
Citation: Ye, C.; Dong, C.; Lin, Y.; Shi,

H.; Zhou, W. Interplay between the

Human Microbiome and Biliary Tract

Cancer: Implications for

Pathogenesis and Therapy.

Microorganisms 2023, 11, 2598.

https://doi.org/10.3390/

microorganisms11102598

Academic Editor:

Seong-Tshool Hong

Received: 29 August 2023

Revised: 12 October 2023

Accepted: 19 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Interplay between the Human Microbiome and Biliary Tract
Cancer: Implications for Pathogenesis and Therapy
Cheng Ye 1,2 , Chunlu Dong 1,2, Yanyan Lin 1,2, Huaqing Shi 1,2 and Wence Zhou 1,3,*

1 The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; yech17@163.com (C.Y.);
dongcl1122@126.com (C.D.); ldyy_linyy@lzu.edu.cn (Y.L.); lzushq@163.com (H.S.)

2 Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
3 Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, China
* Correspondence: zhouwc129@163.com

Abstract: Biliary tract cancer, encompassing intrahepatic and extrahepatic cholangiocarcinoma as
well as gallbladder carcinoma, stands as a prevalent malignancy characterized by escalating incidence
rates and unfavorable prognoses. The onset of cholangiocarcinoma involves a multitude of risk factors
and could potentially be influenced by microbial exposure. The human microbiome, encompassing
the entirety of human microbial genetic information, assumes a pivotal role in regulating key aspects
such as host digestion, absorption, immune responses, and metabolism. The widespread application
of next-generation sequencing technology has notably propelled investigations into the intricate
relationship between the microbiome and diseases. An accumulating body of evidence strongly
suggests a profound interconnection between biliary tract cancer and the human microbiome. This
article critically appraises the existing evidence pertaining to the microbiome milieu within patients
afflicted by biliary tract cancer. Furthermore, it delves into potential mechanisms through which
dysregulation of the human microbiome could contribute to the advancement of biliary tract cancer.
Additionally, the article expounds on its role in the context of chemotherapy and immunotherapy for
biliary tract cancer.
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1. Introduction

Biliary tract cancer refers to a spectrum of invasive adenocarcinomas, including cholan-
giocarcinoma and gallbladder carcinoma [1]. Cholangiocarcinoma is further categorized
into intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (the latter
further divides into perihilar and distal cholangiocarcinoma). The incidence of biliary tract
cancer exhibits variation across subgroups and geographic regions, exhibiting a notable rise
over the years, particularly for ICC. In the United States, ICC’s incidence escalated from
0.44 to 1.18 cases per 100,000, while extrahepatic cholangiocarcinoma experienced a more
modest increase from 0.95 to 10.2 per 100,000 over a 40-year period [2]. Cholangiocarcinoma
has a poor prognosis and is usually identified at advanced stages. This typically occurs
when the primary tumor reaches a substantial size, resulting in a sizable liver mass, or
when jaundice develops due to obstruction in the biliary tree [3].

Epidemiological investigations have elucidated the involvement of multiple risk fac-
tors in the genesis of cholangiocarcinoma. Bile duct cysts, primary sclerosing cholangitis,
hepatolithiasis, cholelithiasis, and choledocholithiasis all exhibit associations with cholan-
giocarcinoma [4]. In addition, the liver fluke Opisthorchis viverrini is the main cause of
cholangiocarcinoma in Southeast Asia [5]. Host genetics, lifestyle choices, environmental
exposures, and other factors also influence the course of cholangiocarcinoma [4]. The term
“microbiome” pertains to the cumulative genetic makeup of microorganisms within a spe-
cific environment, carrying a pivotal role in immune regulation and safeguarding the host
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against pathogenic microbes [6]. Disruption of the gut microbiome has been implicated in
an array of conditions, encompassing cancer and metabolic disorders [7,8].

The advent of next-generation sequencing (NGS) technology has made microbiome
analysis more convenient, thereby fostering a substantial upsurge in research investigating
the interplay between the human microbiome and cancer. Mounting evidence underscores
the potential impact of the microbial milieu on individuals with biliary tract cancer [9].
Notably, individuals afflicted with biliary tract cancer often exhibit elevated levels of Enter-
obacteriaceae but diminished levels of Clostridia, including Faecalibacterium and Coprococcus.
Enterobacteriaceae see enrichment within the fecal samples of those with biliary tract cancer,
with over half of the Enterobacteriaceae identified in bile matching those present in fecal
samples at the operational taxonomic unit (OTU) level. These findings collectively hint
at the potential contribution of fecal microbiota dysbiosis to the development of biliary
tract cancer [10]. Within this review, we delve into the intricate relationship between the
digestive tract microbiome and biliary tract tumors, dissecting the role and significance of
the digestive tract microbiome in the realm of biliary tract cancer treatment.

2. Biliary Tract Cancer and the Human Microbiome
2.1. The Microbiome and Intrahepatic Cholangiocarcinoma

Intrahepatic cholangiocarcinoma (ICC) stands as a highly malignant form of primary
liver cancer, originating from the epithelial cells of intrahepatic bile ducts [1,11]. The
scarcity of typical clinical symptoms leads to a mere 22% of patients qualifying for surgical
intervention [12]. The emergence of cholangiocarcinoma is intricately tied to the carcino-
genic influence of chronic biliary inflammation [13]. While primary sclerosing cholangitis,
Caroli’s disease, and choledochal cysts share associations with all cholangiocarcinoma
variants, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis B exhibit a
stronger link with ICC [14].

Studies have unveiled a connection between the occurrence of ICC and gut dysbio-
sis [15–17]. Jia et al. analyzed gut microbiota and bile acid metabolism in patients with
ICC, systematically demonstrating the relationship among gut microbiota, bile acid, and
cytokine profiles. Comparatively, ICC displayed the highest α-diversity and β-diversity
when juxtaposed against patients with hepatocellular carcinoma, liver cirrhosis, and healthy
individuals. Notably enriched in ICC were Actinomyces, Lactobacillus, Peptostreptococcaceae,
and Alloscardovia. Furthermore, the glycoursodeoxycholic acid and tauroursodeoxycholic
acid (TUDCA) plasma-stool ratios were significantly increased in ICC, with the genera Lac-
tobacillus and Alloscardovia exhibiting positive correlations with the TUDCA plasma-stool
ratio. These biomarkers could be used to differentiate ICC from hepatocellular carcinoma
(HCC) [18]. Deng et al. conducted a comprehensive analysis encompassing a cohort of 40
healthy volunteers, 143 HCC patients, and 46 cholangiocarcinoma patients based on fecal
16S rRNA sequencing. The cholangiocarcinoma group displayed increased gram-negative
bacteria levels and inflammatory markers compared to the HCC group. They established
the gut microbiome-based model for liver cancer prediction and screening, divulging a
correlation between primary liver cancer-related gut microbiome characteristics and un-
favorable inflammatory response markers [19]. Similarly, Zhang et al. explored a gut
microbiota model covering the genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibac-
terium, and Ruminococcus_1 (B-F-R) for early cholangiocarcinoma diagnosis [20]. Moreover,
oral microbiota-targeted biomarkers have emerged as effective noninvasive diagnostic
tools for cholangiocarcinoma [21]. In instances of mice afflicted with primary sclerosing
cholangitis (PSC) and colitis, compromised gut barrier function facilitated the infiltration
of gut-derived bacteria and lipopolysaccharides (LPS) into the liver. The intestinal mi-
crobiome spurred CXCL1 expression in hepatocytes via TLR4-dependent mechanisms,
fostering the accumulation of CXCR2+ polymorphonuclear myeloid-derived suppressor
cells (PMN-MDSC). This mechanism created an immunosuppressive environment in hepa-
tocytes, thereby promoting ICC development [22]. Thus, the gut microbiome holds promise
as a potential ICC biomarker.
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Beyond the digestive tract microbiome, other facets of the microflora within ICC
patients have garnered attention. Chai et al. performed 16S rRNA sequencing, single-cell
RNA sequencing (scRNA-seq), and multilayer validation on cholangiocarcinoma tissues.
They verified the presence of microbial DNA in tissues via staining, fluorescence in situ
hybridization (FISH), and transmission electron microscopy (TEM). Intratumoral bacteria
manifest across multiple cell types, as evidenced by scRNA-seq [23]. Chng et al. found
that a distinct and tissue-specific microbiome dominated by the families Dietziaceae, Pseu-
domonadaceae, and Oxalobacteraceae was observed in the bile duct tissues. Compared to
paracancerous tissue and normal liver tissue, substantial variations in colonized flora were
noted in bile duct carcinoma tissue, with Stenotrophomonas species showing a significant
increase. The enrichment of specific enteric bacteria (Bifidobacteriaceae, Enterobacteriaceae,
and Enterococcaceae) correlated with parasite-associated cholangiocarcinoma [24]. Moreover,
intratumoral microbial composition held relevance in chemotherapy resistance within
cholangiocarcinoma [25]. Lee et al. isolated bacterial-derived extracellular vesicles from
the plasma of biliary tract cancer patients, dissecting microbiome composition via 16S
rDNA metagenomic analysis. Microflora composition showed variable percentages from
phylum to genus level. They formulated a predictive model for biliary tract cancer based
on variations in blood microbial composition. However, blood microbiome exploration
remains relatively nascent, necessitating further research to comprehend alterations and
underlying mechanisms [26].

2.2. The Microbiome and Extrahepatic Cholangiocarcinoma

Choledocholithiasis exhibits a clear correlation with extrahepatic cholangiocarcinoma
and serves as a potential risk factor for its development. This association may be attributed
to biliary bacterial infections [14]. Jan Bednarsch et al. conducted a study involving intra-
operative bile samples from patients with hilar cholangiocarcinoma to perform microbial
cultures. The results indicated a substantial colonization of the bile ducts by bacteria.
Among the most prevalent bacteria identified in the bile ducts were Enterococcus faecalis
(38.8%, 31/80), Enterococcus faecium (32.5%, 26/80), Enterobacter cloacae (16.3%, 13/80), and
Escherichia coli (11.3%, 9/80). Notably, reduced susceptibility of these bacteria to intraoper-
ative antibiotic prophylaxis was identified as an independent predictor of postoperative
abdominal infections [27]. Di Carlo et al. demonstrated that an unprecedented increase in
E. coli within the bile of cholangiocarcinoma patients corresponded to decreased survival
rates. This suggests that certain strains isolated from bile samples may be considered
as contributing to the group of risk factors in the carcinogenesis and/or progression of
hepatobiliary malignancies [28]. In addition, isolated biliary candidiasis may be associated
with a poor prognosis in patients with unresectable cholangiocarcinoma [29].

The utilization of next-generation sequencing technology has greatly facilitated the explo-
ration of the intestinal and biliary microflora. Extensive investigations have been conducted
on the bile microbiome of individuals with extrahepatic cholangiocarcinoma [30–32]. These
studies involve the collection of bile samples through ERCP from patients with cholangio-
carcinoma and cholangiolithiasis for 16S rRNA sequencing analysis. The analysis outcomes
revealed that the most abundant genera within the biliary microflora were Enterococcus,
Streptococcus, Bacteroides, Klebsiella, and Pyramidobacter. In comparison to cholangiolithi-
asis cases, levels of Bacteroides, Geobacillus, Meiothermus, and Anoxybacillus genera were
significantly elevated in the biliary microbiota of patients with extrahepatic cholangiocar-
cinoma [30,31]. Noteworthy discrepancies exist in the microbial communities present in
the bile of choledocholithiasis and cholangiocarcinoma patients. These bacteria potentially
play a partial role in the onset of cholangiocarcinoma and could serve as novel biomarkers
for this condition [33].

Aviles-Jimenez et al. collected bile duct epithelial cells via brushing from 100 patients
with extrahepatic cholangiocarcinoma and 100 patients with benign biliary diseases during
ERCP. Their analysis of DNA extractions revealed reduced levels of Nesterenkonia but in-
creased levels of Methylophilaceae, Fusobacterium, Prevotella, Actinomyces, Novosphingobium,
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and H. pylori in extrahepatic cholangiocarcinoma cases. They verified the potential role of
H. pylori in the development of extrahepatic cholangiocarcinoma [34]. Miyabe et al. identi-
fied a distinctive microbial signature in the bile of patients with prolonged PSC duration
or those with cholangiocarcinoma, suggesting a role for microbiota-driven inflammation
in the pathogenesis or progression of perihilar cholangiocarcinoma [35]. Thus, the micro-
biome of the digestive tract emerges as a pivotal factor in the development of extrahepatic
cholangiocarcinoma. Table 1 presents studies evaluating microbial composition in patients
with biliary tract cancer.

2.3. The Microbiome and Gallbladder Cancer

Gallbladder cancer is a prevalent malignancy affecting the biliary tract, and its prog-
nosis is notably grim when diagnosed at an advanced stage due to its aggressive nature
and limited treatment avenues. Prolonged chronic inflammation plays a pivotal role in the
development of gallbladder cancer, irrespective of whether it originates from gallstones or
other sources [36]. Multiple studies have indicated a heightened risk of gallbladder cancer
in the presence of bacterial infections. Notably, analysis of bile samples from gallbladder
cancer patients revealed a substantial increase in bacterial taxa [37]. It is plausible that
chronic bacterial infection of the bile, leading to the production of carcinogenic precursors,
is among the causative factors underlying the emergence of gallbladder carcinoma [38].
The persistent presence of certain bacteria triggers chronic inflammation, giving rise to
toxins and metabolites with carcinogenic potential. These elements contribute to the
transformation of gallbladder epithelial cells [39].

Tsuchiya et al. conducted a study comparing bacteria found in bile samples from
gallbladder cancer patients and those with cholelithiasis. The study highlighted that the
incidence of bacterial infection in bile was 42.9 percent for gallbladder cancer patients,
compared to 13.3 percent for cholelithiasis patients. The dominant species identified in the
bile of gallbladder cancer patients included Fusobacterium nucleatum, Escherichia coli, and
Enterobacter sp., while the bile from cholelithiasis patients primarily contained Escherichia
coli, Salmonella sp., and Enterococcus gallinarum [40]. Another study hints at a potential
correlation between a dysbiotic bile microbiome and the development of chronic calculous
cholecystitis and gallbladder cancer. Patients with chronic cholecystitis and an imbalanced
microbiome pattern exhibited larger gallstones and notable epithelial abnormalities, con-
sidered precancerous conditions. These findings suggest the potential involvement of
Enterobacteriaceae, including Klebsiella, in gallbladder carcinogenesis [41].

The chronic presence of Salmonella typhi in gallbladder disease may contribute to
the onset of gallbladder cancer [42]. Meta-analysis indicated that chronic Salmonella typhi
infection correlated with an increased risk of gallbladder cancer, representing a significant
risk factor for the condition [43,44]. Experimental evidence underscores the ability of
Salmonella enterica to facilitate the transformation of genetically predisposed cells, ultimately
acting as a causative agent of gallbladder cancer. This bacterium induces malignant
transformation in susceptible mice, murine gallbladder organoids, and fibroblasts by
triggering TP53 mutations and c-MYC amplification. Mechanistically, the activation of
MAPK and AKT pathways, mediated by Salmonella enterica effectors released during
infection, is instrumental in both initiating and sustaining transformation [45]. Beyond
Bacillus typhoid, infection with specific strains of H. pylori has also been linked to an increased
risk of biliary tract cancer [46,47]. Experimental data suggests that Helicobacter bilis infection
activates transcription factors such as NFKB, leading to enhanced angiogenesis through
VEGF production. The involvement of Helicobacter bilis infection may be significant in
biliary tract malignancies [48].

In a study by Song et al., mucosal DNA extraction and metagenomic sequencing were
employed to compare the microbiota between patients with chronic calculous cholecystitis
and gallbladder cancer. This analysis revealed substantial differences in biliary micro-
bial composition and gene function between the two groups. Peptostreptococcus stomatis
and Enterococcus faecium were identified as potential contributors to the progression of
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gallbladder cancer [49]. Furthermore, a notable connection was established between the
relative abundance of specific microbes and the overall survival prognosis of patients
with pancreaticobiliary tract cancer [50]. Hence, targeting bacterial infections through anti-
inflammatory treatments and hygiene practices could potentially mitigate the incidence of
gallbladder cancer.

Table 1. Studies evaluating microbial composition in patients with biliary tract cancer.

Author, Year Biological
Specimens

Sampling
Methods

Tumor Site
and Size Main Conclusion

Chen, 2019
[30] bile ERCP dCCA, 8

Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are the most
dominant phyla in the bile.

Gemmatimonadetes, Nitrospirae, Chloroflexi, Latescibacteria, and Planctomycetes
in the phylum increase in dCCA patients compared with the onset of

common bile duct stones patients.

Avilés-
Jiménez, 2016

[34]

biliary duct
epithelial cells

Brushing
during ERCP eCCA, 100

Phylum Proteobacteria dominated all samples (60.4% average).
Nesterenkonia decreased, whereas Methylophilaceae, Fusobacterium, Prevotella,

Actinomyces, Novosphingobium, and H. pylori increased in eCCA.
Predicted associated functions showed an increased abundance of H. pylori

virulence genes in eCCA.

Saab, 2021
[31] bile ERCP eCCA, 28

Proteobacteria did not significantly differ between eCCA patients and controls.
The most abundant genera were Enterococcus, Streptococcus, Bacteroides,

Klebsiella, and Pyramidobacter in eCCA’s biliary microbiota.
Levels of Bacteroides, Geobacillus, Meiothermus, and Anoxybacillus genera were

significantly higher in eCCA patients’ biliary microbiota, without an
associated disease, in comparison with controls.

Li, 2022 [32] bile ERCP pCCA, 14
dCCA, 9

The top three biomarkers for pCCA at the genus level were Pseudomonas,
Sphingomonas, and Halomonas; for dCCA, they were Streptococcus, Prevotella,

and Halomonas.

Miyabe, 2022
[35] Bile and stool ERCP CCA (mainly

pCCA), 49
Increased species richness and abundance of Fusobacteria were correlated

with the duration of PSC and characterized the biliary microbiota in CCA.

Ito, 2022 [10] Bile and stool ERCP
iCCA, 12
eCCA, 12

GBC, 6

A higher Enterobacteriaceae abundance and a lower Clostridia abundance,
including that of Faecalibacterium and Coprococcus, in the BTC patients than in

the other subjects.
A bile-isolated strain possessed the carcinogenic bacterial colipolyketide

synthase-encoding gene.

Di Carlo, 2019
[28] bile ERCP CCA, 42

GBC, 5

E. coli and P. aeruginosa were significant negative predictors of CCA.
About GBC, there were no significant correlations with E. coli, K. pneumoniae,

or P. aeruginosa.

Pomyen, 2023
[51] stool - iCCA, 19

Two Veillonella species were found to be more abundant in iCCA samples
and could distinguish iCCA from HCC and healthy controls.

Ruminococcus gnavus was depleted in iCCA patients and could distinguish
HCC from iCCA samples.

High Veillonella genus counts in the iCCA group were associated with
enriched amino acid biosynthesis and glycolysis pathways.

Chai, 2023
[23] tissues surgery iCCA, 99

The most abundant bacterial orders include Burkholderiales, Pseudomonadales,
Xanthomonadales, Bacillales, and Clostridiales.

The content of Paraburkholderia fungorum was significantly higher in the
paracancerous tissues.

Deng, 2022
[19] fecal - CCA, 46 Gammaproteobacteria were significantly higher in both gemcitabine- and

cisplatin-resistance groups compared to sensitive groups.

Jia, 2020 [18] stool and
blood - iCCA, 28

The abundances of four genera (Lactobacillus, Actinomyces,
Peptostreptococcaceae, and Alloscardovia) were increased in patients with ICC

compared with those in patients with hepatocellular carcinoma or liver
cirrhosis and in healthy individuals.

The glycoursodeoxycholic acid and tauroursodeoxycholic acid (TUDCA)
plasma-stool ratios were obviously increased in patients with ICC.

Chng, 2016
[24] tissue - CCA, 60

A distinct, tissue-specific microbiome dominated by the bacterial families
Dietziaceae, Pseudomonadaceae, and Oxalobacteraceae was observed in bile duct

tissues.
Several bacterial families, with a significant increase in Stenotrophomonas

species distinguishing tumors from paired normals.
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3. The Effect of Dysbiosis on Biliary Tract Cancer and Its Precancerous Lesions

The impairment of intestinal barrier function facilitates the buildup of gut-derived
bacteria and LPS within the portal vein. This process triggers the accumulation of myeloid-
derived suppressor cells (MDSC) via TLR4-dependent mechanisms, thus fostering immune
evasion and driving the advancement of CCA. Fecal microbiota transplantation (FMT) has
been shown to encourage MDSC accumulation in the liver using fecal samples from mice
with intestinal disorders. However, pre-treating donor mice with neomycin to eliminate
gram-negative bacteria counters this effect. The MDSC induced by gram-negative bacteria
assumes a pivotal role in amplifying cholangiocarcinoma progression [22,52].

Primary sclerosing cholangitis (PSC), an immune-associated cholangitis, is linked to a
heightened risk of cholangiocarcinoma and gallbladder cancer [53,54]. Evidence indicates
that the dysregulation of the microflora is implicated in the pathogenesis of PSC [55,56].
Patients with PSC display disruptions in the upper digestive tract and bile duct microbiota.
Biliary dysbiosis is correlated with elevated levels of the proinflammatory and potentially
cancerogenic agent taurolithocholic acid [57].

Over the past decade, an array of studies involving both humans and animal models
have underscored the role of the microbiome in various segments of the gastrointestinal
tract in the development of gallstone disease [58]. Changes in the gastrointestinal micro-
biome may reshape the pathogenesis of cholesterol gallstone formation. Alterations in
the oral microbiome influence the expression of mucin genes via immune modulation.
This, in turn, modifies the accumulation of mucin gel, thereby heightening the risk of
bile supersaturation and ultimately accelerating the process of gallstone formation [59,60].
The presence of Helicobacter pylori infection contributes to the formation of cholecystic
polyps and gallstones [61] and affects the pathophysiology of gallstone formation along
with its associated complications such as cholecystitis, cholangitis, pancreatitis, and biliary
cancer [62]. Intestinal bacteria (Clostridium, Bifidobacterium, Peptostreptococcus, Bacteroides,
Eubacterium, and Escherichia coli) involved in bile acid oxidation and epimerization can
disrupt enterohepatic circulation, culminating in gallstone formation [58,63]. Hence, the
disruption of the human flora equilibrium propels the progression of biliary tract cancer
and its precancerous lesions.

4. Potential Role of Microbes in Chemotherapy and Immunotherapy for Biliary
Tract Cancer

Immunotherapy stands as a pivotal approach for treating malignant tumors; its effi-
cacy is influenced by intestinal flora and environmental factors [64,65]. The significance
of the gut microbiome in various metabolic and signaling pathways, as well as its role
in carcinogenesis, has been somewhat underestimated. Presently, it garners widespread
attention as a critical avenue to bolster immunotherapy responses [66]. Demonstrated
effects of the microbiota on cancer initiation, progression, and treatment response have
hinted at potential contributions to susceptibility to specific cancers and possibly influ-
encing treatment outcomes [67,68]. The correlation between the gut microbiome and the
response to immune checkpoint inhibitors (ICI) is emerging as an intriguing area. The gut
microbiome is linked to tumor immune resistance. The strategic combination of probiotics
with ICI may aid in reshaping the microbiome [69].

Despite early clinical trials showing a relatively modest response rate of immunocheck-
point therapy (ICT) in cholangiocarcinoma [70], its therapeutic potential remains underex-
plored. Although potential MDSCs have been detected in cholangiocarcinoma, their exact
role in its pathogenesis has remained unclear [52]. Recent studies have illuminated the
potential of targeting MDSCs in other cancers to activate anti-tumor immune responses
and amplify the effectiveness of ICTs [71,72]. Through the amalgamation of intestinal
barrier dysfunction, the intestinal microbiome, and MDSC regulation, Zhang introduces a
novel paradigm where inflammatory bowel diseases (IBD) and PSC may foster immuno-
suppression, thus molding the liver microenvironment conducive to cholangiocarcinoma
progression [22]. The outcomes propose a variety of novel targets for intervening in cholan-
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giocarcinoma growth, encompassing gram-negative intestinal bacteria, TLR4, CXCL1,
CXCR2, and MDSCs themselves. This pivotal step in reversing the immunosuppressive
microenvironment holds promise for heightening immunotherapy strategies, including
ICT. In a study by Mao et al., the gut microbiome’s association with the clinical response
to anti-PD-1 immunotherapy in hepatobiliary cancer patients was unveiled. Taxonomic
signatures enriched in responders prove to be effective biomarkers for predicting clinical
response and survival benefits from immunotherapy. This discovery offers a potential
therapeutic target for modulating responses to cancer immunotherapy [73]. The microbiota
may have exciting implications for therapeutic strategies for the microbiota-immune system
axis in cholangiocarcinoma [74]. Microorganisms could potentially serve as drug targets
for cholangiocarcinoma treatment, with fecal microbiota transplantation (FMT) potentially
aiding in rectifying biological imbalances and optimizing anti-tumor immune responses.
However, this therapeutic approach warrants further investigation.

5. The Role of Bacterial Metabolites in the Progression of Biliary Tract Cancer

In recent years, metabolomics has gained widespread utilization in hepatobiliary
diseases, demonstrating significant advantages in understanding disease pathogenesis [75].
Analysis of the humoral metabolome is emerging as a promising diagnostic strategy,
potentially linked to disease progression [76]. Bile acids are metabolized by enzymes
produced by gut bacteria and are essential for maintaining a healthy gut microbiome
and innate immunity. The liver–bile acid–microbiota axis plays an important role in
gastrointestinal carcinogenesis [77,78]. Murakami et al. validated the connection between
ICC and lipid metabolism as well as bile secretion, elucidating their participation in the
metabolic reprogramming of ICC [79]. Furthermore, distinct alterations in plasma bile acid
concentrations have been identified as potential diagnostic biomarkers for distinguishing
cholangiocarcinoma from benign biliary diseases and healthy individuals [80]. Likewise,
specific changes in serum metabolite levels contribute to the differentiation between ICC,
HCC, and PSC [81].

Liu et al. observed high expression of S1PR2 in both rat and human cholangiocarci-
noma cells, as well as in human cholangiocarcinoma tissues. They revealed that conjugated
bile acids can promote the aggressive growth of cholangiocarcinoma cells through S1PR2
signaling [82]. In another study, Li et al. conducted GC-MS-based metabolomics experi-
ments on ICC and intrahepatic bile duct stone (IBDS) pathological tissues, along with ICC
para-carcinoma tissues. Their findings emphasized that the metabolic disparities between
IBDS and ICC mainly revolve around linoleic acid metabolic pathways. Perturbations in
the linoleic acid pathway might contribute to the potential malignant transformation of
intrahepatic bile duct stones into ICC [83]. Chai et al. discovered that results from both
in vitro and in vivo experiments strongly support the idea that P. fungorum demonstrates
anti-tumor activity by modulating alanine, aspartate, and glutamate metabolism [23].
Figure 1 shows the relationship between human microbiome, metabolites and biliary tract
cancer. Research on microbial metabolites in hepatobiliary diseases has gradually attracted
attention, contributing to the understanding of disease mechanisms.



Microorganisms 2023, 11, 2598 8 of 12Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 1. Association between the human microbiome, metabolites and biliary tract cancer. 

6. Future Directions 

The symbiotic microbial community within the human body represents a crucial el-

ement of human microbial equilibrium. Maintaining the stability of this microbial com-

munity might hold the key to averting tumorigenesis. 

The current research on the microbiota in cholangiocarcinoma is constrained by fac-

tors such as sample quality and environmental interference. There can be significant bio-

logical variations among cholangiocarcinoma patients, including factors like tumor loca-

tion, size, and differentiation level, leading to considerable variability in microbiota com-

position. Additionally, microbial communities are influenced by environmental factors 

such as diet and lifestyle, which may impact research outcomes. Microbiome profiling 

techniques may face limitations in terms of technical sensitivity and specificity, potentially 

resulting in the under-detection or misidentification of certain microorganisms. While al-

terations in microbiota composition associated with cholangiocarcinoma have been ob-

served, further empirical evidence is needed to determine whether these microorganisms 

play a causal role or are merely correlated with the disease. 

The intestinal flora, potentially serving as a non-invasive diagnostic biomarker for 

cholangiocarcinoma, holds promise as a tool for early diagnosis, prediction, and even as 

a future therapeutic target in biliary tract cancer. This approach could enhance the pro-

spects of successful treatment. Envisioned is the continuous enhancement of cancer chem-

otherapy and immunotherapy efficacy through the utilization of gut flora. Distinct shifts 

in gut flora composition might lead to the production of specific metabolites that could be 

identified and exploited for early diagnosis. However, comprehensive comprehension of 

the mechanisms behind microbial-driven carcinogenesis remains a priority. More clinical 

and fundamental investigations are imperative. Moving forward, large-scale cohort stud-

ies are necessary to deeply analyze the microbiome using a multi-omics approach. Simul-

taneously, heightened focus should be directed towards elucidating the functions of the 

microbiome and its metabolites to gain a deeper understanding of the mechanisms un-

derlying microbiome-related carcinogenesis. This understanding can then be harnessed 

to refine strategies for preventing, diagnosing, and treating biliary tract cancer. As our 

understanding of the intricate connection between the microbiome and biliary tract cancer 

deepens, the microbiome is poised to become a pivotal factor in cancer prevention and 

treatment. However, further research is indispensable to fully grasping its role and trans-

lating this knowledge into effective clinical strategies. 

Figure 1. Association between the human microbiome, metabolites and biliary tract cancer.

6. Future Directions

The symbiotic microbial community within the human body represents a crucial
element of human microbial equilibrium. Maintaining the stability of this microbial com-
munity might hold the key to averting tumorigenesis.

The current research on the microbiota in cholangiocarcinoma is constrained by factors
such as sample quality and environmental interference. There can be significant biological
variations among cholangiocarcinoma patients, including factors like tumor location, size,
and differentiation level, leading to considerable variability in microbiota composition.
Additionally, microbial communities are influenced by environmental factors such as diet
and lifestyle, which may impact research outcomes. Microbiome profiling techniques may
face limitations in terms of technical sensitivity and specificity, potentially resulting in
the under-detection or misidentification of certain microorganisms. While alterations in
microbiota composition associated with cholangiocarcinoma have been observed, further
empirical evidence is needed to determine whether these microorganisms play a causal
role or are merely correlated with the disease.

The intestinal flora, potentially serving as a non-invasive diagnostic biomarker for
cholangiocarcinoma, holds promise as a tool for early diagnosis, prediction, and even as a
future therapeutic target in biliary tract cancer. This approach could enhance the prospects
of successful treatment. Envisioned is the continuous enhancement of cancer chemotherapy
and immunotherapy efficacy through the utilization of gut flora. Distinct shifts in gut flora
composition might lead to the production of specific metabolites that could be identified and
exploited for early diagnosis. However, comprehensive comprehension of the mechanisms
behind microbial-driven carcinogenesis remains a priority. More clinical and fundamental
investigations are imperative. Moving forward, large-scale cohort studies are necessary to
deeply analyze the microbiome using a multi-omics approach. Simultaneously, heightened
focus should be directed towards elucidating the functions of the microbiome and its
metabolites to gain a deeper understanding of the mechanisms underlying microbiome-
related carcinogenesis. This understanding can then be harnessed to refine strategies
for preventing, diagnosing, and treating biliary tract cancer. As our understanding of
the intricate connection between the microbiome and biliary tract cancer deepens, the
microbiome is poised to become a pivotal factor in cancer prevention and treatment.
However, further research is indispensable to fully grasping its role and translating this
knowledge into effective clinical strategies.
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