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Abstract: Respiratory viral infections have been found to have a negative impact on neurological
functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has
precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence
suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current preva-
lence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns.
However, there needs to be a more comprehensive understanding of the specific pathways by which
SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on
the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which
SARS-CoV-2 invades the brain.
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1. Introduction

Respiratory diseases resulting from viral agents pose a significant challenge to pub-
lic health. Such conditions annually contribute to elevated levels of illness and death,
particularly among vulnerable populations such as youngsters, older adults, and individ-
uals with compromised immune systems [1]. The primary viral agents responsible for
respiratory diseases include coronavirus (CoV), influenza virus (IV), human respiratory
syncytial virus (hRSV, orthopneumoviruses), and human metapneumovirus (hMPV, metap-
neumoviruses) [2]. The primary transmission mode for these viruses is through direct
contact with contaminated objects or inhalation of suspended droplets [3,4].

All of these viruses share the common characteristic of being able to cause bronchiolitis
and pneumonia, resulting in a significant number of hospitalizations during each winter
season [5,6]. In addition to the seasonal viruses that affect the respiratory system, new
strains of these viruses periodically spread among people, resulting in epidemics or even
pandemics. Typically, these viruses belong to the RNA viral group, including influenza
A subtypes and strains of human coronaviruses. These viruses exist within an animal
reservoir and can traverse the species barrier, adapting to and infecting a new host [2,7].
The most recent emerging virus, known as severe acute respiratory syndrome coronavirus 2
(SARS-CoV2), was discovered in December 2019 in a person residing in the Chinese city of
Wuhan. This person showed severe pneumonia symptoms. The World Health Organization
(WHO) officially designated the illness as COVID-19 and labeled it a worldwide pandemic
of significant concern [2].

The similarity between SARS-CoV-2 and coronaviruses found in bats and pangolins
exceeds 90%, indicating a significant capacity for cross-species transmission [8]. The virus
has a spherical morphology similar to other coronaviruses (CoVs) [9,10], measuring around
100 nm in diameter. It is classified as a single-stranded positive-sense RNA virus. It consists
of four kinds of proteins: membrane (M) glycoprotein, spike (S) glycoprotein, envelope (E)
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glycoprotein, and nucleocapsid (N) protein [11]. Research revealed that the SARS-CoV-2
virus can attach to the angiotensin-converting enzyme 2 (ACE2) receptors. This binding
process occurs in the presence of a protein called S protein and requires the involvement of
the transmembrane protein serine protease 2 (TMPRSS2). Consequently, cells that express
ACE2 receptors become vulnerable to viral infection [12,13].

It is essential to acknowledge that, besides impacting the airways, this newly de-
veloping virus can also have severe consequences for various other areas of the human
body, such as the central nervous system (CNS). As a result, there is a potential escalation
in susceptibility to neurological illnesses and neurodegenerative conditions [1,14]. The
invasion of the CNS and its resulting pathology have been extensively investigated in infec-
tions caused by various viruses, including Japanese encephalitis virus (JEV), measles virus
(MV), human immunodeficiency virus (HIV), and Varicella-Zoster virus (VZV), among oth-
ers [15]. A growing interest exists in enhancing our understanding of the characteristics and
mechanisms associated with neurological manifestations [16,17]. Patients with severe res-
piratory illnesses exhibit various clinical signs associated with neurological abnormalities,
as outlined in Table 1.

Following the discovery of the first COVID-19 case in Wuhan, SARS-CoV-2 spread
quickly worldwide and infected many people; according to WHO data, the global count of
clinically confirmed COVID-19 cases exceeds 163 million, with a death toll of almost 3.3 million.
Initially, COVID-19 was characterized as a respiratory disease presenting symptoms such as
fever, tiredness, dyspnea, cough, and abnormal chest X-ray findings [18,19]. Additionally,
many COVID-19 patients experience neurological symptoms such as ataxia, headaches,
myalgia, drowsiness, hypogeusia, and hyposmia during infection [20–22]. SARS-CoV-2 has
been extensively investigated as a causative agent for numerous neurological disorders [23].

Table 1. Neurologic manifestations associated with severe viral respiratory infections.

Respiratory Viruses Virus Overview Neurological Complications Ref.

Human Coronaviruses
(SARS-CoV1, MERS-CoV,

SARS-CoV2)

â Coronaviridae family
â Positive-sense, single-stranded

RNA viruses with an envelope

â Encephalopathy
â Encephalitis
â Meningitis
â Anosmia & dysgeusia
â Seizures
â Stroke
â Neuromuscular disorders

[24–33]

Influenza A Viruses (H1N1,
H3N2, H5N1, H7N7)

â Orthomyxoviridae family
â Viruses with an enveloped

negative-sense single-stranded
RNA genome

â Encephalitis
â Seizures
â Guillain–Barré syndrome
â Reye’s syndrome
â Acute disseminated

encephalomyelitis
â Encephalopathy
â Loss of consciousness
â Confusion
â Transverse myelitis

[34–39]

Human Respiratory Syncytial
Virus/Orthopneumovirus

â Pneumoviridae family
â Virus with a filamentous

enveloped, negative-sense,
single-stranded RNA

â Encephalitis
â Seizures
â Status epilepticus
â Central apnea
â Encephalopathy

[37,40]

Human Metapneumovirus

â Pneumoviridae family
â A virus with a negative-sense,

non-segmented, single-stranded
RNA genome

â Encephalitis
â Focal seizures
â Status epilepticus

[41–43]

No matter what manifestations or damage in the CNS, neurologically impaired functions need to be restored.
Clinical reports of novel neurorestorative treatments have recently improved the neurological processes of patients
with CNS diseases and damage [44–48].
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However, the mechanisms by which SARS-CoV-2 impacts the CNS still need to be
fully understood. This paper comprehensively analyses previously recorded CNS and
PNS diseases associated with SARS-CoV-2. Additionally, we explore the various probable
pathways of neuroinvasiveness, aiming to enhance neurologists’ understanding of the
influence of SARS-CoV-2 on the CNS. This understanding will aid in diagnosing and
developing appropriate treatment strategies for COVID-19.

2. Respiratory Virus Transmission Routes to the Nervous System

The CNS serves as the primary regulatory entity of the human body and, therefore, re-
quires specific measures to safeguard it against internal and external threats [49,50]. Hence,
despite being closely related to the surrounding environment, the CNS is predominantly
shielded from unrestricted infiltration of harmful substances, infections, and circulating
antibodies in the bloodstream. This safeguarding is accomplished through the presence of
the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB), which are
situated in the choroid plexus located within the brain’s ventricles [51]. BBB maintenance
is ensured through tight junctions connecting the endothelial cells of cerebral microvessels,
the astrocytic end feet, pericytes, and the extracellular matrix [51]. However, it has been
noted that specific respiratory viruses possessing neurotropic characteristics can disturb
the tight junctions of the BBB and ultimately invade the cells inside the CNS.

Moreover, it has been observed that these viruses can get past the BBB by directly
infecting endothelial cells and pericytes through endocytic vesicles, a mechanism commonly
referred to as transcytosis. An alternative method of accessing the CNS is the “Trojan horse
approach”. This approach involves the exploitation of neurotropic viruses, which can
cross the BBB by employing infected monocytes or macrophages, commonly referred to
as hematogenous routes [52,53]. The section below will examine SARS-CoV-2’s various
transmission routes and their mechanisms.

3. Coronavirus

The Coronaviridae family comprises a group of RNA viruses initially identified in
the 1960s from individuals exhibiting symptoms of upper respiratory tract infections [54].
Human variants of coronavirus (HCoV), specifically alphacoronavirus and betacoronavirus,
are prevalent globally and typically manifest with the characteristic symptoms of HCoV,
such as rhinitis, pharyngitis, laryngitis, bronchitis, and otitis [55]. In 2002, a novel strain
of coronavirus known as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)
was discovered. This particular strain was found to have originated from bats. It was
transmitted to humans through an intermediate reservoir via zoonotic transmission [56],
and in contrast to the usual Human Coronavirus (HCoV) strains, SARS-CoV exhibited an
exceptionally high level of virulence. This was further exacerbated by acute respiratory
distress syndrome (ARDS), multiple organ dysfunction syndrome, and a mortality rate
reaching up to 10% in affected individuals [56,57]. Due to zoonotic transmission, the
Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a new coronavirus, was
discovered in 2012. A 35% fatality rate has been noted for this specific coronavirus strain,
which is linked to the emergence of severe respiratory symptoms [58]. In 2019, a novel
coronavirus strain, SARS-CoV-2, was identified. The viral pathogen has undergone rapid
dissemination, resulting in the emergence of a pandemic outbreak at the beginning of
2020. The virus exhibits a significant degree of homology with the SARS-CoV and is
responsible for developing severe and often fatal pneumonia known as COVID-19. The
clinical manifestations of this disease closely resemble those observed in cases of SARS-CoV
and MERS-CoV [59].

3.1. How SARS-CoV-2 Infections Affect the CNS
The Neuronal Pathway

The neuronal pathway serves as an essential pathway for neurotropic viruses to gain
access to the central nervous system (CNS). Viruses have the ability to disseminate through
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the infection of sensory or motor nerve endings, employing retrograde or anterograde
neural transport systems supported by motor proteins such as dynein and kinesins [53].
Olfactory neuron transport is an example of a neuronal pathway [2,60]. In the peripheral
nervous system (PNS), the olfactory nerve is the primary pathway through which the
SARS-CoV-2 virus infiltrates the CNS. This is primarily attributed to the higher presence of
transmembrane protein serine protease 2 (TMPRSS2) and angiotensin-converting enzyme
2 (ACE2) within the olfactory epithelium cells. These proteins facilitate viral binding and
accumulation [61–64]. The olfactory nerve can be classified as a CNS conduction loop rather
than a typical nerve, as it establishes direct contact with the brain (Figure 1) [65,66]. The olfactory
mucosa in the nasal cavity consists of neurons, basal cells, epithelial cilia, and Bowman’s
glands [67,68]. The nasal cavity contains a unique neuroepithelium specialized for olfaction,
characterized by sustentacular cells that primarily make up the apical surface [69]. Support
cells were found to have high amounts of TMPRSS2 and ACE2 [70], demonstrating their
susceptibility to SARS-CoV-2 infection [71].
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can develop into infected olfactory neurons. These infected olfactory neurons have synaptic connec-
tions with olfactory bulb (OB) neurons. The central nervous system (CNS) could subsequently be-
come infected. The OB is connected to numerous regions of the brain. This facilitates the spread of 
the virus to multiple brain regions quickly. Created with BioRender.com (https://app.bioren-
der.com/illustrations/64901c58f8f3b377cd55200b, accessed on 28 August 2023). 
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Figure 1. The olfactory nerve is a potential entry point for SARS-CoV-2 into the brain. The ACE2
receptor is involved in SARS-CoV-2 infection of the olfactory mucosa. Horizontal basal cells with
the ACE2 receptor are everywhere across the olfactory epithelium. Infection with SARS-CoV-2 is
likely due to the expression of ACE2 in human horizontal basal cells. Horizontal basal cells can
develop into olfactory neurons. We propose that horizontal basal cells infected with SARS-CoV-2 can
develop into infected olfactory neurons. These infected olfactory neurons have synaptic connections
with olfactory bulb (OB) neurons. The central nervous system (CNS) could subsequently become
infected. The OB is connected to numerous regions of the brain. This facilitates the spread of the
virus to multiple brain regions quickly. Created with BioRender.com (https://app.biorender.com/
illustrations/64901c58f8f3b377cd55200b, accessed on 28 August 2023).

In addition to the olfactory nerve, it has been suggested that SARS-CoV-2 may utilize
other possible peripheral nerves, such as the nasopharyngeal nerves, trigeminal, and vagus,
to access the brain. From an anatomical perspective, the vagus nerve is a component of
the digestive nervous system and establishes connections with digestive pathways that
exhibit heightened levels of NRP1 and ACE2 expression. ACE2 and TMPRRSS2 are found
in intestinal enteric neurons and glia, suggesting their vulnerability to SARS-CoV-2 [72].

https://app.biorender.com/illustrations/64901c58f8f3b377cd55200b
https://app.biorender.com/illustrations/64901c58f8f3b377cd55200b
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The gut–brain connection is significant in developing CNS diseases [73]. A comprehensive
analysis of 42 individuals diagnosed with COVID-19 revealed that around 66.67% of the
mentioned patients exhibited the presence of SARS-CoV-2 RNA in their stools [74]. In an
experimental setting, it was demonstrated that SARS-CoV-2 can infect the epithelial cells of
the human intestines [75]. Therefore, it is reasonable to conclude that enterocytes infected
with SARS-CoV-2 may potentially disseminate to neuronal and glial cells within the enteric
nervous system, ultimately leading to the invasion of the central nervous system via the
vagus nerve [61,76].

3.2. Hematogenous Route

The hematogenous pathway is a potential path through which SARS-CoV-2 may
gain access to the brain, as it involves circulating the virus within the bloodstream [1,2].
In this circumstance, the blood–brain barrier (BBB) is a frequently utilized pathway for
disseminating the virus to the central nervous system (CNS). SARS-CoV-2 infiltrates the
central nervous system (CNS) via the hematogenous pathway by employing two distinct
mechanisms. Firstly, it infects vascular endothelial cells, allowing them to pass through the
BBB. Secondly, it triggers inflammatory responses that lead to the disruption of the BBB.

3.2.1. SARS-CoV-2 Infection of Vascular Endothelial Cells and Crossing the BBB

Available reports show that the inflammation and disruption of epithelial barrier
cells facilitate the virus’s ability to infiltrate the lymphatic vessels and circulatory system,
subsequently leading to its dissemination to different organs, including the brain [23]. The
autopsy of lung tissue from five patients who tested positive for COVID-19 showed the
presence of viral proteins within the lungs’ capillaries. Furthermore, infection with the
SARS-CoV-2 virus resulted in the death of endothelial cells and damage to the capillar-
ies [77]. Although the incidence of SARS-CoV-2 detection in blood samples of COVID-19
patients remains relatively low, it does imply the potential for viral dissemination within
the bloodstream and subsequent involvement of various organs, including the brain [78].
Upon entering the bloodstream, the virus can quickly infect the endothelial cells within
the vasculature. This is facilitated by the presence of ACE2, TMPRSS2, and NRP1 expres-
sions [79]. Additionally, a comprehensive examination of the postmortem analysis of a
patient with COVID-19 revealed the presence of viral particles within both neural and
capillary endothelial tissues of the frontal cortex. This indicates that the virus can enter the
brain by infiltrating endothelial cells in the vascular system (Figure 2) [80]. Moreover, a
laboratory study conducted using human blood vessel organelles revealed the invasion
and replication of SARS-CoV-2. This finding supports the understanding of how infected
brain endothelial cells facilitate the entry of blood-borne viruses into the brain [81]. The
brain microvascular endothelial cells (BMVECs) represent a significant constituent of the
BBB. The primary role of the BBB is to safeguard the brain by impeding the hematogenous
infiltration of infections and toxic compounds into the CNS [82]. As a result, the virus must
get past the BBB and subsequently infect the brain via the hematogenous pathway.

The choroid plexus demonstrated more excellent permeability in the blood–cerebrospinal
fluid barrier than the BBB. Additionally, it was observed that the choroid plexus expressed
ACE2 and TMPRSS2 [72], suggesting that it could serve as an alternative pathway for the
invasion of the CNS by the virus.

Based on a study performed on a human choroid plexus model, it was observed that
SARS-CoV-2 not only exhibited infectivity towards choroid plexus cells but also resulted
in the disruption of the blood–cerebrospinal fluid barrier. This disruption presents an
additional pathway for the virus to gain access to the brain [83].
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Figure 2. SARS-CoV-2 may infect vascular endothelial cells via the ACE2 or NRP1 receptors. Viral
particles in the bloodstream can contaminate and replicate inside brain microvascular endothelial cells,
allowing them to cross the BBB. Infection of neurons by SARS-CoV-2 and increased permeability of the
BBB may account for COVID-19’s severe neurological manifestations. Created with BioRender.com
(https://app.biorender.com/illustrations/64cb6825bac8184af357a74a, accessed on 28 August 2023).

3.2.2. Immune Cells Initiate Cytokine Secretion in Response to SARS-CoV-2

The presence of a viral infection can lead to immune responses that have the potential to
induce damage to the nervous system. It is noteworthy to mention that SARS-CoV-2 possesses
the capability to infect immune cells, potentially leading to subsequent invasion of the CNS.
The activation of different immune cells, such as neutrophils, macrophages/monocytes, T cells,
and natural killer cells, has been observed in response to SARS-CoV-2. The immune cells
that have been activated can eliminate the virus by releasing cytokines such as interferon
(IFN), interleukin (IL), tumor necrosis factor (TNF), and chemokines [84–88]. Under typical
biological conditions, it is observed that pro-inflammatory factors and immune cells can
establish a positive feedback cycle, thereby contributing to the maintenance of cytokine
balance [84,89]. However, it is essential to note that infection with SARS-CoV-2 has been
observed to elicit an exaggerated immune response in specific individuals. This immune
response can initiate a systemic inflammatory response characterized by cytokine storms
(Figure 3). Consequently, the primary consequence of this inflammatory cascade is the
infliction of damage to blood vessels [90,91]. Cytokine storms have distinct effects on BBB
permeability, which may allow the virus or infected immune cells to reach the brain and
induce associated CNS symptoms [92,93].

Previous studies have demonstrated that macrophages and peripheral lymphocytes,
once infected, play a crucial role in facilitating the spread of the infection through the BBB,
meninges, and choroid plexus [90,94]. According to reports, SARS-CoV-2 has predom-
inantly infected human monocytes, while MERS-CoV has been observed to infect both
T cells and monocytes. In the meantime, it has been established that SARS-CoV-2 can
infect dendritic cells. Nevertheless, it was observed that both monocytes and macrophages
exhibited a small level of ACE2 expression. This suggests an unidentified mechanism that
potentially mediates the communication between the host’s natural immune system and
SARS-CoV-2. The precise method through which SARS-CoV-2 contaminates immune cells
is still not fully understood.

https://app.biorender.com/illustrations/64cb6825bac8184af357a74a


Microorganisms 2023, 11, 2511 7 of 21

Microorganisms 2023, 11, x FOR PEER REVIEW 7 of 22 
 

 

possesses the capability to infect immune cells, potentially leading to subsequent invasion 
of the CNS. The activation of different immune cells, such as neutrophils, macro-
phages/monocytes, T cells, and natural killer cells, has been observed in response to SARS-
CoV-2. The immune cells that have been activated can eliminate the virus by releasing 
cytokines such as interferon (IFN), interleukin (IL), tumor necrosis factor (TNF), and 
chemokines [84–88]. Under typical biological conditions, it is observed that pro-inflam-
matory factors and immune cells can establish a positive feedback cycle, thereby contrib-
uting to the maintenance of cytokine balance [84,89]. However, it is essential to note that 
infection with SARS-CoV-2 has been observed to elicit an exaggerated immune response 
in specific individuals. This immune response can initiate a systemic inflammatory re-
sponse characterized by cytokine storms (Figure 3). Consequently, the primary conse-
quence of this inflammatory cascade is the infliction of damage to blood vessels [90,91]. 
Cytokine storms have distinct effects on BBB permeability, which may allow the virus or 
infected immune cells to reach the brain and induce associated CNS symptoms [92,93]. 

Previous studies have demonstrated that macrophages and peripheral lymphocytes, 
once infected, play a crucial role in facilitating the spread of the infection through the BBB, 
meninges, and choroid plexus [90,94]. According to reports, SARS-CoV-2 has predomi-
nantly infected human monocytes, while MERS-CoV has been observed to infect both T 
cells and monocytes. In the meantime, it has been established that SARS-CoV-2 can infect 
dendritic cells. Nevertheless, it was observed that both monocytes and macrophages ex-
hibited a small level of ACE2 expression. This suggests an unidentified mechanism that 
potentially mediates the communication between the host’s natural immune system and 
SARS-CoV-2. The precise method through which SARS-CoV-2 contaminates immune cells 
is still not fully understood. 

 
Figure 3. SARS-CoV-2 infection can result in increased peripheral immunological responses, which 
can lead to BBB disruption. (A) Cytokine storms with high BBB permeability may allow viruses or 
infected immune cells to enter the brain. (B) Potential CNS pathogenic processes generated by 
COVID-19-induced severe peripheral hyperinflammation. In COVID-19, infected immune cells pen-
etrate the brain and produce cytokines that trigger glial cells, causing them to create pro-

Figure 3. SARS-CoV-2 infection can result in increased peripheral immunological responses, which
can lead to BBB disruption. (A) Cytokine storms with high BBB permeability may allow viruses or
infected immune cells to enter the brain. (B) Potential CNS pathogenic processes generated by COVID-
19-induced severe peripheral hyperinflammation. In COVID-19, infected immune cells penetrate
the brain and produce cytokines that trigger glial cells, causing them to create pro-inflammatory
cytokines, resulting in severe neurological symptoms. Created with BioRender.com (https://app.
biorender.com/illustrations/64eb7c1e6661a54a2025c481, accessed on 28 August 2023).

3.3. Expression of Essential Viral Infection Factors in the Nervous System

It is widely acknowledged that SARS-CoV-2 enters cells by utilizing ACE2 [12,21] with
the involvement of TMPRSS2 [62,70], primarily due to the significant expression of these
proteins in the pulmonary region. Moreover, extensive research suggests that the expression
of both ACE2 and TMPRSS2 is also observed in the brain but at lower tiers. According
to early immunohistochemistry research conducted by Lazartigue and colleagues, it was
shown that ACE2 is present in the nerve cells of rat brains rather than the cells called
glia [95]. Additionally, it has been determined that ACE2 plays a crucial role in regulating
blood pressure and developing disorders related to the autonomic nervous system.

The investigation of human ACE2 mutant mice and brain organoids demonstrated
that SARS-CoV-2 could infiltrate neurons and subsequently induce necrosis [96–98]. Fur-
thermore, it is worth noting that the spike protein of SARS-CoV-2 can potentially engage
with ACE2 receptors present in the endothelial cells of capillaries. This interaction raises
the possibility that the virus could cause harm to the blood–brain barrier and gain access
to the central nervous system by targeting the vascular system [99]. In addition to ACE2
and TMPRSS2, SARS-CoV-2 can invade other receptors or proteins, as shown in Table 2.
Currently, the distribution of ACE2 is primarily determined by the analysis of mRNA
data. However, it is essential to note that mRNA analysis does not fully capture the fully
functional ACE2 protein distribution. Consequently, it is vitally necessary to conduct
several immunohistochemical characterization studies.

https://app.biorender.com/illustrations/64eb7c1e6661a54a2025c481
https://app.biorender.com/illustrations/64eb7c1e6661a54a2025c481
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Table 2. SARS-CoV-2 infection-related receptors or proteins in the CNS.

Receptors/Protein Primary Expansion Area Reference

ACE2 Hypothalamus, Pituitary Gland [100–105]

TMPRSS2 Cerebellum, Hypothalamus,
Pituitary Gland [70,106,107]

NRP1 Olfactory Bulb [108]

BASIGIN Pituitary Gland, Frontal Cortex [109–112]

Cathepsin L Pituitary Gland, Spinal Cord [113,114]

4. Vascular Endothelial Growth Factor Cause Inflammation

Vascular endothelial growth factor (VEGF) displays a widespread distribution within
the CNS [115]. Its primary function is to regulate the processes of angiogenesis, proliferation
of endothelial cells, and permeability of blood vessels [32]. Furthermore, the interaction
between SARS-CoV-2 and ACE2 can activate the renin–angiotensin system, a pathway
implicated in the inflammatory response (Figure 4). This activation subsequently facilitates
the production of VEGF using the binding between angiotensin II (AngII) and angiotensin
II type 1 receptor (AT1R). In reality, VEGF increases angiogenesis in brain disorders and
damages the BBB by causing inflammatory reactions [116].
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Angiogenesis is generally accompanied by inflammation, which causes an increase in
vascular permeability and the recruitment of inflammatory cells [116]. The ACE2 enzyme
plays a crucial role in the catalytic process of converting Ang I and Ang II, Ang I to Ang
1-9 and Ang II to Ang 1-7, respectively [117,118]. When the SARS-CoV-2 virus interacts
with ACE2, it can deactivate this enzyme, which may cause an increase in the activation of
the ACE/AngII/AT1R axis, subsequently leading to the excessive synthesis of AngII. The
positive feedback of Ang II stimulated the growth of ACE2 in the brain infected with SARS-
CoV-2. VEGF, in turn, boosts Ang II, resulting in a cycle that releases pro-inflammatory
cytokines such as TNF-, IL-1, IL-6, IL-8, and ICAM-1 [119]. Furthermore, interleukin-6

https://app.biorender.com/illustrations/64e6045bf2e116b8a7af2194
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(IL-6) is an important inflammatory cytokine mediator linked to the severity of COVID-19
symptoms. It can be used as an indicator of COVID-19 severity [87,120].

5. Neurologic Symptoms of SARS-CoV-2 Infection

According to available data, the capability of SARS-CoV-2 to infect the neurological
system is becoming more apparent. Case reports and retrospective cohort studies have
been the primary sources of information regarding neurological symptoms of SARS-CoV-2
infection. China has conducted the first retrospective investigation on neurological symp-
toms [28,121,122]. Among the study group of 214 individuals diagnosed with COVID-19,
it was observed that 78 patients, or 36.4% of the study, displayed neurological symptoms.
The study revealed that individuals had acute cerebrovascular disease, impaired conscious-
ness, skeletal muscle injury, and neurological symptoms, including dizziness, headache,
nausea, blurred vision, tinnitus, fatigue, decreased taste sensation, and reduced sense of
smell [123] (Figure 5). One of the symptoms of COVID-19 is headache, with a frequency
of 6–13% [109,124–127]. It frequently occurs with other symptoms like fever and cough;
thus, it is not an isolated symptom. Hyposmia and hypogeusia were noted as symptoms
observed in individuals diagnosed with COVID-19, with reported prevalence rates varying
from approximately 5% [28,128] to as high as 70% [129] or even exceeding 79% [130,131].
The data presented in this study indicate that specific findings may possess prognostic
relevance in predicting the possibility of serious neurological problems. However, further
research needs to be done in prospective studies to assess the diagnostic significance of
neurological symptoms. This would greatly facilitate the early identification of patients at
risk for neurological complications.
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6. SARS-CoV-2-Related Disorders of the Nervous System

The possible neurological diseases induced by SARS-CoV-2 fall into three broad cate-
gories: (a) the neurological adverse effects of associated pulmonary and systemic disorders,
such as cerebrovascular disease; (b) the virus directly infiltrates the CNS, resulting in
encephalitis; and (c) possible immune-mediated conditions following an infection, like
Guillain–Barre syndrome (GBS) and other demyelinating diseases (Figure 6).
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6.1. Cerebrovascular Disease

Cerebrovascular disease is a group of diseases that affect the vessels that carry blood to
the brain and induce brain tissue injury due to disruptions in cerebral blood circulation [132].
The virus replication within the pulmonary tissue induces extensive alveolar and interstitial
inflammatory fluids and the production of hyaline membranes. This will result in abnormal
alveolar exchanges of gases, hypoxia of the CNS, an increase in the anaerobic breakdown of
brain tissue, the onset of edema between cells, blockage of cerebral circulation, resulting in
ischemia of cerebral circulation, and gradual deterioration of brain function as the pressure
in the brain rises [120,133–135]. It can also cause acute cerebrovascular disorders like
cerebral venous thrombosis, hemorrhage, and ischemic stroke (Figure 7).

Ischemic stroke is associated with many different viruses [136]. Stroke risk is increased
even though the infection is often localized to the periphery and there is no evidence of the
virus in the CNS. In these situations, systemic immunological activation is assumed to be
the primary pathogenic mechanism. Combined with the accompanying hypercoagulability
or endothelial dysfunction, this may result in vascular damage or the development of
thromboemboli [137,138]. In such cases, the pathogenic mechanism of stroke may be easier
to explain; however, CNS invasion does not rule out a role for systemic immune activation
in stroke pathogenesis (Figure 8).
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Acute ischemic stroke (AIS) is an emergent vascular complication in COVID-19
patients, with reported incidence rates ranging from 1% to 6% among hospitalized pa-
tients [139]. COVID-19 patients are more likely to have a stroke and have more severe
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symptoms and outcomes [140]. The classification of COVID-19 with ischemic stroke is
based on two distinct classes determined by the underlying mechanism of occurrence.

The first category comprises senior individuals with a medical background with
numerous coronary and cerebrovascular complications or who exhibit significant comor-
bidities before contracting the virus. These individuals are more susceptible to pulmonary
embolism incidents [141]. The second category primarily comprises relatively young in-
dividuals without coronary and cerebrovascular factors or associated medical conditions
before contracting the SARS-CoV-2 virus. This might be connected to how SARS-CoV-
2 affects various bodily systems [142–144]. The coagulation process is essential in this
phenomenon since around 25% of cases show evidence of systemic coagulation [145].

The initial inquiry explored the neurological signs observed in patients diagnosed
with COVID-19 in Wuhan, China, which was the pandemic’s epicenter. The study revealed
that out of the 214 patients included in the analysis, 78 individuals (36.4%) experienced
neurological problems [28]. Patients with severe COVID-19 exhibited a higher prevalence
of acute cerebrovascular disease than individuals with non-severe manifestations. It is
important to note that individuals with severe illness showed higher D-dimer levels than
non-severe infection [28].

The incidence of hemorrhagic stroke in individuals with COVID-19 is lower when
compared to ischemic stroke. However, the causal link between COVID-19 infection and
hemorrhagic stroke has not been demonstrated. Researchers performed a retrospective
analysis of 11 individuals with acute cerebrovascular disease who had contracted COVID-
19 in Wuhan. Among the patients, a 60-year-old man was identified as having a brain
hemorrhage 10 days after a severe COVID-19 infection. The patient died 13 days after the
stroke because of a high BP level (150/80 mmHg) [146].

According to Sharifi-Razavi et al., a 79-year-old man with a fever, cough, and acute loss
of consciousness 3 days later was recorded. Without a history of elevated blood pressure or
taking anticoagulant medication, the patient was admitted with a BP of 140/65 mmHg. In
addition to intraventricular and subarachnoid hemorrhages, a CT scan revealed a severe
intracerebral hemorrhage (ICH) in the right ventricle. However, CSF analysis was not
performed despite the oropharyngeal swab revealing COVID-19 infection [147].

Cerebral venous thrombosis (CVT) is less common than cerebral infarction and hemor-
rhage [148,149], with a total frequency of 0.3% [150]. COVID-19 causes a hypercoagulable
condition and systemic thrombosis, which includes CVT. Under the influence of COVID-19,
patients without congenital CVT risk factors can develop excessive coagulation and throm-
bosis, leading to CVT [151,152]. These results collectively suggest that COVID-19 can cause
cerebrovascular episodes, even though further thorough research is urgently needed. It is
crucial to understand this information to avoid and treat the symptoms of cerebrovascular
illness in COVID-19 individuals.

6.2. CNS Diseases by Direct Virus Transmission

Encephalitis is defined as inflammation of the brain parenchyma resulting from infec-
tions, which include neuronal destruction and nerve cell injury. The observation of viral
encephalitis in many individuals who have contracted SARS-CoV-2 has led to speculation
over the potential existence of this neurological consequence [153–157]. The presence of
SARS-CoV-2 within the CSF of patients infected with COVID-19 was confirmed by the
medical team working at Beijing Ditan Hospital using genome sequencing. This confirma-
tion provided clinical evidence of viral encephalitis [120]. This makes it very likely that
SARS-CoV-2 will cause encephalitis. However, images of brain tissue from SARS-CoV-2
cases showed no signs of inflammation [158].

Several autopsy findings indicate the presence of lymphocytic panencephalitis, menin-
gitis [159], partial neuronal atrophy, and brain edema [160]. Around cerebral blood arteries,
sparse or significant clumps of inflamed cells, mainly monocytes, have been seen. Soft focal
meningitis is also found [161].
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The prevalence of anosmia and ageusia is significantly elevated among people diag-
nosed with COVID-19. The prevalence of anosmia is more than 85.6%, whereas that of
ageusia is reported to be 88.0% [130]. Some research studies believe this phenomenon can
be attributed to the degeneration of olfactory sensory neurons resulting from many factors,
such as dysfunction of supporting cells, apoptosis triggered by inflammation, or potentially
direct infection [162]. However, the mechanism remains unclear. Symptoms in individuals
with mild COVID-19 lasted approximately 10 days, with 89% of patients recovering within
four weeks after diagnosis [163].

Brainstem encephalitis (BE) is a rare, severe, and quickly spreading inflammatory
condition affecting the brainstem. Multiple experiments and animal models have indicated
the potential transmission of SARS-CoV-2 to the brainstem nucleus via various pathways,
including the olfactory nerve, trigeminal nerve, facial nerve, glossopharyngeal nerve, vagus
nerve, dorsal root ganglia, etc. However, the evidence remains insufficient to support this
hypothesis conclusively [141]. Brain autopsy findings revealed the presence of neuronal
cell death and axonal degeneration exclusively inside the cerebral cortex. Further research
is required to prove the association between COVID-19 and encephalitis, as the current
understanding is based on theoretical pathways proposed in clinical observations and
neuronal colonization.

6.3. Nervous System Damage Induced by Abnormal Immune and Inflammatory Reactions

The etiology of numerous neurological disorders can be linked to increased inflam-
mation and immunological dysregulation resulting from infection. COVID-19 is not an
exception. Acute necrotizing encephalopathy (ANE) is an uncommon disease that typically
develops after a critical febrile illness, most commonly a viral infection, and is characterized
by brain damage (encephalopathy) [164]. The predominant imaging characteristics widely
observed include the presence of symmetrical multifocal lesions and the engagement of
the thalamus [29]. Autopsy findings indicate the presence of significant vasculitis, charac-
terized by varying levels of segmental and complete destruction of the endothelial cells.
Thrombosis primarily affects the vascular bed’s microcirculation. Additionally, there is
significant evidence of hemorrhagic necrosis, inflammation, and severe necrotizing damage
to the neurons. Localized cerebral edema may also be present [165].

Guillain–Barré syndrome (GBS) is an uncommon autoimmune condition characterized
by acquired nerve damage caused by the immune system, resulting in muscle weakness
and, in some cases, paralysis. In COVID-19 patients, most GBS variants have been iden-
tified [166]. According to specific research, 60% of GBS patients achieve partial to full
recovery [167]. In addition to its connection to ACE2, SARS-CoV-2 has been observed to
require sialic-acid-containing glycoproteins and gangliosides for cellular entry [168]. The
pathophysiology of GBS is tightly associated with these two sites as well. Hence, it is
possible that cross-reactivity could manifest as a viable method by which SARS-CoV-2 may
induce GBS [168].

Myalgia is a frequently encountered symptom seen in individuals diagnosed with
COVID-19. The condition’s prevalence varies from 3.36% to 64%, with an estimated total
prevalence of 19.3% [150,169]. In rare instances, myalgia and muscle injury have the poten-
tial to advance into the condition known as rhabdomyolysis [170]. The expression of ACE
on skeletal muscle may be the primary cause of myalgia [171]. Further diagnostic inves-
tigations, including muscle biopsy and antibody screening, are required for individuals
diagnosed with COVID-19 who exhibit indications of skeletal muscle damage.

6.4. Other COVID-19-Related Neurological Disorders

Myasthenia gravis (MG) is a persistent autoimmune condition characterized by the
destruction of nerve–muscle communication by antibodies, leading to skeletal muscle
weakening. Two new MG cases were identified in a survey of approximately 11,000 COVID-
19 patients [172]. The mechanism may be connected to immunological dysfunction and
infection-induced inflammation [173]. In addition, the research findings of another study
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revealed that out of 3558 patients diagnosed with Myasthenia Gravis (MG), 34 patients
contracted the COVID-19 virus at a low rate (0.96%) [174]. Most MG patients become more
seriously ill after contracting COVID-19. A total of 73% required mechanical ventilation,
87% required ICU care, and 30% passed away [175].

Multiple Sclerosis (MS) instances among individuals diagnosed with COVID-19 are
rare. In a recent study, only two cases were documented out of a sample size of approx-
imately 11,000 individuals [172]. In the context of multiple sclerosis (MS), it is essential
to examine the potential impact of disease-modifying therapy (DMT) on the vulnerability
of MS patients to contracting COVID-19. Nevertheless, it is necessary to note that the
available data on (MS) are limited in scope, and further research is needed.

According to recent studies, the prevalence of dementia among individuals diagnosed
with COVID-19 is reported to be 0.67% [176]. The average rate of newly diagnosed dementia
within 14–90 days after COVID-19 among individuals aged 65 and above is reported to
be 1.6% [177]. There is a significant correlation between dementia and the COVID-19
pandemic. Specific signs and symptoms associated with Alzheimer’s disease and related
dementia (ADRD) can heighten susceptibility to COVID-19 infection. These symptoms
encompass an impaired capacity to understand and comply with COVID-19 prevention
instructions and standards and alterations in personality and memory [178,179].

7. Conclusions and Future Perspectives

COVID-19 presents a significant challenge to the global community. The investigation
of the neurological implications of SARS-CoV-2 infections is a rapidly growing field among
neuroscientists. Even though SARS-CoV-2 is primarily responsible for respiratory problems,
mounting evidence points to the possibility of a neuroinvasion by this virus. SARS-CoV-
2 isolation from CSF, the discovery of the virus on olfactory receptors, and numerous
neurologic manifestations in COVID-19 patients have all provided evidence. CNS and
PNS problems have reportedly been noticed in these patients. However, it is difficult to
determine if CNS symptoms were caused by CNS infection or peripheral infection because
of blood clotting, hypoxia, and cytokine storms in severe patients. Furthermore, the method
by which SARS-CoV-2 invades the nervous system still needs to be better understood.

Currently, the potential pathways of SARS-CoV-2 neuroinvasion are:

4 Entry via the olfactory nerve;
4 Direct infection of vascular endothelial cells;
4 The initiation of inflammatory reactions that breach the BBB facilitates invasion.

All of the above routes are linked to ACE2 or NRP1; hence, the best optimal strategy
for investigating the mechanism by which SARS-CoV-2 infiltrates the CNS would involve
determining the respective distributions of NRP1 and ACE2. Understanding this wealth of
knowledge is essential for preventing and controlling CNS symptoms and facilitating the
rehabilitation process for those affected by COVID-19.

It is evident that the knowledge we have acquired thus far only scratches the surface,
and there is still a significant amount of information to be comprehended in this field to
facilitate effective therapeutic intervention.
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