constructed according to their overlapping
pattern. The greatest ratio of mismatches in the overlap zone was 0.2%. Unassimilable
reads were eliminated; (3) specimens were discriminated on the basis of the barcode and
primer, and the sequencing direction was altered on the basis of precise barcode matching
and two mismatched nucleotides in primer matching. The sequences were then grouped
into operational taxonomical units (OTUs) using UPARSE 7.1 [34] and a profile similarity
threshold of 97%. The sequence with the highest frequency was chosen as the representative
profile for each OTU. To limit the impact of sequencing depth on estimates of alpha and
beta diversity, the count of 16S rRNA gene sequences from each specimen was reduced to
around 20,000, resulting in an average Good’s coverage of 99.90%.

Specimens are susceptible to environmental and reagent contamination [35], leading
to false-positive results due to low bacterial biomass. To accommodate this difficulty,
during tissue gathering, the tubes were preserved open near the surgical area for the
duration of the surgery. Following case-by-case confirmation of the negative controls, 16S
rRNA quantification and sequencing data were employed to determine tissue-specific
bacterial profiles.
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2.3. Detection of BA

Tissue specimens were taken using a precipitation process. Chlorpropamide (C1290;
Sigma-Aldrich, St. Louis, MO, USA) was employed as an internal standard for determin-
ing BA concentrations. Supernatants were evaluated for BA concentrations employing
UPLC/Synapt G2-Si QTOF MS technology coupled with an ESI source, as in our previous
study [36] (Waters Corp., Milford, MA, USA). The chromatographic process was performed
using an Acquity BEH C18 column (100 mm 2.1 mm i.d., 1.7 m; Waters Corp.). The column
was operated at 45 ◦C with a flow rate of 0.4 mL/min. The moveable stage comprised a
combination of formic acid dissolved in water and acetonitrile at a concentration of 0.1%
each. For negative mode MS recognition, gradient elution was employed. The weight range
obtained was 50–850 m/z. Using standards for all BAs, the various BA metabolites revealed
by liquid chromatography/mass spectrometry (LC–MS) were identified. Sigma-Aldrich
was the source of CA and DCA.

2.4. Cell Cultures and Treatment

Malignant cell lines of the colon, such as HT-29 (HTB-38, ATCC), Caco-2 (HTB-37,
ATCC), and HCT 116 (CCL-247, ATCC), were acquired from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and preserved in Dulbecco’s modified Eagle’s
medium (DMEM, 11965; Solarbio, Beijing, China) treated with 10% fetal bovine serum (FBS,
11011-8611; Solarbio) at 37 ◦C in a 5% CO2 environment.

The cell viability was measured using a Cell Counting Kit-8 (CCK-8, K1018; Apexbio,
Houston, TX, USA). HT-29, Caco-2, and HCT 116 cells were plated in 96-well plates
(1 × 104 cells/well, 3599; Corning, Corning, NY, USA) with DMEM, and then treated for 24,
48, 72, and 96 h with DCA at different doses (5, 10, 20, or 40 µM) and bacterial supernatants
at various concentrations (5%, 10%, or 20%). Following the treatment, 10 µL of CCK-8 test
solution was mixed into every well, and the cells were preserved at 37 ◦C for an additional
2 h. The absorbance of each well was detected at a wavelength of 450 nm.

Transwell plates were employed to quantify cell migration and invasion (3422; Corn-
ing). The bottom portion of the chamber was loaded with 600 µL of 10% FBS-containing
DMEM. The top chamber filter was precoated with 50 µL of Matrigel and plated at
1 × 105 cells (HCT116 and Caco-2, separately) per top chamber. The experimental co-
hort’s top chamber media included 200 µL of DCA solution (5 µM) produced with DMEM
without FBS, whereas the control cohort contained 200 µL of DMEM without FBS. At
37 ◦C, cells were cultivated for 2 days. The non-migrating cells on the superficial top part
of the transwell chamber were removed after being cultured and rinsed with new PBS.
Underneath the membrane, invading cells were preserved in 4% paraformaldehyde and
subjected to 1% crystal violet stain. An inverted microscope was employed for measuring
cell count in three randomly chosen sections of stabilized cells. Every trial was repeated
three times.

2.5. Real-Time PCR Analysis (qPCR)

Tissue specimens were kept in liquid nitrogen after being frozen. TRIzol was employed
to obtain total RNA from frozen cells and tissues using the conventional phenol/chloroform
extraction method. cDNA was produced using a reverse transcription kit and 2 µg of total
RNA (218061; Dogesce, Beijing, China). The primer sequences for RT-PCR are summa-
rized in Table S1. The relative gene quantification was determined by normalization to
18S mRNA.

2.6. Western Blotting Analysis

Specimen and cells were homogenized in protease and phosphatase inhibitor-containing
RIPA buffer. The protein extracted was electrophoretically isolated using sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 218061 and then transferred to a
PVDF membrane. The membranes were treated with antibodies against FXR (sc-25309;
Santa, Dallas, TX, USA) and GAPDH (A10471; ABclonal, Woburn, MA, USA) overnight
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at 4 ◦C, and then preserved 1 h in a room atmosphere with HRP-conjugated anti-rabbit
IgG (AS014; ABclonal). The bands were recognized employing Thermo Fisher Scientific’s
SuperSignal West Dura Extended Duration Substrate utilizing the ChemiDoc XRS+ System
(Bio-Rad, Berkeley, CA, USA).

2.7. Ex Vivo Coculture of Tissues

Cancerous and noncancerous tissues were homogenized by standing mortar and
pestle in sterile PBS using aseptic techniques. Samples were inoculated (1:200) in the BHI
medium in anaerobic conditions and incubated at 37 ◦C. After 48 h, 0.25 mL of saturated
culture was transferred into 50 mL of fresh BHI medium, and sterile CA was added with
a final concentration of 10 µM. The culture was incubated for 24 h and then prepared for
DCA detection.

2.8. Statistical Analysis and Data Visualization

For 16S rRNA gene measures and alpha diversity plots [37], we used Kruskal–Wallis
one-way analysis of variance (ANOVA), Dunn’s testing for pairwise comparisons, and the
Bonferroni–Holm technique for p-value correction. Permutational multivariate analysis
of variance (PERMANOVA), followed by Bonferroni–Holm p-value correction, was em-
ployed to determine the substantial differences between groups of 16S rRNA sequences
and BAs detection shown in PCoA scatterplots. Using the LEfSe technique [38], differential
abundance studies were conducted to identify the tissue-specific taxonomic characteristics
that best distinguished malignant from healthy tissues. Briefly, a nonparametric factorial
Kruskal–Wallis sum-rank test was initially used to identify taxa exhibiting significant differ-
ences in abundance. Subsequently, the biological relevance was explored using a series of
pairwise Wilcoxon rank-sum tests among subclasses. In addition, linear discriminant anal-
ysis was employed to calculate the impact size of each differentially abundant feature [39].
A Mann–Whitney U test or Student’s t-test was utilized to analyze the variables of the two
sample cohorts. Multiple cohort comparisons were conducted using the Kruskal–Wallis
test or ANOVA. The differences in cell growth curves were uncovered using a two-way
analysis of variance. The statistical significance threshold was established at p < 0.05. Three
separate experiments provided data presented as the mean ± standard deviation (SD).
GraphPad Prism, version 7.0 (GraphPad Software, San Diego, CA, USA) or SPSS, version
18 (SPSS Inc., Chicago, IL, USA) was employed for all analyses [40].

3. Results
3.1. Characterization of Enrolled Subjects

Thirty-three subjects were recruited in our study, and their characteristics are shown
in Table 1. Twenty male and 13 female individuals were included, with an average age
of 68.0 ± 14.6 years. Eight patients had tumors in the right colon, 18 had tumors in the
left colon, and seven had tumors in the rectum. Two participants had a family history of
colorectal malignancy. Both cancerous and noncancerous tissues were obtained from each
patient. Cancerous tissue was defined as the cancerous group (CG), and noncancerous
tissue was defined as the noncancerous group (NCG) in the subsequent analysis.

Table 1. Clinical characteristics of the subjects.

N = 33

Sex (male/female) 20/13
Age (years) 68.0 ± 14.6

BMI (kg/m2) 24.3 ± 4.2
Smoking history 9
Drinking history 15

CRC family history 2
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Table 1. Cont.

N = 33

Tumor site (right colon/left colon/rectum) 8/18/7
Complication

Appendicectomy 5
Hypertension 16

DM 5
BMI, body mass index; CRC, colorectal cancer; DM, diabetes mellitus.

3.2. Mucosal Microbiota Dysbiosis Is Associated with CRC

To compare the construction of the mucosal microbiota community between the CG
and NCG, we initially carried out 16S rRNA gene profiling. Regarding OTU level, alpha
diversity and richness of bacterium indices showed no significant variance in the CG
compared with NCG. In contrast, beta diversity analysis showed separate clusters for the
CG and NCG (Figure 1A–C and Figure S1).
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The relative composition of bacteria in the CG and NCG at the family and species
levels is shown in Figure 1D,F. The α-diversity analysis indicated by the Shannon index was
not substantially different in the two cohorts at the family and species levels (Supplemen-
tary Figure S2A,B). The β-diversity indicated by PCoA showed a considerable difference
between the mucosal microbiota compositions of CG and NCG (p = 0.02) (Figure 1E,G).
At the family level, the three highest proportions were Lachnospiraceae, Coriobacteriaceae,
and Bacteroidaceae. At the species level, the three species with the largest proportions were
Phocaeicola vulgatus, Collinsella aerofaciens, and Escherichia fergusonii.

Significant changes in bacteria were found by LEfSe differential analysis, which is
shown in the LEfSe bar cladogram and graph (Figure 2A,B). The CG had an increased abun-
dance of Bacteroidaceae, Bacteroides, Curtobacterium citreum, Curtobacterium, Microbacteriaceae,
Epsilonproteobacteria, Campylobacter, Campylobacterales, Campylobacteraceae, and Neisseria sub-
flava. Interestingly, Epsilonproteobacteria (class), Campylobacterales (order), Campylobacteraceae
(family), Campylobacter (genus), Microbacteriaceae (family), Curtobacterium (genus), Curto-
bacterium citreum (species), Bacteroidaceae (family), and Bacteroides (genus) belonged to the
same lineage, as shown in Figure 2A. The abundance of Bacillaceae, Lachnospiraceae, Mediter-
raneibacter, Ruminococcus gnavus, and Pseudomonas parafulva was significantly enriched in
the NCG. Meanwhile, it was found that Lachnospiraceae (family), Mediterraneibacter (genus),
and Ruminococcus gnavus (species) belonged to the same lineage.
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3.3. The Content of BAs Changed Significantly in CRC

BAs, particularly secondary BAs (SBAs) composed of BAs generated by the liver dur-
ing bacterial metabolism, influence the inflammation process of the intestine and carcino-
genesis, according to investigations in people and animals [41]. Therefore, we determined
the concentration of BAs in the tissues using LC–MS. While the concentrations of CA and
CDCA decreased in the CG, DCA increased significantly in the CG as SBAs in absolute and
relative proportions (Figure 3A,B). PCoA analysis revealed a substantial difference between
the BA makeup of both groups (Figure 3C). VIP testing revealed considerable variations
between the two cohorts in the BA structure of intestinal tissue, with DCA showing the
most evident modifications (Figure 3D). Spearman’s rank correlation between all bacterial
species and mucosal BAs was evaluated using the respective data acquired from the CG
cohorts. A correlation heatmap showed that the levels of numerous mucosal BAs were
connected with mucosal bacteria and that the degree of DCA was strongly correlated with
lipoteichoic acid, Roseburia inulinivorans, and Bifidobacterium pseudocatenulatum (Figure 3E).
Thus, Metabolites in the gut, particularly mucosal BAs, were significantly impacted by the
mucosal microbiota.
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Figure 3. (A) Absolute levels of BAs in tissues between the cancerous group (CG) and noncancerous
group (NCG); ** p < 0.01, and *** p < 0.001 based on one−way ANOVA with Tukey’s correction
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3.4. DCA Can Be Produced by Bacteria in Cancerous Tissues

We further conducted ex vivo coculture of the samples from the CG and the NCG,
and we tested the CA degradation ability and DCA production ability of the two groups.
The results showed that the CG bacteria indeed had a stronger DCA production ability
(Figure 4A,B). This indicated that DCA-producing bacteria were enriched in the CG. Data
are the means ± SEM. Two-tailed Student’s t-test was applied.
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capacity (A) and DCA producing capacity (B) in BHI medium incubated with CA (10 µM). Data are
the means ± SEM; * p < 0.05, and *** p < 0.001 based on two-tailed Student’s t-test.

3.5. DCA Accelerated the Overgrowth and Migration of CRC Cells

To better comprehend the influence of DCA on malignant cells, we analyzed its
influence on the overgrowth and invasion of DCA. Caco-2, HCT 116, and HT-29 cells
were treated with different doses of DCA (0, 5, 10, 20, and 40 µM) over a predetermined
period (0 h, 24 h, 48 h, 3 days, and 4 days). The CCK-8 test demonstrated that modest
doses of DCA (<10 µM) stimulated cell overgrowth 24 h after injection. Because of DCA
toxicity, excessive quantities of DCA may cause widespread cell necrosis (Figure 5A–C). In
addition, the transwell migrating experiment demonstrated that HCT 116 and Caco-2 cells
supplemented with 5 µM DCA migrated at a greater rate, indicating that DCA increased
malignant cell migration (Figure 6A,B).
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3.6. DCA Inhibits FXR Expression in CRC Cells

FXR is a transcription factor intimately related to metabolic balance in the testicular–
liver axis. FXR action is regulated by BAs, which are natural FXR ligands, and modulated by
hormonal and nutritional cues [42]. The FXR target genes fibroblast growth factor 19 (Fgf19)
and its short heterodimer partner (Shp) are well known [43,44]. The mRNA levels of Fxr,
Fgf19, and Shp were quantified by qPCR. The results demonstrated that administering DCA
(5 µM for 24 h) decreased the Fxr mRNA levels and its downstream genes (Figure 7A,B).
Furthermore, the protein expression of FXR was considerably decreased in HCT 116 and
Caco-2 cells supplemented with DCA (Figure 7C), suggesting that DCA suppresses the
expression of FXR.
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Figure 7. (A,B) Fxr, Fgf19, and Shp mRNA expression in HCT 116 and Caco-2 cells supplemented
with or without DCA (5 µM, 24 h); * p < 0.05, and *** p < 0.001 according to one-way ANOVA with
Tukey’s correction coefficient. (C) Western blotting bands for FXR expression in HCT 116 and Caco-2
cells supplemented with or without DCA (5 µM, 24 h). (D) Fxr, Fgf19, and Shp mRNA expression in
tissues between the cancerous group (CG) and noncancerous group (NCG); * p < 0.05 and *** p < 0.001
according to one-way ANOVA with Tukey’s correction coefficient. (E) Western blotting bands for
FXR expression in tissues between CG and NCG. (F) Data in TCGA database revealed the expression
of FXR in CG and NCG tissue samples; * p < 0.05 and *** p < 0.001 based on two-tailed Student’s
t-test.
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3.7. FXR Is Expressed at a Low Level in Cancerous Tissues

To investigate if FXR is related to clinical CRC, qPCR and Western blotting tests were
performed on CRC and matching healthy tissue to evaluate the expression of FXR. The
findings revealed that malignant tissues expressed FXR at lower levels than nonmalignant
tissues (Figure 7D,E). Furthermore, analysis of colon malignant tumor data from the TCGA
database revealed a substantial association between low FXR expression and colon cancer
(Figure 7F).

4. Discussion

A few studies have investigated the mucosal microbiota [14,16,17]. Compared with
fecal microbiota, the mucosal microbiota can better represent the microenvironment of
cancerous and noncancerous tissues and is likely to have a more direct function in the
pathogenesis of CRC than fecal bacteria [16,45].

According to our data, the abundances of Bacteroidaceae, Bacteroides, Epsilonproteobacte-
ria, Campylobacterales, Campylobacteraceae, Campylobacter, Microbacteriaceae, Curtobacterium,
Curtobacterium citreum, and Neisseria subflava, which could be divided into four lineages,
were higher in CG than in NCG. Similar to our results, Qin et al. [46] discovered that Bac-
teroides were more profuse in the gut microbiota of malignant tissues. Sears et al. [47] also
showed that Bacteroides comprise the bulk of CRC biofilms. Bacteroides have also been
associated with the metabolism of SBAs, including debinding, oxidation, and esterification
processes [29]. Recently, a randomized controlled trial in a population showed that the
alteration in DCA was positively related to the proportional abundance of Bacteroides,
which may be associated with its bile salt hydrolase activity [48,49]. Campylobacter was
enriched in cancerous tissues, and it was found to be the passenger bacteria in CRC [50].
He et al. [51] reported that Campylobacter jejuni could produce cytolethal distending toxin
subunit B, which has DNAse action and DNA double-strand breaks that enhance CRC
development. Moreover, a new study [52] discovered that patients with a high preva-
lence of Campylobacter exhibited a Signature 3 mutation, which is related to the failure
of DNA double-strand break times by homologous recombination, recommending that
Campylobacter might enhance CRC by provoking DNA double-strand breaks.

BAs are important metabolites of the gut microbiota. Disorganized BA–microbiota
crosstalk promotes CRC [53]. Gut microbiota, enriched in cancerous tissues may be involved
in BA metabolism. We measured BAs in cancerous and noncancerous tissues and found
that DCA was enriched in cancerous tissues, whereas CA and CDCA were exhausted. Ex
vivo coculture showed that the mucosal microbiota in CG indeed had a stronger DCA
production ability, indicating that DCA-producing bacteria were enriched in the CG. DCA,
an SBA, is of particular concern because its hydrophobicity promotes intestinal permeability
and genotoxic effects in CRC [54]. Similar to our results, DCA was substantially elevated
in individuals with multiple polypoid adenomas [19]. CA and CDCA are two important
primary BAs that can be converted into SBAs through deconjugation and 7-dehydroxylation
of the gut microbiota. In particular, SBAs and DCA have long been postulated to be tumor
promoters in the colon. Consistent with our cellular experiments, DCA has been shown to
have a hyperproliferative effect and promote the migration of various CRC cell lines [55].
Recent research has revealed that DCA promotes tumor cell overgrowth, induces epithelial–
mesenchymal transition, increases vasculogenic mimicry creation, and activates vascular
endothelial growth factor receptor 2, leading to colorectal carcinogenesis [56]. In addition,
DCA triggers CRC generated by controlling M3R and Wnt/β-catenin signaling [57].

FXR, an important BAs nuclear receptor, represents a location where environmental
and genetic risk factors for CRC meet [42]. BAs may bind to FXR to control BA metabolism
and cell growth [44]. In our investigation, FXR expression was substantially lower in
malignant tissues compared to healthy tissues. Human and mouse intestinal cancers
and the surrounding healthy mucosa have revealed that FXR expression is drastically
reduced during the shift from healthy to the neoplastically altered epithelium, as suggested
by earlier research [58]. Furthermore, FXR expression is negatively linked with cancer
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severity and poor prognosis [44,59]. It has been observed that inhibiting intestinal FXR
with DCA may stimulate overgrowth and DNA injury in Lgr5+ cells, which can enhance
the generation of colorectal cancer [44]. Furthermore, recent research has shown that FXR
stimulation reduces CRC growth and invasion [60]. In our study, we found that DCA binds
to FXR and inhibits FXR expression, which promotes the development of CRC.

To the best of our knowledge, this is the first investigation to compare mucosal mi-
crobiota and mucosal BAs in cancerous and paired noncancerous tissue samples. We
found differences between cancerous and noncancerous mucosal microbiota in CRC pa-
tients, with cancerous tissues being enriched in bacteria that metabolize SBAs or are
DNA-damaging. Conversely, depleted bacteria are mostly “beneficial” microbiota. Ac-
cording to our data, DCA, which promotes CRC, is increased in cancerous tissues. In
addition, DCA binds to FXR and inhibits its expression; low FXR expression is associated
with colorectal carcinogenesis.

Our findings identified the mucosal microbiota, DCA, and FXR as possible targets
for the therapeutic approaches and prevention of CRC. In conclusion, the differences in
mucosal microbiota increased DCA and lowered the FXR expression in cancerous tissues
versus adjacent normal samples. These results may help to create therapeutic approaches
to prevent CRC by altering the mucosal microbiota, DCA, or FXR.
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