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Abstract: Hard ticks (Ixodida: Ixodidae) are medically important ectoparasites that feed on all classes
of terrestrial vertebrates. Recently, we molecularly characterized hard ticks and associated Anaplasma
spp. in the northern and central regions of Khyber Pakhtunkhwa (KP), Pakistan; however, this
knowledge was missing in the southern regions. This study aimed to investigate tick prevalence, host
range, genetic diversity, and molecular survey of Anaplasma spp. in a wide range of tick species in
two distinct physiographic regions of southern KP. A total of 1873 hard ticks were randomly collected
from 443/837 hosts (cattle, Asian water buffaloes, horses, goats, sheep, dogs, and camels) in Lakki
Marwat, Bannu, and Orakzai districts of KP. Overall, 12 tick species were morphologically identified,
among which Hyalomma dromedarii was the most prevalent species (390/1873, 20.9%), followed by
Hy. anatolicum (294, 15.7%), Rhipicephalus microplus (262, 14%), Hy. scupense (207, 11.1%), R. sanguineus
(136, 7.3%), R. turanicus (121, 6.5%), Haemaphysalis cornupunctata (107, 5.7%), R. haemaphysaloides (110,
5.9%), Ha. montgomeryi (87, 4.6%), Hy. isaaci (58, 3.1%), Ha. bispinosa (54, 2.9%), and Ha. sulcata (47,
2.5%). The extracted DNA from a subset of each tick species was subjected to PCR to amplify cox1
or 16S rRNA sequences of ticks and 16S rRNA sequences of Anaplasma spp. The tick cox1 sequences
showed 99–100% identities with the sequences of the same species, whereas 16S rRNA sequences
of R. turanicus, Ha. montgomeryi and Ha. sulcata showed 97–100% identities with the corresponding
species. The 16S rRNA sequence of Ha. cornupunctata showed 92% identity with the species from
the same subgenus, such as Ha. punctata. The 16S rRNA sequence of Anaplasma spp. showed 100%
identity with Anaplasma marginale. Moreover, 54 ticks were found positive for A. marginale with a
total infection rate of 17.2%. The highest infection rate was recorded in Hy. dromedarii (31.1%) and the
lowest in each R. haemaphysaloides and R. sanguineus (20%). All the cox1 or 16S rRNA sequences in
phylogenetic trees clustered with the same species, except Ha. cornupunctata, which clustered with
the Ha. (Aboimisalis) punctata. In this study, Ha. cornupunctata was reported for the first time at the
molecular level. The genetic characterization of ixodid ticks and molecular detection of associated
A. marginale will assist in the epidemiological surveillance of these parasites in the region.

Keywords: hard ticks; Anaplasma marginale; surveillance; phylogeny; Pakistan

1. Introduction

Ticks are obligatory blood feeders that infest terrestrial and semi-aquatic vertebrates
in tropical and subtropical regions [1–3]. Ticks damage their hosts through several mech-
anisms, including the transmission of different disease-causing agents such as bacteria
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(Anaplasma, Borrelia, Ehrlichia, and Rickettsia), viruses (Bunyaviridae, Iridoviridae, and
Reoviridae), and protozoans (Babesia and Theileria) [4].

According to the Global Climate Risk Index 2021, Pakistan is the eighth country prone
to climate change [5]. The distribution patterns of ticks will be highly affected within such
a region [6] and may favor the transmission of tick-borne pathogens (TBPs) [2,7]. However,
there are few reports about tick distribution in different zones of Pakistan [2,3,7–12]. These
studies have described the abundance of Rhipicephalus, Hyalomma, and Haemaphysalis
ticks infesting animals and humans in Pakistan. Additionally, Amblyomma (Am. gervaisi,
Am. javanense), Ixodes (I. hyatti and I. redikorzevi), Ornithodoros (Pavlovskyella) spp. (an
undetermined species), and Nosomma (N. monstrosum) are rarely reported tick genera in
the country [10,12–16]. The commonly reported species of the genus Rhipicephalus are:
R. haemaphysaloides, R. microplus, R. annulatus, R. turanicus, and R. sanguineus. In contrast,
the Hyalomma genus is comprised of Hy. anatolicum, Hy. isaaci, Hy. scupense, and Hy.
dromedarii and species of genus Haemaphysalis are Ha. cornupunctata, Ha. montgomeryi, Ha.
kashmirensis, Ha. bispinosa, and Ha. sulcata, with varying prevalence in different ecological
regions of the country [2,3]. The most important TBPs causing animal health issues in
Pakistan include species of Anaplasma, Babesia, and Theileria [2,17,18].

The pathogenic agents of anaplasmosis are highly prevalent worldwide, particularly
in tropical and subtropical regions [19]. These pathogens have a wide genetic range and
adversely affect the livestock industry [20,21]. Knowing that this field of research has
attracted attention, there are still very few available studies restricted to a few areas in Pak-
istan about the molecular data of ticks and Anaplasma spp. [2,8,13,18,22–24]. Our previous
study has demonstrated the molecular assessment of hard ticks and associated A. marginale
collected from livestock hosts in the northern and central regions of Khyber Pakhtunkhwa
(KP), Pakistan [24]. Still, similar studies are missing from the southern regions. This study
aimed to investigate tick prevalence, genetic diversity, and molecular survey of associated
Anaplasma spp. in a wide range of tick species in two distinct physiographic regions of
southern KP.

2. Materials and Methods
2.1. Ethical Approval

Before this study, ethical approval was taken from the Advanced Studies and Research
Board (Dir/A&R/AWKUM/2020/4871) of the Faculty of Chemical and Life Sciences,
Abdul Wali Khan University Mardan, KP, Pakistan. Furthermore, written and/or oral
consents were obtained from the animals’ owners for tick collection.

2.2. Study Area

The current study investigated three districts of southern KP, including Lakki Mar-
wat (32.6135◦ N, 70.9012◦ E), Bannu (32.9910◦ N, 70.6455◦ E), and Orakzai (33.6671◦ N,
70.9547◦ E). These districts belong to two distinct physiographic regions, one with a “hot
semi-arid climate” (Bannu and Lakki Marwat) and the other with a “humid subtropical
climate” (Orakzai). Based on the ecological zones, the former is mainly a “desert plain,” and
the latter is mainly a semi-arid piedmont. The geographic coordinates of each collection
site were obtained using Global Positioning System (GPS) and loaded into a Microsoft
Excel sheet to design a map using ArcGIS 10.3.1.3 (ESRI, Redlands, CA, USA) (Figure 1).
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Tick collection was carried out from March 2019 to February 2020 with a regular visit 

to the study area once a month. Ticks were randomly collected using forceps from differ-
ent vertebrate hosts, including cattle, Asian water buffaloes, horses, goats, sheep, dogs, 
and camels (Figure 2). Tick specimens were rinsed with distilled water followed by 70% 
ethanol and were stored in 100% ethanol in properly labeled tubes for onward molecular 
experiments. During tick collection, the relevant information regarding collection date, 
host type, and place of collection of the ticks were noted. 

Figure 1. Map showing tick collection sites in southern Khyber Pakhtunkhwa, Pakistan.

2.3. Tick Collection and Preservation

Tick collection was carried out from March 2019 to February 2020 with a regular
visit to the study area once a month. Ticks were randomly collected using forceps from
different vertebrate hosts, including cattle, Asian water buffaloes, horses, goats, sheep, dogs,
and camels (Figure 2). Tick specimens were rinsed with distilled water followed by 70%
ethanol and were stored in 100% ethanol in properly labeled tubes for onward molecular
experiments. During tick collection, the relevant information regarding collection date,
host type, and place of collection of the ticks were noted.
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Figure 2. Tick infestation on different hosts: Hy. dromedarii from camels (A). Ha. bispinosa from goats
(B). R. turanicus from sheep (C). Hy. anatolicum from male Asian water buffaloes (D). R. sanguineus
from dogs (E). R. turanicus from goats (F).

2.4. Morphological Identification of Ticks

Ticks were morphologically identified using stereo zoom microscope (SZ61, Olympus
Corporation, Tokyo, Japan) and standard morphological keys [6,25–33].

2.5. DNA Extraction and PCR

Before the genomic DNA extraction, ticks were washed with distilled water and dried
on sterile filter paper. The ticks were crushed with sterilized pestles in 1.5 mL sterile
Eppendorf tubes. Genomic DNA was extracted individually from each tick using the
phenol–chloroform method according to the standard protocol. The DNA pellet was
hydrated by adding 30 µL of nuclease-free water [34]. The quality and quantity of genomic
DNA were determined through Nano-Q (Optizen, Daejeon, Korea).

By using reference primers and PCR conditions (Table 1), the extracted DNA was
subjected to amplifying partial fragments of ticks cox1 and 16S rRNA genes and screened
for 16S rRNA of Anaplasma spp. in Table 2 through a PCR. Each PCR reaction was prepared
in a 20 µL reaction mixture and contained: 12 µL of DreamTaq MasterMix (Thermo Fisher
Scientific, Inc., Waltham, MA, USA), 1 µL of each forward and reverse primers (10 µM),
2 µL (50 ng/µL) genomic DNA template and 4 µL PCR water (nuclease-free). The DNA of
R. microplus and Rickettsia massiliae were used as positive controls for ticks and Anaplasma
spp., respectively, while PCR water (nuclease-free) was used as a negative control. The
amplified DNA was run on a 1.5% agarose gel, dyed with 2 µL ethidium bromide, and
observed by a Gel documentation system (BioDoc-It™ Imaging Systems UVP, LLC, Upland,
CA, USA).
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Table 1. Primers used for the detection of ticks and associated Anaplasma spp.

Organism/Gene Sequence (5′-3′) Amplicon Size PCR Condition Ref.

Ticks/cox1

cox1 F,
GGAACAATATATTTAATTTTTGG

cox1 R,
ATCTATCCCTACTGTAAATATATG

801 bp
95 ◦C 5 min, 40× (95 ◦C 30 s,

55 ◦C 60 s, 72 ◦C 1 min),
72 ◦C 5 min

[35]

Ticks/16S rRNA

16S+1,
CCGGTCTGAACTCAGATCAAGT

16S−1,
GCTCAATGATTTTTTAAATTGCTG

460 bp
95 ◦C 3 min, 40× (95 ◦C 30 s,

55 ◦C 60 s, 72 ◦C 1 min),
72 ◦C 7 min

[36]

Anaplasma spp./16S
rRNA

Ehr-F2, AGAGTTTGATCCTGGCTCAG
Ehr-R, AGTTTGCCGGGACTTYTTCT 1100 bp

95 ◦C 3 min, 35× (95 ◦C 30 s,
50 ◦C 30 s, 72 ◦C 1 min),

72 ◦C 7 min
[37]

Table 2. Prevalence of ticks and the detection rate of Anaplasma marginale.

Tick Species
Tick Life Stages

Total Ticks
(%)

Ticks
Subjected to

PCR
Infested Hosts

Anaplasma
marginale

Female •
(%) Male (%) Nymph

(%)
Positive
Ticks

Infection
Rate %

Hy. dromedarii 187 (47.9) 170 (43.6) 33 (8.5) 390 (20.8) 45 Camels, Sheep, Cattle 14 31.1

Hy. anatolicum 140 (47.6) 128 (43.5) 26 (8.9) 294 (15.7) 42

Cattle, Sheep, Goats,
Dogs, Asian water
buffaloes, Horses,

Camels

10 23.8

Hy. scupense 103 (49.7) 86 (41.6) 18 (8.7) 207 (11.0) 33 Cattle, Asian water
buffaloes, Horses 9 27.3

Hy. isaaci 33 (56.9) 19 (32.8) 6 (10.3) 58 (3.1) 15 Sheep, Cattle, Goats 0 0

Ha.
cornupunctata 51 (47.7) 42 (39.3) 14 (13) 107 (5.7) 8 Sheep, Goats 0 0

Ha.
montgomeryi 42 (48.3) 36 (41.4) 9 (10.3) 87 (4.6) 6 Goats, Sheep 0 0

Ha. bispinosa 26 (48.2) 18 (33.3) 10 (18.5) 54 (2.9) 8 Goats, Sheep 0 0

Ha. sulcata 21 (44.7) 17 (36.2) 9 (19.1) 47 (2.5) 7 Sheep, Goats 0 0

R. microplus 126 (48.1) 78 (29.8) 58 (22.1) 262 (14) 40
Cattle, Asian water

buffaloes, Sheep,
Goats, Dogs

12 30

R. turanicus 61 (50.4) 51 (42.2) 9 (7.4) 121 (6.5) 6 Sheep, Goats, Dogs,
Horses 0 0

R. sanguineus 71 (52.2) 52 (38.2) 13 (9.6) 136 (7.3) 30 Dogs, Sheep, Goats 6 20

R. haemaphysa-
loides 53 (48.2) 45 (40.9) 12 (10.9) 110 (5.9) 30 Dogs, Sheep, Goats 6 20

Total 914 (48.8) 742 (39.6) 217 (11.6) 1873 314 54 17.2

• Count for fully, partially and unengorged.

2.6. DNA Sequencing and Phylogenetic Analysis

Purification of PCR products was performed using GeneClean II Kit (Qbiogene, Il-
lkirch, France) following the manufacturer’s protocol. A total of 64 (cox1 40 and 16S rRNA
24) amplified PCR products for ticks and 18 (3 from each Anaplasma positive tick species
amplicons) for 16S rRNA Anaplasma spp. were submitted for bidirectional DNA sequencing
(Macrogen, Inc., Seoul, South Korea). The sequences were cropped to remove the primers
and poor reading regions through SeqMan V. 5 (DNASTAR). The obtained purified se-
quences were subjected to the Basic Local Alignment Search Tool (BLAST) [38] at National
Center for Biotechnology Information (NCBI), and the homologous sequences were down-
loaded. These sequences were aligned with obtained sequences along with an outgroup
in BioEdit Sequence Alignment Editor V. 7.0.5 (Raleigh, NC, USA) [39]. The phylogenetic
trees were constructed by using the Maximum-Likelihood model (1000 bootstrap replicons)
in Molecular Evolutionary Genetics Analysis (MEGA-X) [40].
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3. Results
3.1. Morphologically Identified Ticks

The morphological identification confirmed 12 tick species belonging to the three gen-
era of hard ticks. The genus Hyalomma included Hy. dromedarii, Hy. anatolicum, Hy. scupense
and Hy. isaaci, the genus Rhipicephalus contained R. microplus, R. sanguineus, R. haema-
physaloides, and R. turanicus, while the genus Haemaphysalis included Ha. montgomeryi, Ha.
bispinosa, Ha. sulcata and Ha. cornupunctata.

3.2. Prevalence of Ticks

A total of 1873 ticks were randomly collected from 443/837 infested hosts (cattle, Asian
water buffaloes, horses, goats, sheep, dogs, and camels) comprising Hyalomma (949/1873,
50.6%), Rhipicephalus (629/1873, 33.6%), and Haemaphysalis (295/1873, 15.8%). Overall, Hy.
dromedarii was the most prevalent species (390/1873, 20.8%), followed by Hy. anatolicum
(294, 15.7%), R. microplus (262, 14%), Hy. scupense (207, 11%), R. sanguineus (136, 7.3%),
R. turanicus (121, 6.5%), Ha. cornupunctata (107, 5.7%), R. haemaphysaloides (110, 5.9%), Ha.
montgomeryi (87, 4.6%), Hy. isaaci (58, 3.1%), Ha. bispinosa (54, 2.9%), and Ha. sulcata (47,
2.5%). Detailed data about each tick species’ number and percentage of life stages are
shown (Table 2).

3.3. Spatial Pattern of Ticks

The highest number of ticks were recorded from Lakki Marwat (679/1873, 36.3%),
followed by Orakzai (641/1873, 34.2%), and Bannu (553/1873, 29.5%). Herein, eight tick
species were reported representing two genera from Lakki Marwat in which Hy. dromedarii
(208/679, 30.6%) was the most abundant, followed by Hy. anatolicum (131/679, 19.3%), and
Hy. scupense (96/679, 14.1%). Eight tick species comprising two tick genera were recorded
from the Bannu district in which Hy. dromedarii (118/553, 21.3%) was the most abundant
species, followed by Hy. anatolicum (107/553, 19.3%), and R. microplus (87/553, 15.7%). In
contrast, Ha. cornupunctata (107/641, 16.6%) was the most dominant species in the Orakzai
district, followed by R. microplus (103/641, 16%) and Ha. montgomeryi (87/641, 13.5%).
Haemaphysalis species were only found in the Orakzai district, while we could not collect
these species in the other two districts. The details of each tick species reported from the
study area are provided (Figure 3).

3.4. Seasonal Abundance of Ticks

Tick abundance was highly fluctuated by seasonal variations. The highest number
of ticks were reported in summer (June–August) (1009/1873, 53.9%), followed by spring
(March–May) (522/1873, 27.9%), autumn (September–November) (230/1873, 12.3%), and
winter (Dec–Feb) (112/1873, 5.9%) (Figure 4). Details about the seasonal abundance of each
tick species in all four seasons are presented in the graph (Figure 4).
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3.5. Detection of Anaplasma spp. in Ticks

Anaplasma spp. was detected in 54 out of 314 selected ticks with a total infection rate
of 17.2% (54/314). Out of 12 examined tick species, Anaplasma spp. were detected in six
species, such as Hy. dromedarii, Hy. anatolicum, Hy. scupense, R. sanguineus, R. microplus and
R. haemaphysaloides. The highest infection rate was recorded in Hy. dromedarii 31.1% (14/45),
followed by R. microplus 30% (12/40), Hy. scupense 27.3% (9/33), Hy. anatolicum 23.8%
(10/42), and in each R. haemaphysaloides and R. sanguineus 20% (6/30), with no amplification
of Anaplasma DNA in the selected Haemaphysalis species. The detailed information regarding
the infection rate of the selected species is shown in Table 2.
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3.6. Sequencing Analysis

From the extracted tick DNA of 12 tick species, the partial fragments of cox1 were
amplified for eight tick species, whereas 16S rRNA was amplified for four tick species. Clean
cox1 sequences were obtained from eight tick species: Hy. dromedarii (743 bp), Hy. anatolicum
(791 bp), Hy. scupense (775 bp), Hy. isaaci (771 bp), Ha. bispinosa (728 bp), R. microplus
(800 bp), R. sanguineus (612 bp), and R. haemaphysaloides (797 bp), while 16S rRNA sequences
were obtained from four tick species: R. turanicus (398 bp), Ha. cornupunctata (394 bp), Ha.
montgomeryi (265 bp) and Ha. sulcata (396 bp). The identical sequences were considered
as a single consensus sequence. The BLAST results of the obtained cox1 sequences of Hy.
dromedarii, Hy. anatolicum, Hy. scupense, Hy. isaaci, Ha. bispinosa, R. microplus, R. sanguineus,
and R. haemaphysaloides showed maximum identities of 99–100%, with the same species
reported from Egypt, India, France, Pakistan, Bangladesh, and Iran. In the case of 16S rRNA,
the BLAST results of R. turanicus, Ha. montgomeryi and Ha. sulcata showed the highest
identities of 99.75%, 96.99%, and 98.75%, respectively, with the same species reported from
Afghanistan, China, and Pakistan, while the 16S rRNA sequence of Ha. cornupunctata
showed the maximum identity of 92% with the Ha. punctata reported from China, Turkey,
Italy, Spain, and Portugal. The 16S rRNA sequences (931 bp) of Anaplasma spp. were
subjected to BLAST and showed 100% identity with the A. marginale.

3.7. Phylogenetic Analysis

The phylogenetic tree for the cox1 sequences of Hy. dromedarii, Hy. anatolicum, Hy.
scupense, Hy. isaaci, Ha. bispinosa, R. microplus, R. sanguineus, and R. haemaphysaloides
were constructed combinedly with 49 sequences downloaded from NCBI based on the
maximum identity. In the phylogenetic tree, the obtained cox1 sequences were clustered
to the corresponding species reported from different countries, such as Hy. dromedarii
from Egypt and Tunisia, Hy. anatolicum from India, Egypt, and China, Hy. scupense from
France, Spain, China, and Turkey, Hy. isaaci from Pakistan, Ha. bispinosa from India and
Bangladesh, R. microplus from Pakistan, India, and China, R. sanguineus from Iran and
India, and R. haemaphysaloides from Pakistan, India, and China. In the case of 16S rRNA, the
phylogenetic tree of R. turanicus, Ha. cornupunctata, Ha. montgomeryi and Ha. sulcata was
constructed with 27 sequences downloaded from NCBI based on the maximum identity. In
the phylogenetic tree, 16S rRNA sequences of R. turanicus, Ha. montgomeryi and Ha. sulcata
clustered with the same species reported from Afghanistan, Pakistan, and China, while Ha.
cornupunctata clustered with the species of the same subgenus Ha. (Aboimisalis) punctata
reported from China, Turkey, Italy, Spain, and Portugal.

All the obtained cox1 sequences were uploaded to the GenBank under accession num-
bers: ON529118 (Hy. dromedarii), ON528934 (Hy. anatolicum), ON529973 (Hy. scupense),
ON529271 (Hy. isaaci), ON564620 (Ha. bispinosa), ON530885 (R. microplus), ON530888
(R. sanguineus), and ON529980 (R. haemaphysaloides). The obtained 16S rRNA sequences
were uploaded under accession numbers: ON911440 (R. turanicus), ON911369 (Ha. cor-
nupunctata), ON911371 (Ha. montgomeryi), and ON911372 (Ha. sulcata). The phylogenetic
trees of the obtained cox1 and 16S rRNA sequences are shown in Figures 5 and 6, respec-
tively.
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Figure 5. Maximum likelihood phylogenetic tree based on cox1 sequences of Hy. dromedarii, Hy. an-
atolicum, Hy. scupense, Hy. isaaci, Ha. bispinosa, R. microplus, R. sanguineus and R. haemaphysaloides. 
Haemaphysalis longicornis was used as an outgroup, using supporting values (1000 replicons) at each 
node. The scale bar indicates the number of substitutions per site. The obtained sequences were 
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Figure 5. Maximum likelihood phylogenetic tree based on cox1 sequences of Hy. dromedarii, Hy.
anatolicum, Hy. scupense, Hy. isaaci, Ha. bispinosa, R. microplus, R. sanguineus and R. haemaphysaloides.
Haemaphysalis longicornis was used as an outgroup, using supporting values (1000 replicons) at each
node. The scale bar indicates the number of substitutions per site. The obtained sequences were
represented with black circles.
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Figure 6. Maximum likelihood phylogenetic tree based on 16S rRNA sequences of R. turanicus,
Ha. cornupunctata, Ha. montgomeryi and Ha. sulcata. Haemaphysalis longicornis was used as an
outgroup, using supporting values (1000 replicons) at each node. The scale bar indicates the number
of substitutions per site. The obtained sequences were represented with black circles.

A total of 29 sequences of 16S rRNA for A. marginale were downloaded from GenBank
in FASTA format based on maximum identity with query sequences. In the phylogenetic
tree, the obtained partial 16S rRNA sequence of A. marginale clustered with the same
sequences reported from Kenya, Thailand, Australia, Pakistan, and China (Figure 7).
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The obtained partial 16S rRNA sequence of A. marginale was uploaded to the GenBank
(ON528757).
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Figure 7. Maximum likelihood phylogenetic tree based on the partial 16S rRNA sequence
of A. marginale. The Anaplasma boleense was used as an outgroup, using supporting values
(1000 replicons) at each node. The scale bar indicates the number of substitutions per site. The
obtained sequence was represented with a black circle.

4. Discussion

Pakistan has an agrarian economy where agriculture contributes approximately 21%
to gross domestic product (GDP) and 45% to the labor force [41]. Ticks pose severe threats
to the livestock and economy of the country. Knowledge regarding molecular surveillance
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of ticks and A. marginale and their host range in different physiographic is essential for
implementing adequate measures against these parasites in Pakistan. The present study
was executed in two distinct physiographic regions in southern KP, Pakistan. The targeted
areas were selected because ticks and tick-borne diseases are common in these regions
but mainly remained unexplored, and to compare tick diversity in two regions that are
geographically close but physiographically and climatically different. Herein, 12 tick
species were morphologically and molecularly identified. Four tick species, including Ha.
bispinosa, Ha. cornupunctata, Hy. dromedarii and Hy. isaaci were genetically characterized for
the first time from Pakistan. Furthermore, the molecular survey was conducted to screen
a subset of the collected 12 species for A. marginale, in which this pathogen was detected
in six species. Among these species, A. marginale was detected for the first time in Hy.
dromedarii, Hy. scupense, R. sanguineus and R. haemaphysaloides from Pakistan.

Environmental and climatic factors influence the distribution and prevalence of ticks
within a specific region [42]. Previous studies considered Hyalomma spp. as successful ticks
in harsh desert regions [43,44]. Similarly, as a larger proportion of the current study area was
a desert plain, the genus Hyalomma was the most prevalent, followed by genus Rhipicephalus
and Haemaphysalis. Herein, unlike [2,3,8], Hy. dromedarii was the most prevalent in the
region owing to the screening of a larger number of camels compared to other hosts.
According to the studies performed in the region [2,3,8], R. microplus and Ha. bispinosa
were the most prevalent tick species in the genus Rhipicephalus and genus Haemaphysalis,
respectively.

The highest prevalence of A. marginale occurs in those regions where R. microplus
is endemic [45]. This implies that R. microplus is one of the most competent vectors for
A. marginale. Comparatively, A. marginale was highly detected in Hy. dromedarii, followed by
R. microplus in the present study. This pathogen was also detected in four other tick species,
including Hy. anatolicum, Hy. dromedarii, R. sanguineus and Hy. scupense. To the best of our
knowledge, the detection of A. marginale in R. sanguineus is exceptionally rare [46], and
this pathogen has not been detected in Hy. scupense. However, experimentally it has been
demonstrated that this pathogen can be successfully transmitted by R. sanguineus [47,48].
Therefore, such unexpected outcomes need to be further evaluated because the presence
of a pathogen DNA in a tick species does not ensure it as a biological vector. Moreover,
a global increase in moments of infected/carrier livestock and/or tick-infested livestock
across international borders can further worsen the situation regarding this pathogen [49].

For the host range of ticks, the resemblance among hosts’ ecology might be more
significant than evolutionary similarity [50]. A wide host range was recorded for Hy.
anatolicum that could be attributed to its two or three host life cycle with the infestation on
different ungulates [51]. A comparatively wide host range was also noted for one host tick
species such as R. microplus. This might be due to common practices in the study area, such
as placing different hosts in the same shelter, overcrowded herds, and combined grazing.

Research has been focused on understanding the evolutionary history and taxonomy
of ticks and TBPs using standard genetic markers [36,52,53]. The mitochondrial gene
cox1 has been considered an appropriate genetic marker for understanding tick phyloge-
netic relationships, especially at the species level [52]. The 16S rRNA gene has also been
considered a reliable marker for tick identification [36,52] and is of prime importance in
evaluating bacterial phylogeny and taxonomy [54,55]. When taking these into account,
the cox1 sequences were obtained for eight tick species (Hy. dromedarii, Hy. anatolicum,
Hy. scupense, Hy. isaaci, Ha. bispinosa, R. microplus, R. sanguineus, and R. haemaphysaloides).
For the remaining four tick species (R. turanicus, Ha. cornupunctata, Ha. montgomeryi, and
Ha. sulcata), we were able to obtain only 16S rRNA sequences. The A. marginale associ-
ated with these ticks was molecularly assessed by targeting the partial 16S rRNA gene.
Except for Ha. cornupunctata, all other Haemaphysalis species were clustered with related
species reported from the Oriental and neighboring Palearctic zoogeographical regions
(Figures 5 and 6). In the cox1-based phylogenetic tree, the monophyletic clade containing
Ha. bispinosa was basal to the remaining ixodid tick species. In tick 16S rRNA-based tree,
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the monophyletic clade having Ha. sulcata was at a basal position to all other hard tick
species. The clade that had Ha. montgomeryi appeared as sister to the clade possessing both
Ha. obesa and Ha. parva. Before the genetic data, based on morphological resemblance,
these species were placed in the same subgenus Segalia of Haemaphysalis [56]. Due to the
lack of previous genetic data, Ha. cornupunctata was displayed individually as sister taxa to
the clade, which constitutes Ha. punctata. The closeness between these species has already
been well established from morphological similarities; accordingly, they were assigned
the same subgenus Aboimisalis of Haemaphysalis [6,56]. Hyalomma species were clustered
with related species from Oriental, neighboring Palearctic, and Afrotropic regions. In the
phylogenetic tree inferred from tick cox1, the clade formed by Hy. anatolicum clustered as
sisters to the clade of Hy. excavatum. This concurs with the morphological resemblance
among Hy. anatolicum and Hy. excavatum. The clade containing Hy. dromedarii was sister
to the clade formed by Hy. scupense (jointly with seven other Hyalomma species). In the
same phylogenetic tree, the clades of Hy. scupense and Hy. asiaticum were revealed as sister
taxa. These studies were concordant with previous demonstrations [57]. Hyalomma isaaci
clade appeared as a distinct species that did not support this species as a sub-species of
Hy. marginatum [58–60] but supported this species as a valid species [31]. Rhipicephalus
species clustered with the same species from Oriental and neighboring Palearctic regions.
In the tick cox1-based phylogenetic tree, the R. sanguineus clade appeared to be sister to the
R. turanicus clade, and both were jointly sister to the R. rossicus and R. pumilio clade. In
the phylogenetic tree inferred from tick 16S rRNA, R. turanicus, along with R. sanguineus
and R. linnaei, appeared to be sister to R. camicasi. These mentioned Rhipicephalus species
are included in the R. sanguineus species complex, and R. sanguineus from the temperate
lineage was found closest to R. turanicus [11,61]. Following a previous study [62], differ-
ent genetic groups were depicted within R. haemaphysaloides in the present phylogenetic
analysis. Rhipicephalus microplus of clade-c was found close to R. annulatus [3,11,63]. In
the phylogenetic tree based on bacterial 16S rRNA, the clade of A. marginale and A. ovis
clustered as a sister clade to the clade of A. centrale. This relatedness is also represented by
their ecological and epidemiological aspects because these three species commonly infect
ruminants [24].

5. Conclusions

In this study, 12 hard tick species were morphologically and molecularly identified;
among them, four species (Ha. bispinosa, Ha. cornupunctata, Hy. dromedarii, and Hy. isaaci)
were molecularly characterized for the first time from Pakistan. Notably, this is the first
report providing Ha. cornupunctata genetic data and preliminary phylogenetic analysis.
Furthermore, A. marginale was molecularly assessed in six tick species; among them, this
pathogen was molecularly detected for the first time in four tick species (Hy. dromedarii,
Hy. scupense, R. sanguineus, and R. haemaphysaloides) from Pakistan. Further studies should
assess the genetic diversity of ticks and associated Anaplasma spp. in the country. This
study might help in recognizing knowledge gaps and provide future direction to veterinary
and health authorities in controlling ticks and A. marginale.
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