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Abstract: (1) Background: MALDI-TOF mass spectrometry (MS) is the gold standard for microbial
fingerprinting, however, for phylogenetically closely related species, the resolution power drops
down to the genus level. In this study, we analyzed MALDI-TOF spectra from 44 strains of B. melitensis,
B. suis and B. abortus to identify the optimal classification method within popular supervised and
unsupervised machine learning (ML) algorithms. (2) Methods: A consensus feature selection strategy
was applied to pinpoint from among the 500 MS features those that yielded the best ML model and
that may play a role in species differentiation. Unsupervised k-means and hierarchical agglomerative
clustering were evaluated using the silhouette coefficient, while the supervised classifiers Random
Forest, Support Vector Machine, Neural Network, and Multinomial Logistic Regression were explored
in a fine-tuning manner using nested k-fold cross validation (CV) with a feature reduction step
between the two CV loops. (3) Results: Sixteen differentially expressed peaks were identified and
used to feed ML classifiers. Unsupervised and optimized supervised models displayed excellent
predictive performances with 100% accuracy. The suitability of the consensus feature selection
strategy for learning system accuracy was shown. (4) Conclusion: A meaningful ML approach is here
introduced, to enhance Brucella spp. classification using MALDI-TOF MS data.

Keywords: MALDI-TOF MS; Brucella melitensis; B. suis; B. abortus; machine learning; nested k-fold
cross validation; feature selection; R

1. Introduction

The genus Brucella contains 12 species causing brucellosis in terrestrial and aquatic
mammals. Significant clinical disorders in humans are mainly caused by B. melitensis, B.
abortus and B. suis, in general upon the consumption of contaminated dairy products or the
handling of infected animals. Although the mortality rate caused by this pathogen is low,
Brucella spp. is a facultative intracellular pathogen that can escape recognition by innate
immunity and evade intracellular destruction [1,2], leading to chronic infectious disease
which is difficult to treat. Furthermore, Brucella spp. is considered a potential bioterrorism
agent because species belonging to this genus are highly infective (10–100 bacteria can
cause human infection), and can be easily cultured from infected animals and human mate-
rials, stored, and potentially disseminated through aerosol. Clearly, timely and accurate
diagnostics is crucial for patient treatment decisions and outcomes, as well as pivotal for
public health in case of outbreak or terrorist attack.

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry (MS) is a soft ionization proteomic platform, which is generally used in most
clinical laboratories as a gold standard for microbial fingerprint-based characterization [3].
MALDI-TOF MS is a reproducible and reliable tool that allows bacterial identification
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within a few minutes, with low cost for a single reaction. However, for phylogenetically
closely related species such as B. melitensis, B. abortus and B. suis, the resolution power
drops down to the genus level [4]. This might be due to the absence of a comprehensive
database, especially for biosafety level three species [4,5], and to the lack of appropriate
methods for optimal species recognition.

Machine learning (ML) is a sub-field of artificial intelligence (AI) that gives computers
the ability to learn without being explicitly programmed [6].

In the last decade, machine learning (ML) techniques have been recognized as a fun-
damental resource to build informative and predictive models from complex biological
data [7].

In the field of microbiology, several studies have shown how the combination of ML
algorithms with mass spectra information can enhance discrimination between closely
related sublineages within the genera Mycobacterium [8] and Bacillus [9,10], as well as the
identification of different antimicrobial resistant groups of Staphylococcus aureus [11,12].

Despite their great potential, the application of ML algorithms for bacterial species
classification has been limited by the use of proprietary software such as flexAnalysis
and ClinProTools from Bruker Daltonics (Bruker Daltonics GmbH and Co. KG, Bremen,
Germany), where the applied pipelines are not accessible, severely affecting the comprehen-
sibility, optimization, and reproducibility of analyses [13]. Furthermore, certain analytical
and computational challenges have been encountered. The most relevant here is the high
dimensionality of the MS data; even in relatively large studies with a few hundred samples,
the number of variables often exceeds the number of samples themselves. Thus, to enable
the construction of accurate classifiers requires a method to pinpoint biomarkers, called
“feature selection”. For linear classifiers such as support vector machine or discriminant
analysis, diagnosing and filtering out collinear variables (highly correlated predictor vari-
ables) is an essential step to avoid instability in the results generated by machine learning
models [14]. A constant danger with ML classifiers is overfitting, where the classifier learns
irrelevant information or “noise” from the training dataset. When this happen, the model
becomes “overfitted” and is unable to make an accurate prediction or classification against
new or unseen data. The most widely used way to prevent overfitting is by reducing
model complexity (for example selecting only the most informative features), to apply
regularization or hyperparameter optimization, employing cross-validation for model
selection. Another potential pitfall when building a ML model is the class imbalance ratio.
Class imbalance refers to an unequal number of cases for each sample category, for exam-
ple, bacterial species. This can lead to failures in model accuracy, especially for minority
classes, resulting in a higher error rate. To handle this type of data it is necessary to even
the class imbalance by resampling the data, either by up-sampling the smaller classes or
down-sampling the larger classes. Alternatively, an ML algorithm with built-in capabilities
to help deal with imbalanced data may be employed. Nevertheless, facing a multiclass
classification problem with more than two classes, a choice of algorithms developed to
address such a problem should be considered, or strategies may be implemented to turn
a natural binary algorithm such as logistic regression into a multinomial classifier.

The major aim of this study was to analyze MALDI-TOF MS spectra of 44 isolates of
Brucella, including 21 B. melitensis, 12 B. suis and 11 B. abortus, in order to identify the most
appropriate classification methods from among the popular supervised and unsupervised
machine learning algorithms for optimal species recognition.

2. Materials and Methods
2.1. Study Design/Experimental Setup and Analysis

Three different Brucella species, identified by means of a PCR-based method, were
analyzed using MALDI-TOF MS. The row MS spectra were pre-processed according to
Gibb and Strimmer [15], and cleaned to create a peak matrix with sample ID and feature
value intensities. To avoid the problem of dimensionality, a downstream consensus feature
selection strategy was used to identify a reduced set of important features to feed all ML
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algorithms. To address the role of the consensus feature selection strategy in the accuracy
of the learning systems, each ML algorithm was trained on the most important classifier-
specific variables, and was compared with the models fitted on the consensus features. To
avoid over-optimistic estimation of the model performance due to the small sample size
and to avoid overfitting, all ML classifiers were optimized in terms of number of features
and hyperparameters by means of a nested cross validation (nCV) method [16], with
a feature reduction step between the two CV loops. For each final classifier, the expected
performance or ability of the model to generalize well against new data was computed
on all folds of the outer CV loop. The true performance was evaluated on an external test
dataset, including 12 Brucella samples treated as unknown cases. All data analyses were
completed in R (version: 3.6.3, R Core Team, 2013) and RStudio. A list of the R-packages
used in this work is reported in Table S3.

2.2. Biological Sample Collection

All microbial strains used in this study are part of the strain collection of the Bun-
deswehr Institute of Microbiology and were stored at −80 ◦C in a Microbank microbial
storage system (Pro-Lab Diagnostics, Richmond Hill, ON, Canada). In total, 21 clinical
isolates of Brucella melitensis, 12 isolates of B. suis and 11 isolates of B. abortus from human or
animal origin, were selected for spectra generation. The bacterial strains used for MALDI-
TOF MS analysis and corresponding metadata are listed in Table S2. It should be noted
that the dimensions of this study were defined by the total number of B. suis and B. abortus
strains available in our laboratory. To avoid problems of class imbalance, a maximum of
21 B. melitensis strains were selected from among those that were been fully sequenced and
characterized by Georgi et al. [17].

2.3. Bacterial Culture Preparation and Inactivation

Bacterial cultivation and inactivation were performed under biosafety level three (BSL-3)
conditions in a class II biosafety cabinet. Bacterial strains were grown on Columbia blood
agar plates at 36 ◦C with 5% CO2 for 48 h and sub-cultivated once under the same conditions.
For DNA and protein extraction, two inactivated aliquots per sample were prepared by
taking half of a 1 µL-loop of bacteria from the subcultivation plate, resuspending it in
a solvent mixture containing 900 µL absolute ethanol and 300 µL double-distilled water,
andincubating at room temperature for 5 min. Thereafter, the inactivated colony suspension
was transferred to a BSL-2 laboratory for downstream analyses.

2.4. Brucella PCR-Based Methods

To confirm the species assignment of the strains, inactivated bacterial cells were
washed twice with PBS, and genomic DNA was extracted using a QIAamp DNA Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Brucella
genus was assessed by means of a polymerase chain reaction (PCR) targeting the genus-
specific markers IS711 and bcsp31 [18]. For species differentiation, the Brucella Bruce-ladder
PCR [19], a multiplex PCR with species-specific band pattern, was used. The species
assignment of each isolate used in this study is reported in Table S1.

2.5. Protein Extraction and MALDI-TOF Spectrum Generation

Protein extracts were obtained from inactivated bacterial suspension according to
the method described by Marklein et al. [20]. Briefly, the inactivated bacterial suspension
was prepared for MALDI-TOF MS measurement by centrifuging at 13,000× g for 2 min
and the supernatant removed. The step was repeated and the pellet allowed to dry, then
resuspended in 50 µL of formic acid (70% v/v) and mixed thoroughly by pipetting. After
50 µL of acetonitrile (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) was added,
the mixture was vortexed and centrifuged at 13,000× g for 2 min. Then, 1 µL of each
sample was spotted onto a 96-well steel target plate (Bruker Daltonics GmbH and Co. KG,
Bremen, Germany) and overlaid with 1 µL of α-Cyano-4-hydroxycinnamic acid (HCCA)



Microorganisms 2022, 10, 1658 4 of 14

matrix. The matrix solution was prepared by dissolving 2.5 ± 0.3 mg HCCA (IVD matrix
HCCA-partitioned, Bruker Daltonics Bruker Daltonics) in 250 µL of Bruker standard solvent
for MALDI (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). Each sample was
applied to eight different spots. Samples were allowed to dry for several minutes before
MS measurements were taken using a Microflex LT instrument (Bruker Daltonics GmbH
and Co. KG, Bremen, Germany). Measurements were taken in linear positive mode at
a laser frequency of 60 Hz covering the molecular mass range of 2000 to 20,000 Da. The IS1
voltage was 19.96 kV, the IS2 voltage was maintained at 18.221 kV, and the lens voltage was
6 kV. Three single mass spectra from 500 laser shots each were generated per spot, thus
24 mass spectra per strain were produced. The instrument was calibrated using a standard
calibrant mixture (Bruker Daltonics GmbH and Co. KG, Bremen, Germany), including
Escherichia coli extracts, RNAase A, and myoglobin. The standard mixture was prepared
according to the manufacturer’s recommendation and directly transferred to designated
spots on the target slide.

2.6. Spectral Pre-Processing and Cleaning

Raw spectra were collected and imported in RStudio using the “MALDIquant” and
“MALDIquantForeign” R-packages [15]. Spectral quality control, transformation, smooth-
ing, baseline reduction, normalization, and peak detection were performed according
to Gibb and Strimmer [15]. The three technical replicates resulting from each spot and
acquired automatically by the Microflex LT instrument were averaged. The detected peaks
or variables were explored for the presence of missing values and outliers across the eight
biological replicates. The aggr function within the “VIM” R-package was used to rank
the variables by decreasing number of missing values, while a distance of two standard
deviations from the mean of the variable was used to identify outliers. Thereafter, the
dataset was prepared for ML analysis by filtering out outliers and missing values, and by
averaging, for each individual spectral, data originating from the corresponding biological
replicates. Feature names represented by the exact m/z values were rounded to three digits
after the comma, and the string “Peak” was added to them. Finally, a peak matrix with
sample ID and 436 feature value intensities was created (File S1, Supplementary Material).
For visual inspection, spectra from whole-cell extracts of three strains per each Brucella
spp. used in this study, and highlighting the similarities among them, are reported in
Figure S1, Supplementary Material.

2.7. Consensus Feature Selection Strategy and Statistics

To identify from among the 436 MS peaks the most relevant for species classifica-
tion, different feature selection strategies based on variable importance were applied and
compared. In particular, the ratio of between-groups to within-groups sum of squares
(BSS/WSS) described by Dudoit et al. [21] was computed to rank features by their dis-
criminant power among classes. Furthermore, recursive feature elimination implemented
in the varImp function from the R-package “Caret” was applied in combination with
different ML algorithms including Mulitnominal Logistic Regression (MNR), Random
Forest (RF) and Neural Network (NN). The “nnet”, “rf” and “multinom” methods were
selected within the train function from the R-package “Caret” to fit the different ML models,
while the trainControl function was applied to create trained model objects with a 10-fold
cross-validation method. For each strategy, the top 50 important features were selected
and a Venn diagram was created by means of the R-package “Limma”, to display the
overlapping features from the different feature selection strategies.

Lavine’s homogeneity test and Shapiro–Wilk normality test were performed to assess
feature homogeneity and distribution. Since most of the variables did not meet Anova
assumptions, a Kruskal–Wallis rank sum test was applied along with the Wilcoxon test to
identify the features that differed significantly among species. A p value of less than 0.05
was considered significant.
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2.8. Unsupervised Data Analysis: k-Means and Hierarchical Agglomerative Clustering

Unsupervised learning is a process of attempting to find hidden structures or rela-
tionships in complex data independently from labels. However, because label information
was available in this study, unsupervised algorithms were constructed on the 16 consensus
features, to explore the separability of the different Brucella spp.

Two commonly used clustering algorithms, namely k-means clustering and hierarchi-
cal agglomerative clustering (HAC), were investigated as follows.

The preProcess function from the R-package “Caret” was used to center and scale the
numerical features (Z-score scale). For k-means clustering, the standard kmeans function
from the R-package “stats” was employed. To make the results reproducible and stable, the
set.seed function was used, and the number of random starting assignments (nstart = 25)
was specified. K-means were computed for a range of cluster centers (k) between three
and seven. To estimate the optimal number of clusters and the quality of the clustering
technique for the different k values, the silhouette coefficient (SC), a value ranging between
−1 and 1, was computed using the silhouette function from the R-package “cluster”. A high
SC was regarded as an indicator of good clustering. To illustrate the results of the best
k-means model in a two-dimensional plane, the function fviz_cluster from the R-package
“factoextra” was used. Similarly, HAC models with three to seven clusters were applied
to the Brucella dataset, and the SC value was used to identify the best number of clusters.
Since the choice of distance metric and linkage can have a significant effect on the results of
agglomerative clustering, different distance metrics (Euclidean and Manhattan distance)
and different linkage functions (Ward linkage, average linkage, and complete or maximal
linkage) were explored using dist and hclust R-functions. The best model was selected using
the SC value and the overall accuracy, indicating the fraction of bacterial spectra that were
correctly classified. Hierarchical clustering with bootstrapping was generated using the
“pvclust” R-package [22], while the package “RColorBrewer” was employed to represent
the data in a heatmap format.

2.9. Supervised Data Analysis: General Workflow

In contrast to unsupervised ML methods, supervised learning uses labeled cases to
help predict outcomes. All supervised ML algorithms were trained or fitted on consensus
features identified by the four feature selection methods described in the “consensus feature
selection strategy” paragraph.

To build an effective ML model from MALDI-TOF MS data, a general workflow based
on the R-package “Caret” (classification and regression training) was employed. Randomly
sampled cases were selected to create independent training and test datasets. Specifically,
70% of the cases were used as training dataset to create fine-tuned models and assess their
expected performance. The remaining 30% were used as the external dataset, encompassing
12 samples unseen during the modeling procedure and treated as unknown, to evaluate
the true performance of the model in a real-world setting. Before modeling, all numerical
features in the whole dataset were centered and scaled (Z-score scale) using the preProcess
function. Furthermore, to deal with class imbalance, up-sampling of the smaller cases
was carried out using the upSample function, on the training dataset only. For each ML
algorithm, a hyperparameter grid was defined based on the ML algorithm in the case at
hand, while the metric chosen to select the optimal model for classification was “Accuracy”.
Each fine-tuned ML model was trained using a nested cross validation (nCV) method with
a 10-fold outer loop and 5-fold inner loop (Scheme 1). The inner CV loop was used to
identify the best model hyperparameters for model selection, while the outer CV loop was
to assess model generalization, describing the ability of the model to classify or forecast
unseen data. To assess generalization, the mean of the metric across the folds of the outer CV
loop and the corresponding standard deviation (STD) were computed, while rotating the
training folds, to summarize the expected performance of the model. In general, a standard
deviation of the mean of the accuracy with an order of magnitude smaller than the mean
was used as indicator of a good generalizing model, and was thus suitable classifying



Microorganisms 2022, 10, 1658 6 of 14

unknown cases. To avoid an over-optimistic estimation of the model accuracy, two CV
loops were performed using a different randomly sampled set of folds, which were defined
using the nested_cv function from the R-package “rsample”. To reduce model complexity
and avoid overfitting, a feature reduction step between the two CVs loops was performed.
In particular, feature importance was evaluated using the varImp function, and new models
were trained with variables showing the highest importance as determined by the ML
model. At equal model performance, the simpler model with the better refined and reduced
feature set was preferred to solve the Brucella classification problem.
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Scheme 1. The MALDI-TOF MS dataset was randomly split in two independent training and external
test datasets, representing the 70% and 30% of the cases, respectively. The external test dataset,
encompassing 12 samples unseen during the modeling procedure and treated as unknown, was
used to access the true performance of the developed model in a real-world setting. The training
dataset was used to create fine-tuned ML models and to assess their expected performance by means
of nested cross validation (nCV) with a 10-fold outer loop and 5-fold inner loop. In the outer loop,
the training set was split into 10 folds or groups of approximately equal size, nine of which were
assigned to the training set (in blue) and one to the test set (in green). In the inner loop, the training
set was additionally split into five folds, four of which were assign to the nested training set and one
to the validation set (in orange). The nCV process was as follows: The models were configured on the
nested training data using a combination of all hyperparameters in the grid, and the accuracy on the
validation dataset was assessed. Validation folds were rotated until all groups had contributed to
the validation data. The best hyperparameters were identified as those with the highest validation
performance over the five folds. The best hyperparameters were selected to train a classifier from
the training dataset of the outer loop, and evaluate the expected performance of the model on the
corresponding test dataset (green fold). The test fold was rotated among all folds of the outer CV
loop to evaluate the ability of each model to generalize against new data.

The true performance of the final classifier was evaluated on the external test dataset
(30% of the cases) (gray fold in Scheme 1) using the predict function. Based on these scores,
a confusion matrix was computed, reporting the number of false positives (FP), false nega-
tives (FN), true positives (TP), and true negatives (TN), together with the overall accuracy,
a number between 0 and 1, indicating the fraction of bacterial spectra correctly classified.
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2.10. Supervised ML Models: Neural Network, Random Forest, Support Vector Machine and
Multinomial Logistic Regression

In this study four different supervised learning classifiers were used, namely Random
Forest (RF), Neural Network (NN), Support Vector Machine (SVM), and Multinomial Logistic
Regression (MNR). Accurate descriptions of the ML algorithms, and the relative advantages
and disadvantages of the learning systems, are reported in Table S1 (Supplementary Material).

For each classifier, different models were trained according to the general workflow
described in the dedicated paragraph (see above) with some model-specific differences. In
particular, the train function with “nnet” and “rf ” methods from the R-package “Caret” was
employed to build the corresponding NN and RF models. To fit a fine-tuned NN model,
the best hyperparameters “size” (=number of units in hidden layer) and “decay” (=regu-
larization parameter to avoid overfitting) were searched among a grid of values ranging
between 1 and 10 with a step of 1, and between 0 and 0.5 with a step of 0.1, respectively. For
RF, the best “mtry” (=number of variables randomly sampled as candidates at each split)
was searched among the values 1 to 10, while the optimal number of trees in the forest was
investigated at 100, 500 and 1000 of trees to conserve computational resources.

An SVM model with a radial basis function kernel was built using the train function
from R-package “Caret” and the “SVMRadial” method. The optimal “C” hyperparameter
(=cost value) was searched using tuneGrid argument values ranging between 0.1 and 1 with
a step of 0.1, while the function sigest from R-package “kernlab” was employed to estimate
the kernel parameter sigma during each model fit. The train function from R-package
“Caret” with the “multinom” method was used to build an MNR model with the tuning
hyperparameter “decay” ranging between 0 and 1 with a step of 0.1.

2.11. Consensus Feature Selection and Effect on Supervised ML Model Accuracy

To address the role of the consensus feature selection strategy in the accuracy of the
learning systems, all ML algorithms were trained and optimized on the top four classifier-
specific variables, defined by means of the varImp function from the R-package “Caret”, and
compared to the corresponding ML models fitted on the consensus features. The number
of variables selected was defined by the number of features yielding the highest ML model
accuracy using the consensus approach.

3. Results
3.1. Identification of 16 Consensus Features

To identify from among the 436 variables reported in the final intensity matrix those
most important for Brucella sp. classification, different feature selection methods based on
variable importance were applied and compared. The graphical intersection of the results
obtained with the different feature selection strategies is presented in Figure 1. In particular,
the following 16 overlapping features were identified: Peak.6715, .2960, .9863, .13303, .8521,
.9978, .7266, .9935, .7791, .5271, .3633, .4716, .4372, .8324, .8700, .4338. Details of unique
and shared features among the different feature selection methods used are reported in
Table S4, Supplementary Material.

Statistical analysis revealed that most of the consensus features differed significantly among
the three Brucella spp., with p-values below 0.001 as shown in Table S5 (Supplementary Material),
with exceptions for Peak.5271, .3633 and .2960. A graphical example of the distribution
of Peak.6715 with corresponding Kruskal–Wallis testing and post hoc Wilcoxon testing is
reported in Figure S2, Supplementary Material.
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Figure 1. Venn diagram created using the R Limma package, displaying the level of overlap among
different feature selection strategies based on variable importance assessed by means of Neural
Network (NN), Multinomial Logistic Regression (MNR), Random Forest (RF) and the ratio of between-
groups to within-groups sum of squares (BSS/WSS).

3.2. Three-Cluster Unsupervised ML Models Revealed a Good Brucella spp. Separation

Silhouette coefficients (SC) calculated over a range of five possible numbers of clusters (k)
revealed the optimal k-means model for a k equal to three or four (Figure S3, Supplementary
Material). Since k = 3 was concordant with the metadata, this model was preferred. The
three-cluster k-means model exhibited a good division of cases, as shown in Figure 2. Simi-
larly, the analysis of the SC values over a range of five possible numbers of clusters revealed
the best HAC model was for a k value of three, with SC > 0.43 (Figure S4, Supplementary
Material). Average linkage and Manhattan distance were identified as best metrics for class
assignments of three-cluster agglomerative models, with an SC value of 0.48 (Figure S5,
Supplementary Material). The final HAC model revealed clear species separation, as in-
dicated by the corresponding high bootstrap values (Figure S6, Supplementary Material).
Figure 3 presents the heatmap displaying the intensities of the 16 potential biomarkers
used to feed the algorithm and the corresponding hierarchical clustering. The assignments
produced by k-means and hierarchical clustering models with different cluster centers are
reported in Tables S6 and S7, respectively (Supplementary Material).

1 
 

 
Figure 2. Illustration of the k-means model with the optimal number of clusters (k = 3). The function
fviz_cluster from the R-package “factoextra” was used to plot the data points according to the first
two principal components that explained the majority of the variance. The figure shows species-
specific clustering. The optimal number of clusters is three, with an SC value of 0.39. The silhouette
coefficient was computed using the silhouette function from the “cluster” R-package.
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Figure 3. Heatmap displaying the intensities of the 16 potential biomarkers identified by means of
a consensus feature selection method. Feature intensity was reported with the color code red for
“high intensity peak” and blue for “low intensity peak”. Samples and features were ordered by means
of agglomerative hierarchical clustering with average linkage and Manhattan distance.

3.3. Identification of the Optimal Fine-Tuned Supervised ML Models

All models built on the 16 consensus features displayed 100% overall accuracy for
training CV folds and the external dataset (data not shown). The same results were achieved
by reducing model complexity to four features for both SVM and NN, and to three features
for RF and MNR, indicating that the corresponding 16-feature models were overfitted
(Table 1). The most relevant predictors identified for Brucella spp. classification were
Peak.3633, .8700, .6715, and .5271 for SVM; Peak.6715, .8324, .9863, and .8700 for NN;
Peak.5271, .6715, .8700 ± .3633 for RF and Peak.9863, .6715, .8700 ± .9978 for MNR. The
optimal hyperparameter values found for model tuning were sigma equal to 0.085 and cost
equal to 0.1 for SVM, size equal to 2 and decay equal to 0.5 for NN, 1000 number of trees and
mtry equal to 1 for RF, and decay equal to 1 for MNR. To view the performance of the different
NN classifiers over the hyperparameter grid, see Figure S7, Supplementary Material.

Table 1. Expected and true performance of the best final classifiers, optimized in terms of feature and
model hyperparameters. The expected ML model accuracy was evaluated across all 10 CV folds of
the training dataset, while the true ML accuracy was assessed on the external test dataset.

ML Model Feature Number Features Best Model Hyperparam Expected Accuracy True Accuracy

SVM

4 Peak.3633, .8700, .6715, .5271 sigma = 0.57
cost = 0.1 1 1

3 Peak.3633, .8700, .6715 sigma = 0.085
cost =0.1 1 0.92

NN

4 Peak.6715, .8324, .9863, .8700 size = 2
decay = 0.5 1 1

3 Peak.6715, .8324, .9863 size = 3
decay = 0 1 0.83

RF

4 Peak.5271, .6715, .8700, .3633 ntree= 500
mtry = 1 1 1

3 Peak.5271, .6715, .8700 ntree= 1000
mtry = 1 1 1

MNR
4 Peak.9863, .6715, .8700, .9978 decay = 1 1 1

3 Peak.9863, .6715, .8700 decay = 1 1 1
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The expected and true performance of the optimal fine-tuned models trained on the
best three and four predictors are reported in Table 1. Independently from the final number
of predictors, all ML models exhibited an expected accuracy of one, indicating that the
model is likely to generalize well against new cases. The true performance of the final tuned
model’s fit on the best four features revealed accurate prediction, with 100% overall accuracy
for each Brucella species. In contrast, the accuracy of the fine-tuned model’s fit for only three
features dropped down to 83 and 92%, for NN and SVM classifiers, respectively (Table 1).
The confusion matrix showing the true performance of the fine-tuned NN model trained on
the three most important variables is reported in Table S7, Supplementary Material.

3.4. Consensus Feature Selection Enhance the Supervised ML Model Accuracy

In comparison to the final models fitted and optimized on the consensus features,
fine-tuned ML classifiers trained on the top four variables, defined by means of a ML-
specific feature selection approach, revealed a reduction in performance as shown in
Table 2. The analysis of the expected accuracy showed for these “alternative” ML models
a generalization ability ranging between 0.95 for NN and 0.98 for SVM, while the true
accuracy evaluated on the external test dataset was between 0.83 and 0.92, representing the
incorrect classification of two strains or one, respectively, as shown in Table 3.

Table 2. Performance of optimized fine-tuned ML models trained on the top four features identified
using a feature selection approach specific for Mulitnomial Logistic Regression (MNR), Random
Forest (RF), Neural Network (NN), and Support Vector Machine (SVM), separately. The performance
was evaluated in terms of expected and true accuracy for training CV folds and external test datasets,
respectively. The top four features used to train the corresponding ML model were also included.

MNR RF NN SVM

Features Peak.3427, .4911,
.9863, .4930

Peak.3427, .4351,
.3677, .9978

Peak.4911, .6715,
.4930, .8324

Peak.2880, .9863,
.7377, .4249

Expected accuracy 0.98 0.95 0.96 0.96

True accuracy 0.833 0.833 0.92 0.833

Table 3. Species assignment for each strain from the external dataset, performed by the optimized
fine-tuned ML models trained on the top four features identified using a standard feature selection
approach specific for Mulitnomial Logistic Regression (MNR), Random Forest (RF), Neural Network
(NN) and Support Vector Machine (SVM), separately. Incorrect classification is shown in bold.

SVM NN RF MNR

Strain Species Score Identity Score Identity Score Identity Score Identity

L3-0515 B. suis B. melitensis incorrect B. suis correct B. melitensis incorrect B. suis correct

L3-0529 B. suis B. suis correct B. suis correct B. suis correct B. suis correct

L3-2529 B. suis B. suis correct B. abortus incorrect B. suis correct B. suis correct

L3-0638 B. abortus B. melitensis incorrect B. abortus correct B. abortus correct B. abortus correct

L3-2519 B. abortus B. abortus correct B. abortus correct B. abortus correct B. abortus correct

L3-2525 B. abortus B. abortus correct B. abortus correct B. abortus correct B. abortus correct

L3-4556 B. melitensis B. melitensis correct B. melitensis correct B. melitensis correct B. melitensis correct

L3-4561 B. melitensis B. melitensis correct B. melitensis correct B. melitensis correct B.suis incorrect

L3-4564 B. melitensis B. melitensis correct B. melitensis correct B. melitensis correct B. suis incorrect

L3-4565 B. melitensis B. melitensis correct B. melitensis correct B. melitensis correct B. melitensis correct

L3-4590 B. melitensis B. melitensis correct B. melitensis correct B. melitensis correct B. melitensis correct

L3-4602 B. melitensis B. melitensis correct B. suis incorrect B. melitensis correct B. melitensis correct
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4. Discussion

In a recent contribution, Mesureur et al. showed that with a curated database (includ-
ing 84 Brucella spp.), MALDI-TOF MS was able to identify B. melitensis, B. abortus and B. suis
with an accuracy of 100%, 92.9%, and 100%, respectively [23]. In the present study, we
showed how the use of supervised and unsupervised ML algorithms on the MALDI-TOF
MS spectra of 44 Brucella spp. allowed refinement of the classification method, with an
accuracy of 100% for each target species.

To create highly accurate ML models, the high dimensionality of the MS data, repre-
sented in the case at hand by 436 peaks (referred to in the text as features or explanatory vari-
ables), was reduced retaining only meaningful features. Different techniques are available
for feature selection and include the use of filters, wrappers, or embedded methods with
basic differences in how feature selection and classification tasks are accomplished [24–26].
One of the most straightforward methods for performing feature selection is based on the
use of classifiers with built-in feature selection capability, e.g., models that can be accessed
using the train function from the R-package “Caret”. A more intuitive approach, broadly
used to find relevant variables and biomarkers for predicting disease (e.g., cancer datasets),
ranks features based on the ability to discriminate between groups, using a univariate
statistic such as between-group to within-group sum of squares (BSS/WSS) [26]. Here,
a consensus feature selection strategy was applied, combining the BSS/WSS approach with
the use of classifiers implementing the varImp function from the R-package “Caret”. Sixteen
consensus features were identified as shown in the Venn diagram (Figure 1), displaying the
number of features selected by each selection approach and the levels of overlap between
them. The consensus approach allowed the selection of variables without resorting to strin-
gent cut-off values, which can significantly affect the selected feature subset and therefore
the performance of the learning system. Furthermore, the variables identified could be used
for both supervised and unsupervised classifiers. Nevertheless, this systematic approach
allowed the identification not only of features that yielded the best possible classifiers, but
also of features whose expression may play a role in the differentiation of the three Brucella
species. However, the proteins behind the 16 consensus features were not investigated, and
therefore the biological interpretation of the most important features for species classifica-
tion, including protein ID, functional annotations, or biological pathways (which might
provide insight into the underlying biology of the species) remains an open issue.

Unsupervised methods such as k-means and hierarchical agglomerative clustering
(HAC) are label-independent clustering techniques that are normally applied to find hidden
structures in multivariable datasets. In our case, due to label availability, unsupervised
learning systems were constructed on the 16 consensus features, to explore the separability
of the different Brucella spp. Both unsupervised ML methods identified three optimal
clustering numbers, with SC coefficients of 0.4 and 0.49 for k-means and HAC, respectively,
demonstrating that hierarchical clustering allowed a finer division of cases. However, both
models defined a clear split of the samples into the three Brucella species, as shown in
Figures 2 and 3. Interestingly, the heatmap in Figure 3 allows not only clear differentiation
among the three target Brucella spp. but also identification within the same species of
subgroups with different peak intensity, which may be linked to a different phenotypic
profile (not investigated).

Previous studies showed that high-dimensional data with a small number of samples
may lead to overoptimistic performance estimates for ML algorithms [27,28], especially
if combined with simple validation methods like k-folds CV, which do not ensure a clear
distinction between data used to validate the classifiers and data used for model develop-
ment [29]. However, Vabalas and collaborators investigated different validation methods
with different sample sizes, and demonstrated that a nested CV and train–test split ap-
proach produced robust and unbiased performance estimates regardless of sample size [16].
For this reason, to ensure a non-biased estimation of the classification accuracy of our
ML models, both validation methods, nCV and train–test split, were implemented in our
model development workflow. Indeed, the MALDI-TOF MS dataset was randomly split in
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two independent training and external test datasets, representing the 70% and 30% of the
samples, respectively. The external test dataset, encompassing 12 samples unseen during
the modeling procedure and treated as unknown, was used to access the true performance
of the developed model in a real-world setting. The training dataset was used separately
to create fine-tuned ML models and to assess their expected performance by nested cross
validation (nCV) with a 10-fold outer loop and 5-fold inner loop. Notice that each fine-
tuned ML model was further optimized to avoid overfitting, adding a feature reduction
step between the two CV loops.

The final ML models’ fits on four features were able to correctly predict the species in
the external unseen dataset, with 100% accuracy. No substantial performance differences
were found among the best final NN, RF, SVM, and MNR classifiers, as shown in Table 1.
However, the fits of RF and MNR models on three features overperformed the other
classifiers with 100% true accuracy (Table 1). Not surprisingly, each ML classifier had
different predictors since they were based on different algorithms. However, Peak.8700
and Peak.6715 were identified as important features by all four ML algorithms, suggesting
a biological role in the species differentiation.

The excellent predictive performance achieved by our final classifiers is the conse-
quence of the implementation of a good consensus feature selection strategy, which allowed
an accurate and automated variable selection for ML modeling. Comparison of the accura-
cies of the learning systems fitted on features identified by consensus feature selection with
those fitted by means of independent ML-specific feature selection, revealed in the latter
case a reduction of both expected and true performance of the learning system. In particular,
the overall accuracy of NN, RF, SVM, and MNR on unseen test dataset was reduced to 0.83
or 0.92, representing the incorrect classification of two strains or one, respectively (Table 2).

Although the consensus feature selection strategy played an important role in the
accuracy of a learning system, the method itself did not prevent overfitting. This was
addressed applying the feature reduction step between the two nCV loops during the fine-
tune modeling process. Indeed, a model trained on only three or four features achieved
the same accuracy as a more complex model with 16 features (Table 2). Thus, the use of
a feature reduction step is highly recommended to increase the robustness of a supervised
ML model.

5. Conclusions

In this work we have introduced an efficient and meaningful approach to classify
unknown Brucella spp. from MALDI-TOF MS data, that goes beyond the methods sug-
gested in earlier works. In particular, we showed how the implementation of a consensus
feature selection strategy allowed the construction of robust supervised and unsupervised
ML models, enabling highly accurate bacterial species recognition from MALDI-TOF MS
data. In future, our whole procedure can be extended to other microbial species relevant in
clinical settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10081658/s1, File S1: Intensity matrix “feature-
Matrix.csv” displaying 436 features for the whole Brucella dataset; Figure S1: MALDI-TOF MS spectra
of whole-cell extracts of B. melitensis, B. suis, and B. abortus. Three strains for each species are shown;
Figure S2: Box-plot displaying Peak.6715 for the Kruskal-Wallis and Wilcoxon tests; Figure S3: Av-
erage silhouette coefficient vs. k-means models. Silhouette coefficient (SC) over a range of possible
number of clusters (k). Here, since SC is maximized for k = 3, this k-means model was preferred.
The optimal number of clusters is three; Figure S4: Average silhouette coefficient vs. HAC model.
Silhouette coefficient (SC) over a range of possible number of clusters (k). SC is maximized for k = 3
and k = 4. Since k = 3 is concordant with the metadata, this HAC model was preferred; Figure S5:
Average silhouette coefficient vs. different distance–linkage combinations; Figure S6: Hierarchical
agglomerative clustering tree based on MALDI-TOF MS data (16 features). Percentages of boot-
strapping replicates supporting the location of individual nodes are indicated; Figure S7: The graph
illustrates the performance of the different NN classifiers over the hyperparameter grid. (a) NN

https://www.mdpi.com/article/10.3390/microorganisms10081658/s1
https://www.mdpi.com/article/10.3390/microorganisms10081658/s1
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classifiers’ fit on the top four most important features, displaying best performance with size = 2
and decay = 0.5. (b) NN classifiers modeled on the top three most important features, showing best
performance with size = 3 and decay = 0. Notice that the classifiers built on only three features are
more sensitive to model parameter tuning; Table S1: Machine learning algorithms; Table S2: Brucella
strains and isolates employed in this study; Table S3: List of all R-packages used in this work; Table S4:
Intersection among the results of different feature selection strategies based on variable importance
assessed by means of MNR, RF, NN, and BSS/WSS methods; Table S5: Levene’s homogeneity of
variance, Shapiro–Wilk normality test on 16 consensus features, performed to verify that the Anova
assumptions were met. Kruskal–Wallis and Wilcoxon tests were carried out to identify significant
differences among species. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; Table S6: k-means
clustering assignments; Table S7: Hierarchical agglomerative clustering assignments; Table S8: Confu-
sion matrix showing the true performance of the fine-tuned NN model when applied to the external
dataset encompassing 12 Brucella sp. The model was trained on 41 samples using the three most
important features, namely Peak.6715, .8324, and .9863. The diagonal elements of the confusion
matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. The
classifier was modeled with tune parameters size = 3 and decay = 0. The samples L3-2519 B. abortus
and L3-4602 B. melitensis were both incorrectly classified as B. suis.
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