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Abstract: Postbiotic feed additives may aid foodborne pathogen reduction during poultry rearing.
The study objective was to evaluate a postbiotic additive in parallel to an industry control diet
and the subsequent associated burden of Salmonella enterica on a single, commercial broiler farm in
Honduras. Twelve houses were matched and assigned the standard diet (CON) or standard diet
plus postbiotic (SCFP). New litter was placed in each house and retained across flock cycles with
sampling prior to each chick placement and three consecutive rearing cycles. At ~33–34 days, 25 ceca
were collected on-farm from each house, treatment, and cycle. Salmonella prevalence in litter for CON
(30.6%) and SCFP (27.8%) were equivalent; however, Salmonella load within positive samples was
lower (p = 0.04) for SCFP (3.81 log10 MPN/swab) compared to CON (5.53 log10 MPN/swab). Cecal
prevalence of Salmonella was lower (p = 0.0006) in broilers fed SCFP (3.4%) compared to CON (12.2%).
Salmonella load within positive ceca were numerically reduced (p = 0.121) by 1.45 log10 MPN/g for
SCFP (2.41 log10 MPN/g) over CON (3.86 log10 MPN/g). Estimated burden was lower (p = 0.003)
for SCFP flocks (3.80 log10 MPN) compared to CON (7.31 log10 MPN). These data demonstrate the
preharvest intervention potential of postbiotics to reduce Salmonella enterica in broiler chickens.

Keywords: Salmonella; postbiotic; poultry; broiler; ceca; preharvest; feed additive; food safety;
intervention; Honduras

1. Introduction

Countries with robust public health surveillance, reporting, and industry regulatory
oversight routinely monitor for agents associated with foodborne illness, especially serovars
of Salmonella enterica. In the United States, foodborne disease associated with 31 known
pathogens results in an estimated 9.4 million illnesses annually and, of those, non-typhoidal
Salmonella are estimated to cause approximately 1.2 million illnesses, 23,000 hospitalizations,
and 450 deaths [1]. In a report from the Interagency Food Safety Analytics Collaboration,
more than 75% of illnesses reported from 811 outbreaks between 1998 and 2017 were linked
to Salmonella and were attributable to seven food categories of which chicken products
(14.0%) and eggs (7.9%) together constituted the primary source of over 20% of Salmonella
outbreaks [2]. In contrast, many developing countries lack robust surveillance programs
and public health data on the domestic incidence and attribution of foodborne salmonellosis.
Nonetheless, the association of poultry products with Salmonella and its corresponding
public health threat are globally recognized and, therefore, necessitate Salmonella control in
an increasingly globalized import and export market [3–5].

As developing countries seek to increase poultry production capacity to meet increas-
ing domestic consumption trends, additional opportunities to increase export volumes are
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often met with more stringent regulatory and food safety-based compliance specifications.
For instance, while Honduran raw poultry products have yet to be exported to the United
States due to endemic Newcastle disease concerns, raw beef products are approved for
export. Establishments producing these products are regulated by SENASA, the federal
national service of health and food safety. Export approval is based on demonstrated
equivalence of SENASA-specified regulations and food safety process controls, including
microbiological testing, to criteria established by the United States Department of Agri-
culture’s Food Safety and Inspection Service, who conducts the Foreign Supplier Audits
and Reports [6]. SENASA has recently established Salmonella performance standards for
livestock and poultry. As in the United States, Honduran poultry establishments have
inspectors who collect chicken carcass rinse samples post-chill, utilizing the reference
microbiological methods specified in the FSIS’s Microbiology Laboratory Guidebook 4.11
at the Laboratorio Nacional de Residuos (LANAR) [7]. To remain in compliance, weekly
samplings may result in no more than five qualitatively positive Salmonella detections
within a moving 51-week window [6]. To meet these criteria, robust process controls and
post-harvest microbial interventions are commonly deployed. As may be evidenced from
the establishment of compliance reports in the United States, and a largely unchanging
public health burden of salmonellosis attributed to poultry products, postharvest microbial
interventions are not fully efficacious despite many years of technology use, development,
and regulatory oversight [8,9].

In recent years, qualitative performance standards have come under scrutiny in favor
of a more quantitative-based approach to pathogen testing and associated product safety
risk [10]. The FSIS’s recent Roadmap to Reducing Salmonella includes potential assessment
or evaluation of semiquantitative- or quantitative-based methods to inform Salmonella
risk assessments [11]. Recent risk modeling studies for Salmonella in ground turkey have
strengthened the argument that contamination load, and not prevalence alone, may be
a more impactful metric to utilize [12,13]. Ultimately, this potential shift towards a load-
based approach could impact countries seeking export to the United States and other
countries. As such, a continual effort to identify technologies capable of further reducing
Salmonella risk are also increasingly focused on live production. Interventions and products
reducing the prevalence and loads of Salmonella in live animals during rearing and at
harvest are generally assumed to enhance the efficacy of postharvest interventions utilized
in downstream processing plants.

In primary production, chick source, biosecurity, farm inputs, and management prac-
tices, including sanitation practices, are fundamental to managing Salmonella and general
pathogen risk [14–16]. In poultry, vaccination with live, attenuated strains of Salmonella are
commonplace and continue to evolve with variable efficacy [17,18]. While vaccination may
confer early protection against wild type Salmonella colonization, durability of protection
may decrease over time, requiring booster administration [18–20]. Feed additive solutions
that can be continually coadministered throughout the life of the animal while promoting
gut health, performance, and protection against pathogen colonization are therefore at-
tractive. Such technologies promote health, performance, immunity, and pathogen control
through a variety of mechanisms generally impacting the gastrointestinal tract and im-
mune system [21–25]. The most commonly used products are often classified as prebiotics,
probiotics, synbiotics, or postbiotics, based upon composition and functionality, though
these definitions continue to evolve [26–28].

Original XPC™ (Diamond V, Cedar Rapids, IA, USA) is a postbiotic product consisting
of functional metabolites produced as a proprietary Saccharomyces cerevisiae fermentation
product (SCFP). As a newer category of products, postbiotics are generally considered
preparations consisting of the bioactive compounds produced in controlled fermentation
processes by specific microorganisms that ultimately confer a health benefit to the target
host [29,30]. SCFP has demonstrated improvements in a variety of gut health, immunity,
and production performance measures in commercial poultry, including lower corticos-
terone levels, heterophil/lymphocyte ratios, and physical asymmetry during stress events,
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reduced intestinal lesions and improved immune function during coccidia challenge, im-
proved feed efficiency, growth, meat yield, and egg production, as well as foodborne
pathogen reduction, including Salmonella [31–39]. In vitro gut fermentation models have
associated SCFP with modulation of the microflora composition in a manner to synergis-
tically reduce Salmonella Typhimurium and Campylobacter jejuni concentrations [40–42].
The purpose of this study was to evaluate dietary inclusion of SCFP, under real-world
production conditions, on Salmonella enterica colonization, load, and overall burden in the
litter and ceca of commercial broilers on a Honduran farm.

2. Materials and Methods
2.1. Experimental Design

A single commercial broiler farm was selected by the collaborating producer for
inclusion into the study. The farm consisted of 12 open-sided houses with an average
placement population of ~9400 birds per house. Houses were matched by feeder and
drinker system type and insulation parameters to assign six houses each to two dietary
treatments consisting of the standard industry diet (CON) or the standard industry diet
supplemented with 1.25 kg/MT of postbiotic (SCFP). Prior to placement of the first flock,
each house was fully cleaned and sanitized according to the company’s standard operating
procedures, and new wood shavings or rice hull litter sourced and placed into each house
with litter sampling prior to chick placement for the first rearing cycle. Litter was reutilized
without amendment for subsequent rearing cycles except for top dressing in the brooding
area at chick placements, wherein the same litter type was utilized with the exception
of one house after the second rearing cycle. For each cycle, day of hatch Cobb 500 slow
or Ross 308 slow broiler chicks sourced from the company’s suppliers were placed into
each house and exposed to dietary treatments from Day 0 to the targeted market age of
approximately 33–34 days. Sampling and laboratory personnel were blinded to treatment.
Three consecutive flock cycles were evaluated in the study with houses remaining in the
respective assigned treatment cohort.

2.2. Litter Sampling

Environmental sampling of the litter was conducted on four occasions to include
sampling of the new litter prior to placement of the first flock cycle and at harvest of each
cycle prior to placement of the subsequent flock. On each occasion and within each house,
four litter swabs were collected. Briefly, for each house, new 1/2” × 9” nap paint rollers
(Bates Choice Pro, Lafayette, LA, USA) were prehydrated with 200 mL of Buffered Peptone
Water (BPW) (Symmag Suministros Industriales, San Pedro Sula, Honduras) and the roller
device handle (Rubbermaid, Atlanta, GA, USA) utilized to furrow into the litter and roll
the length of each house in a U-pattern in four replicates. Immediately upon sampling,
each roller was placed into an appropriately labeled sterile sample bag (Twirl’Em®, LabPlas
Inc., Montreal, QC, Canada) and placed on ice in a cooler for transport to the laboratory
for analysis.

2.3. Ceca Sampling

For each flock and house within cycle at the target market age, 25 birds were randomly
caught and removed from the house for sampling. Birds were humanely euthanized
by cervical dislocation, dipped in a 400 ppm quaternary ammonium solution (Edwards
Councilor, Virginia Beach, VA, USA), and prepared for necropsy. One cecal pouch was
aseptically removed from each bird and placed into an appropriately labeled sterile sample
bag and immediately placed on ice in a cooler for transport to the laboratory for analysis.

2.4. Salmonella Analysis

All samples were received into the laboratory and processed within 12–24 h of col-
lection. Nap roller litter samples were prepared for analysis by the addition of 200 mL
of BPW with subsequent hand agitation and rinsing for approximately 1–2 min, creating
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the primary sample. Each ceca sample was weighed, lacerated to expose contents, and
40 mL of BPW added to the tissue and contents with agitation for 1 min (Vortex Genie 2,
USA Scientific, Ocala, FL, USA) to create a primary sample slurry. For both matrices,
culture-based qualitative and quantitative Salmonella analyses were conducted in parallel.
For detection of Salmonella, a 1 mL aliquot from each primary sample was removed and
combined with 9 mL of BPW and incubated at 35◦ ± 2 ◦C for 18–24 h. After incubation,
0.5 ± 0.05 mL of the BPW enrichments were transferred into 10 mL Tetrathionate broth
(TT) and 0.1 ± 0.02 mL into 10 mL Rappaport–Vassiliadis (RV) broth with incubation at
42◦± 0.5 ◦C for 22–24 h. Tetrathionate and RV broths were then sampled with a 10 µL
sterile loop and streak-plated for isolation of Salmonella on xylose lysine desoxycholate
(XLD) and Rambach agar plates with incubation at 35◦ ± 2 ◦C for 18–24 h. Morphologically
typical colonies were then confirmed as Salmonella enterica by colony-based Salmonella PCR
(Biocontrol GDS, MilliporeSigma, Burlington, VT, USA) and an immunochromatographic
lateral flow (Singlepath® Salmonella, MilliporeSigma, Burlington, VT, USA). In parallel,
three 1 mL aliquots of primary slurry were placed into the first three wells of a 96-well
plasma tube plate and serially diluted in BPW to achieve a seven-dilution miniaturized
most probable number assay (mMPN) according to Pavic et al. [43]. The sample mMPN
positive well patterns were input into an MPN calculator to estimate MPN/mL of the
primary sample which was then back-calculated to obtain MPN/swab and weight-adjusted
MPN/g of ceca.

2.5. Statistical Analysis

Paired analytical outcomes reported by the laboratory for each sample were input into
a spreadsheet by study variables including sample type, flock cycle, treatment code, and
house. Data were analyzed in SAS Version 9.4 (SAS Institute, Cary, NC, USA) and R Version
4.1.0 (R Core Team, Vienna, Austria) with house as the experimental unit. The binomial
response variable for the outcome of Salmonella prevalence (% positive) was determined for
each individual sample when confirmation of a typical isolate was obtained from either
the detection or mMPN assay or both. Litter swab Salmonella prevalence and load were
modeled using a generalized linear mixed model and linear mixed model that were fit using
the packages “lme4” [44] and “lmerTest” [45]. For prevalence, a binomial mixed-effects
logistic regression was fit with litter type, treatment, their interaction, and a covariate for
baseline prevalence at preplacement as fixed effects, and random effects for rearing cycle
and pen. Rearing cycle was fit as a random effect because of the need to include additional
covariates; as a result, the regression coefficients represent the average of the cycle-specific
estimates. The interaction term between litter type and treatment was removed if p > 0.05.
For litter swab Salmonella load, a linear mixed-effects model was fit with the same fixed
and random effects, except the baseline prevalence covariate was replaced with a covariate
for the Salmonella load measured at preplacement. Least-square/marginal means were
estimated using the package “emmeans” [46]. Cecal prevalence data were modeled in
PROC GLIMMIX using events/trials at the house level with fixed effects of treatment,
cycle, and the interaction. Raw MPN/mL estimates were back-calculated by dilution
volume to obtain MPN/swab and ceca adjusted by sample weight to obtain MPN/g prior
to log10 transformation. Estimates of total Salmonella burden were calculated utilizing the
cecal prevalence and load values obtained for each individual flock based on total birds at
harvest. Cecal quantitative estimates were modeled in PROC MIXED with fixed effects of
treatment, cycle, and the interaction. LS means estimates with pairwise differences for fixed
effect of treatment were considered significant at p < 0.05. An observational and statistical
outlier was removed from the SCFP cohort’s ceca samples in cycle 3 because of a sampling
protocol deviation wherein the subsample of birds was removed and held overnight in
a coop prior to sampling, which did not occur for any other house or cycle in the study.
This was removed because this sampling deviation, in combination with feed and water
withdrawal, may increase Salmonella in the sampled birds and thus be confounding to the
estimate for the specific experimental unit [47–49].
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3. Results

Salmonella litter prevalence across cycles of the trial were not different (p = 0.09) be-
tween CON (30.6%; adjusted 30.7%) or SCFP (27.8%; adjusted 7.5%), despite a lower
observed and estimated prevalence for SCFP (Figure 1A). Preplacement litter swabs indi-
cated variability of Salmonella presence in the fresh litter of some houses, and means were
higher for those within the SCFP cohort (33.3%) as compared to CON (25.0%) (Table 1).
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Table 1. Observed prevalence and load of Salmonella enterica in the litter of broiler houses freshly
sourced and after each of three consecutive rearing cycles of birds fed either CON or SCFP diets.

Variable Treatment Preplacement Cycle 1 Cycle 2 Cycle 3

Salmonella Prevalence
(%; no. positive/total no. samples)

CON 25.0 (6/24) 12.5 (3/24) 50.0 (12/24) 33.3 (8/24)
SCFP 33.3 (8/24) 20.8 (5/24) 20.8 (5/24) 41.7 (10/24)

a Salmonella Concentration
(log10 MPN/swab of culture-positive samples)

CON 3.35 (0.66) 5.77 (1.85) 5.47 (1.48) 4.98 (0.94)
SCFP 6.17 (0.99) 3.01 (0.32) 3.54 (0.45) 4.85 (2.56)

a Observed MPN/swab mean within-cycle load and standard deviation.

Cycle to cycle, observed litter prevalence was quite variable, with SCFP litter preva-
lence of 20.8%, 20.8%, and 41.7% for cycles 1, 2, and 3 and CON prevalence of 12.5%, 50.0%,
and 33.3%, respectively (Table 1).

The difference in preplacement prevalence and litter types resulted in markedly
different observed and adjusted mean estimates after controlling for their unbalanced
distribution across treatment groups. Preplacement, mean Salmonella load in the culture-
positive fresh litter samples was also observed to be higher in the houses assigned to
the SCFP cohort (6.17 log10 MPN/swab) when compared to houses in the CON cohort
(3.35 log10 MPN/swab), indicating that incoming litter or house contamination with Salmonella
was not equivalent between cohorts (Table 1). Mean litter load across cycles in culture-positive
houses after adjustment for litter type and preplacement load was different (p = 0.04) between
CON (5.34 log10 MPN/swab; adjusted 5.50 log10 MPN/swab) and SCFP (4.07 log10 MPN/swab;
adjusted 3.81 log10 MPN/swab), with Salmonella load in SCFP houses being lower by
1.69 log10 MPN/swab (95% CI: 0.107 to 3.26; Figure 1B). After each successive rearing cy-
cle, observed mean litter loads in the SCFP cohort houses were 3.01, 3.54, and 4.85 log10
MPN/swab compared to CON houses at 5.77, 5.47, and 4.98 log10 MPN/swab, respectively
(Table 1).
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Prevalence of Salmonella across all cycles within the ceca of birds from the SCFP cohort
were significantly lower (3.4%; 95% CI: 1.8–6.4%) as compared to CON (12.2%; 95% CI:
9.2–15.9%), reflecting a 72.1% reduction (Figure 2A).
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Within flock cycles, prevalence of Salmonella remained lower (p < 0.05) in SCFP cohort
houses at 1.3%, 12.0%, and 2.4% as compared to CON houses at 7.3%, 22.0%, and 10.7% for
cycles 1, 2, and 3, respectively (Tables 2 and 3). Culture-positive Salmonella load for SCFP
(2.41 log10 MPN/g; 95% CI: 0.81–4.01) was numerically (1.45 log10 MPN/g) lower (p = 0.121)
than CON (3.86 log10 MPN/g; 95% CI: 2.91–4.81) (Figure 2B). Within flock cycles, SCFP
cecal loads were 1.67, 1.95, and 3.62 log10 MPN/g as compared to CON loads at 2.98, 4.72,
and 3.88 log10 MPN/g, reflecting no difference in cycle 1 (p = 0.53), a reduction (p = 0.016) of
2.77 for cycle 2, and no difference (p = 0.853) in cycle 3 (Table 3).

Table 2. Observed prevalence and load of Salmonella enterica in the ceca of broilers at market age
fed either CON or SCFP diets by flock-rearing cycle and estimated treatment level within-cycle
total burden.

Flock-Rearing Cycle

Variable Treatment Cycle 1 Cycle 2 Cycle 3

Salmonella Prevalence
(%; no. positive/total no. samples)

CON 7.3 (11/150) 22.0 (33/150) 10.7 (16/150)
SCFP 1.3 (2/150) 12.0 (18/150) 2.4 (3/125)

a Salmonella Concentration
(log10 MPN/g of culture-positive samples)

CON 4.12 (2.58) 5.44 (1.84) 4.33 (1.94)
SCFP 1.67 (0.04) 2.26 (1.34) 3.62 (1.33)

a Observed MPN/g mean within-cycle load and standard deviation.

Table 3. LS means estimates for prevalence and load of Salmonella enterica in the ceca of broilers
at market age fed either CON or SCFP diets by flock-rearing cycle and estimated treatment level
within-cycle total burden.

Flock-Rearing Cycle

Variable Treatment Cycle 1 Cycle 2 Cycle 3

* Salmonella Prevalence
(%; no. positive/total no. samples)

CON 7.3 ± 2.1 a (11/150) 22.0 ± 3.4 a (33/150) 10.7 ± 2.5 a (16/150)
SCFP 1.3 ± 0.9 b (2/150) 12.0 ± 2.7 b (18/150) 2.4 ± 1.4 b (3/125)

* Salmonella Cecal Concentration
(log10 MPN/g of culture-positive samples)

CON 2.98 ± 0.91 4.72 ± 0.71 a 3.88 ± 0.74
SCFP 1.67 ± 1.82 1.95 ± 0.77 b 3.62 ± 1.18

Salmonella Est. Cecal Burden to Plant
(log10 MPN)

CON 4.59 ± 1.28 9.52 ± 1.28 7.81 ± 1.28
SCFP 0.92 ± 1.28 6.24 ±1.28 4.23 ± 1.40

Treatment LS mean estimates and SEM for within-flock cycle. * Superscripts a,b denote significant treatment
differences within-cycle at p < 0.05.
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Estimates of total Salmonella burden going to harvest were 7.31 log10 MPN (95% CI:
5.80–8.82) and 3.80 log10 MPN (95% CI: 2.23–5.36) for CON and SCFP cohorts, respectively,
a more than 1000-fold reduction (p = 0.0026) in cecal Salmonella total load associated with
SCFP inclusion into the dietary ration (Figures 3 and 4).
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4. Discussion

Salmonella enterica are foodborne pathogens of significant public health risk globally in
broiler meat and other poultry products. Feed-additive technologies that promote animal
health and production while additionally conferring a preharvest food safety benefit
may ultimately aid producers in their efforts to reduce pathogen risk when utilized in
conjunction with a comprehensive food safety management plan. In this study conducted
on a single Honduran commercial broiler farm, data support that broiler flocks fed SCFP
had significantly reduced cecal prevalence and reduced loads of Salmonella when compared
to same-farm flocks fed a typical industry diet without SCFP (CON). Additionally, these
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data present Salmonella prevalence information from within a representative commercial
broiler operation in Honduras. To our knowledge, no such recent reports are available in
the scientific literature.

In broiler and other poultry production, litter management practices, quality, and
microbial composition are significant factors associated with pathogen status in flocks,
particularly in regions where reuse may be a common practice. Litter microbiome anal-
yses have demonstrated associations between the physicochemical characteristics of the
litter, the abundance of specific taxa, the associated ability to isolate foodborne pathogens
such as Salmonella and Campylobacter, and the litter influence on gut colonization [50–52].
Specifically, for Salmonella, Machado and Hagerman [53] reported decreasing odds for the
probability of detecting Salmonella in litter prior to harvest with successive litter reuses
up to six rearing cycles, after which, however, the odds began to increase. Conversely,
in another study, Salmonella detections in recycled litter continued to decrease with up
to 14 reuse cycles [54]. Other factors, such as house construction, pad composition, soil
type, and litter type may also influence the ability of Salmonella to persist in litter [55]. The
microbial ecology of litter is dynamic and complex with environmental conditions and
management practices, potentially creating conditions favoring the persistence of Salmonella
and other pathogens. These risks, however, likely vary greatly between regions, practices,
and operations.

What may be more consistent is the cyclical influence between the litter and the host’s
gut, thereby influenced by environmental and dietary treatments [56]. In this study, we
observed that including SCFP in the diets of broilers did appear to affect a subtle shift in
litter Salmonella status over the course of three consecutive reuses. Despite an observed
higher mean prevalence and load in the fresh litter for the SCFP cohort of houses pre-
placement, the model-adjusted across-cycle estimate indicated an overall lower Salmonella
MPN/swab load for the SCFP cohort. The commercial farm utilized two different litter
types in the houses’ preplacement of the first rearing cycle: specifically, rice hull or wood
shavings. While comparing litter types was not an objective of the study, the effect of
litter type was investigated utilizing general linear mixed models. For these models, the
SCFP cohort demonstrated significantly less Salmonella loads in the litter regardless of type.
Notably, litter type was not equally balanced between treatments. Sampling conducted
pre-placement revealed two houses within each treatment testing positive, for which both
litter types were represented. Considering all other houses in the trial were negative with
both fresh litter types at preplacement, this observation may suggest house contamination
(e.g., ineffective sanitation or cross-contamination from outside source into the specific
barns) rather than a contaminated litter source. This observation highlights a key challenge
and example of the limitations in conducting real-world research in commercial operations
and may warrant future research needs to investigate Salmonella survival and proliferation
as influenced by litter type on a commercial operation scale.

Regardless of origin, Salmonella in the rearing environment leads to host exposure
and the chance for colonization of the gut. The epidemiological triad between the agent,
environment, and host is a dynamic that contributes to the persistence of a pathogen such
as Salmonella in the production and controlled rearing of broilers. Though not quantifiable
in the present study, the observation of reduced litter load could contribute to a lower re-
infection pressure and, therefore, decreased Salmonella cecal prevalence and loads observed
within the SCFP cohort as compared to the CON cohort flocks reared on the respective
litters over the course of the trial. In controlled research, Salmonella serotype status in
contaminated litter has been associated with isolation in the crop and ceca, even within
a short 12 h window of feed withdrawal and contaminated litter exposure [57]. Feed
withdrawal prior to harvest has been demonstrated to significantly increase Salmonella de-
tection in the crop and could lead to carcass contamination during harvesting [58]. Indeed,
Berghaus and colleagues reported that Salmonella loads in environmental boot swabs and
litter samples had the strongest association with loads of Salmonella in pre- and post-chill
carcass rinses [59]. The risk of transfer from litter to organ colonization and subsequently
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carcass contamination during harvest is multifactorial and complex; nonetheless, it is likely
to be influenced by the quantitative loads of Salmonella exposure. As such, the reduced
Salmonella litter loads observed in the SCFP cohort of this study may be key in reducing
individual exposure in subsequent flock placements and thereby contribute to overall
long-term management. Future research could explore litter microbiome composition and
Salmonella survival as specifically influenced by dietary treatments of birds.

While litter and other farm inputs (such as feed, water, and personnel) expose naïve
individuals or populations to Salmonella, the ability of Salmonella to colonize and propagate
within and between individuals in the population is largely influenced at the individual
level by the host’s gut microbiome and immune system. Resistance to colonization by
Salmonella may be partially attributed to short-chain volatile fatty acid (VFA) and other
metabolite products from members of the microbiome, as well as maintenance of gut barrier
function and immunity [60]. SCFPs have been shown to increased VFA concentrations
for acetate and butyrate and promote favorable shifts in abundance of beneficial taxa and
inhibition of Salmonella propagation during challenge [40–42,61]. In vivo research has iden-
tified immunomodulatory benefits of feeding SCFP to broilers, including those challenged
with Eimeria tenella, though no Salmonella-specific mechanisms have been investigated to
date [36,37]. These reports suggest that SCFP may impart an anti-Salmonella effect through
multiple pathways and modes of action, though more research is warranted to determine
anti-Salmonella-specific mechanisms.

Controlled research evaluating the effects of SCFP to reduce Salmonella Enteritidis
challenges has demonstrated quantitative reductions in cecal contents [62,63]; however, re-
ductions in prevalence (% positive) for direct challenge studies are commonly not observed
due to extremely high challenge doses administered via oral gavage. Real-world industry
conditions have exposure routes and doses which vary greatly [59]. When combined with
stress, disease challenge, and other factors of commercial production not easily replicated
in controlled research settings, the efficacy of SCFP and similar products may become
more evident. This study demonstrated that SCFP reduced Salmonella prevalence com-
pared to control flocks, and prevalence within SCFP flocks were consistently lower within
and between flock-rearing cycles. The consistent reduction in the number of individuals
positive for Salmonella was also coupled with those individuals and the populations, on
average, having significantly lower cecal Salmonella loads. Notably, the combined reduc-
tions observed cycle over cycle in both cecal Salmonella prevalence and loads in populations
of the SCFP cohort indicate that there would be fewer individuals in a flock shedding
Salmonella at lower loads back into the litter during rearing and thus likely influencing the
subsequent flock placement. While our trial only observed three consecutive cycles, the
data do appear to directionally support this concept of Salmonella transmission, and future
work may consider following an increased number of cycles. If this is the case, products
such as SCFP may impart a compounding benefit over time, particularly in regions where
litter reuse and litter amendment interventions are commonly utilized.

Ultimately, efforts to reduce Salmonella risk rely on multiple interventions strategically
utilized throughout the processing continuum. At harvest and in processing, several
physical and chemical interventions, often validated for multi-log reductions of indicator
organisms or pathogens such as Salmonella, are commonly employed to reduce microbial
contamination. These include, but are not limited to, hot water, steam, chlorine, organic
acids, and others [64,65]. The efficacy of these interventions may, therefore, be impacted by
the incoming microbial burden that must be mitigated. Utilizing the Salmonella estimates
obtained for each flock on trial in combination with placement numbers adjusted for
mortality, we estimated the total burden of Salmonella to processing. While sufficient
evidence is lacking to directly correlate cecal prevalence and loads to finished product
contamination risk, litter loads have been associated with carcass contamination, and
thus these relationships at the flock-level may be useful, in the very least, as estimates of
incoming Salmonella burden to be managed. Flock-level burden estimates varied greatly
across cycles and within treatment cohorts. Notably, fewer overall flocks within the SCFP



Microorganisms 2022, 10, 544 10 of 13

cohort (n = 4) had a load burden exceeding 6.00 log10 MPN as compared to the CON cohort
which had eight flocks, of which six exceeded 10.00 log10 MPN (Figure 3). From a practical
point of view, higher cumulative burden at a processing plant could constrain efficacy of
postharvest processing controls and the food safety management system. Products such as
SCFPs may be beneficial towards reducing the overall load burden at these facilities, and
future research may warrant sampling of postharvest matrices.

Salmonella prevalence and serovar distribution in food animal production are recog-
nized as being both geographically diverse and influenced by seasonality [66–69]. Therefore,
limitations to this study may include the geographical isolation of a single farm in Hon-
duras studied over an approximate 4-month window. However, a critical benefit in this
study was the replication of dietary treatments within the single farm in parallel, which
is often not feasible for many farm operations. Serotyping or molecular typing of isolates
may have yielded additional insights into this study. However, serotyping in commercial
farms is not always approved by stakeholders, thus another general limitation of the study.
Lastly, as previously noted, global diversity in soil type, pad construction, litter types,
house types, and farm management practices exist, all of which may influence Salmonella
ecology uniquely and thus warrant continued evaluation of SCFP postbiotic.

Together, these data demonstrate the association and influence that dietary inclusion
of SCFP imparts on multi-flock qualitative and quantitative Salmonella reductions. These
reductions, therefore, may lead to an overall lower Salmonella burden on farms and are
likely to challenge a processing facility. SCFP postbiotic demonstrates potential to serve
as an effective preharvest intervention, thus contributing to a multi-hurdle farm-to-fork
Salmonella food safety program.
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