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Abstract: Since COVID-19 has brought great challenges to global public health governance, develop-
ing methods that track the evolution of the virus over the course of an epidemic or pandemic is useful
for public health. This paper uses anomaly detection models to analyze SARS-CoV-2 virus genome
k-mers to predict possible new critical variants in the collected samples. We used the sample data
from Argentina, China and Portugal obtained from the Global Initiative on Sharing All Influenza Data
(GISAID) to conduct multiple rounds of evaluation on several anomaly detection models, to verify the
feasibility of this virus early warning and surveillance idea and find appropriate anomaly detection
models for actual epidemic surveillance. Through multiple rounds of model testing, we found that
the LUNAR (learnable unified neighborhood-based anomaly ranking) and LUNAR+LUNAR stacking
model performed well in new critical variants detection. The results of simulated dynamic detection
validate the feasibility of this approach, which can help efficiently monitor samples in local areas.

Keywords: anomaly detection; virus surveillance; SARS-CoV-2; k-mer; machine learning

1. Introduction

Ever since the COVID-19 outbreak, the SARS-CoV-2 virus has undergone numerous
mutations, leading to the emergence of different variants [1]. Towards the end of 2020, the
World Health Organization (WHO) classified certain variants as variants of interest (VOI)
and variants of concern (VOC) due to their significant impact on the transmission, severity
and effectiveness of vaccines and prevention strategies [2]. One notable variant is the Omi-
cron variant, whose parent lineage was listed as a VOC by the WHO on 6 November 2021,
which did not end until 14 March 2023. In addition, the subvariants of Omicron, XBB.1.5
and XBB.1.16, were defined as VOI on 11 January 2023 and 17 April 2023, respectively, and
both remain VOI as of 6 November 2023 [2–4].

It is crucial to swiftly identify samples of new virus variants that pose challenges to
epidemic prevention and control. By detecting them in a timely manner, we can promptly
implement appropriate measures, such as isolation and treatment, to effectively address
new virus outbreaks in the region.

In China, nasal and throat swabs are predominantly used for collecting human virus
samples. Additional techniques like saliva sampling are also employed [5]. These samples
are then subjected to genome sequencing technologies to obtain the genetic code of the
virus variants [6,7]. This is just the beginning of understanding this virus variant. The virus
genome sequence is usually utilized for phylogenetic analysis, which helps researchers gain
more insights into the virus lineage, expression proteins and mutation sites. This valuable
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information aids in further studying the various features of the virus [8,9]. Sequence
alignment [10] plays a significant role in the phylogenetic workflow. However, due to
the vast number of COVID-19 sequence samples and the large size of the SARS-CoV-2
virus genome (approximately 30 kb) [11], performing multiple sequence alignment [10,12]
becomes computationally complex and time-consuming [13]. This impedes the swift
detection of variants. Despite the existence of excellent multiple sequence alignment
tools like UShER [14] for SARS-CoV-2, they still do not meet the speed requirements for
frontline workers.

Therefore, our approach involves utilizing an alignment-free method [13] that relies
on the numerical properties of sequences to compare them. This allows us to bypass
issues associated with sequence alignment. One widely used method in this category
is k-mer analysis [15–17]. A common step is to break a reference sequence into k-mers
and use them to create a hash table. Then, target sequences are broken into k-mers and
queried against the hash table to check for shared k-mers [18]. Several tools, such as
VirFinder [19], CAFE [20], kmer2vec [21] and KINN [22], are built upon the concept of
k-mer analysis. Various k-mer models have been developed to optimize sequence analysis
and comparison. For example, Jia Wen et al. [23] proposed a k-mer sparse matrix model for
sequence comparison. Furthermore, rather than utilizing phylogenetic methods focused
on virus evolution and structural characteristics, we have opted for an anomaly detection
algorithm widely employed in diverse industries [24]. By employing machine learning
techniques, our intention is to swiftly identify noteworthy new variants from a substantial
collection of virus sequence samples.

Anomaly detection is an important research direction in the field of machine learning,
whose purpose is to identify “outliers” in data, as the name suggests. Anomaly detec-
tion can be further classified into outlier detection [25] and novelty detection [26], which
have certain conceptual differences. The former refers to determining whether a certain
data point is abnormal in the case of known data distribution, while the latter refers to
finding novel data points different from the existing data in unknown datasets [27,28].
In our case, we aim to detect the emergence of VOC in a specific region during a certain
period, aligning with the principles of novelty detection. To accomplish this, we have
selected six different types of anomaly detection models from the PyOD [29] toolkit to
conduct a variety of test evaluations on this detection task, which are as follows: empirical
cumulative distribution based outlier detection (ECOD) [30], one-class support vector
machines (OCSVM) [31], k nearest neighbors (KNN) [32], isolation forest (IForest) [33], Au-
toEncoder [34] and learnable unified neighborhood-based anomaly ranking (LUNAR) [35].
Additionally, we propose a method for stacking models to make predictions for new crit-
ical variants. Stacking is an ensemble learning technique where multiple base learners
are combined with a meta learner, using the base learners’ outputs as input to the meta
learner [36]. In these prediction tasks, the models will train the known “normal samples”
to determine whether there are “abnormal samples” in the new dataset, which is actually
semi-supervised learning [37].

Giovanna Nicora et al. [38] also had a similar idea, but they used one class SVM to
analyze the spike protein sequence of SARS-CoV-2. However, this method still requires the
support of phylogenetic techniques, making the data processing more complex in practical
applications. Additionally, this approach may not be suitable for situations where a specific
virus variant remains dominant in a particular region over time. Because, even if the virus
variant is VOC/VOI, it is just a “normal” circulating strain, since it has been popular in the
region during this period. Hence, identifying the strain as “abnormal” in such cases lacks
practical significance.

Based on the above considerations, this study aims to detect new critical variants that
may appear in the samples collected over a period. We evaluate the efficacy of different
anomaly detection algorithms on the k-mers of the SARS-CoV-2 genome to determine a
suitable model for real-world epidemic surveillance. In this work, we consider variants
that were once defined as VOC as critical variants, and the variants that were never defined
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as VOC are not critical variants. The reason why a VOC is only used as a critical variant is
that the public health impact of a VOI is significantly smaller than that of a VOC, and many
VOIs turned out to be benign. We selected six independent anomaly detection models. At
the same time, we proposed that these independent models could be stacked to complete
the prediction task of new variant detection and critical variant detection, so as to improve
the interpretability of the prediction process of new critical variant detection (Figure 1). We
tested and evaluated these models in various ways using public datasets and simulated
their use in real world scenarios.
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Figure 1. An overview of the models used to detect new critical variants in this work. (a) Detect
new critical variants using a single outlier detection model; (b) detect new critical variants using the
stacking model.

2. Materials and Methods
2.1. Data Source

From the EpiCoV database, which is a repository of information on SARS-CoV-2 in
the Global Initiative on Sharing All Influenza Data (GISAID) [39], we obtained the sample
sequences of complete SARS-CoV-2 genome sequences from human hosts and their meta-
data in Argentina, China and Portugal between 2020 and 2022. These countries, situated on
different continents, have each implemented national epidemic control measures, although
the timing and intensity of these policies varied. China gradually liberalized epidemic
control until the end of 2022 [40]. Portugal was cited as a COVID-19 success story due to the
low number of deaths in the early stages of the pandemic [41]. Argentina also implemented
strict nationwide lockdown measures in phases during the year 2020 [42]. Moreover, all
three countries achieved high rates of vaccinations [43]. We selected samples of these three
countries as model test data to simulate the implementation of new critical variant anomaly
detection under reasonable and effective epidemic prevention and control policies, so as to
evaluate the feasibility of this surveillance approach.



Microorganisms 2023, 11, 2773 4 of 15

2.2. Data Processing

We input the sequence file into the pipeline of Nextclade [44] to obtain the table file
including the Nextstrain lineage information for each sample. Next, we calculated the
k-mers for all sequences. A set of subsequences of length k in a biological sequence is
called k-mer, and a sequence of length N has N–k+1 k-mers. RNA sequence contains
4 ribonucleotides, so there are up to 4 k types of k-mers. To control the number of k-mers
and ensure that valid sequence characteristic information can be retained, we set k to 5, so
there were 1024 k-mers. The table of each sequence k-mers was combined with its sample
name, serial number, collection time, lineage and other information. And the samples with
incomplete information were filtered out. In the end, we obtained a total of 74,885 sample
data, including 9485 sequence samples that were consistently excluded from VOC. The
sample statistics of each country are shown in Figure 2.
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Figure 2. An overview of complete SARS-CoV-2 genome sequences in human hosts from three coun-
tries in the years from 2020 to 2022. (a) Statistics of SARS-CoV-2 variants in Argentina; (b) statistics of
SARS-CoV-2 variants in China; (c) statistics of SARS-CoV-2 variants in Portugal.

2.3. Anomaly Detection Models

There are many types of existing anomaly detection models. According to the classi-
fication of individual anomaly detection models by PyOD [29], we selected six different
types of anomaly detection models for research, which are as follows: ECOD [30] based on
probability, OCSVM [31] based on linear model, KNN [32] based on proximity, IForest [33]
based on outlier ensembles, AutoEncoder [34] based on neural networks and LUNAR [35]
based on graphs. We used these six anomaly detection models to simulate the monitoring
of samples from three countries to explore the potential of these models in the detection
of new critical variants. At the same time, to improve the interpretability of the anomaly
detection process, we have divided the task of new critical variant detection into two
steps, namely, new variant detection and critical variant detection. We combined these six
anomaly detection models to match two different steps, resulting in a total of 36 stacking
models. We describe the stacking model in the form of “model A + model B”, where model
A is the model used in the new variant detection and model B is the model used in the
critical variant detection. We conducted a comprehensive evaluation of the performance
of these single models and stacking models on the task of detecting new critical variants.
To be specific, it includes the following tasks: model evaluation of new variant detection;
model evaluation of critical variant detection; model evaluation of new critical variant
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detection; comparison of the ability of these models to detect all critical variants on the day
they first appear in the three countries; and analog dynamic monitoring. The source code
of our work is available at https://github.com/sweety919/Anomaly-detection-models-
for-SARS-CoV-2-surveillance-based-on-genome-k-mers (accessed on 12 November 2023).

2.4. Dataset Preparation
2.4.1. Datasets for Model Evaluation of New Variant Detection

To evaluate the performance of various anomaly detection models for identifying
new variants, we conducted experiments using three distinct datasets (Figure 3a). The
first dataset consists of a training set of 4914 samples in three countries from January 2020
to November 2020 and a test set of 506 samples in three countries from December 2020.
The second dataset consists of a training set of 30,655 samples in three countries from
January 2021 to November 2021 and a test set of 4216 samples in three countries from
December 2021. The third dataset consists of a training set of 27,475 samples in three
countries from January 2022 to November 2022 and a test set of 7119 samples in three
countries from December 2022. During these tests, the training set exclusively comprised
“normal samples”, representing variants that have previously occurred. Conversely, any
variants present in the test set that were not observed in the training set were classified as
“abnormal samples”.

2.4.2. Datasets for Model Evaluation of Critical Variant Detection

To test the ability of different anomaly detection models in the step of critical variant
detection (Figure 3b), we conducted a random sampling process from a dataset containing
74,885 samples. From this sampling, we obtained 3000 sequence samples (“normal sam-
ples”) that always did not belong to VOC as the training set. In other words, the samples in
the training set are not critical variants. At the same time, 150 different sequence samples
which are not critical variants (“normal samples”) and 150 VOC sequence samples which
are critical variants (“abnormal samples”) were selected to form a test set. This process was
repeated five times to create five different datasets.

2.4.3. Datasets for Model Evaluation of New Critical Variant Detection

This test step (Figure 3c) used the datasets which were used in the model evaluation
of new variant detection, that is, a total of three datasets. When evaluating a single model,
the new critical variant in the test set was considered an abnormal sample. However, when
evaluating stacking models, we needed to define abnormal and normal samples in multiple
steps. In the first step, samples in the test set that were not included in the training set were
considered abnormal samples. Then, the samples that were classified as abnormal in this
step were used as the test set in the second step, which aimed to detect critical variants.
The training set in this step consisted of all non-VOC sequence samples originally input
into the entire stacking model. The samples that were identified as abnormal in the final
output represented the model’s decision on new critical variants.

2.4.4. Datasets for Comparing the Detection of All Critical Variants on the Days They First
Appeared in Three Countries

In our research, we focused on analyzing VOC in Argentina, China and Portugal from
2020 to 2022. We took all samples collected in the country on the day these critical variants
appeared as the test sets (Figure 3d). These critical variants were the real abnormal samples
in the test sets. All samples collected in the country during the 30 days before this day were
training sets, and all non-VOC occurring in the country before this day were training sets
for the critical variant detection step in the stacking models.

https://github.com/sweety919/Anomaly-detection-models-for-SARS-CoV-2-surveillance-based-on-genome-k-mers
https://github.com/sweety919/Anomaly-detection-models-for-SARS-CoV-2-surveillance-based-on-genome-k-mers
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Figure 3. Five rounds of evaluation of anomaly detection models for SARS-CoV-2 surveillance based
on genome k-mers. (a) Evaluation of new variant detection; (b) evaluation of critical variant detection;
(c) evaluation of new critical variant detection; (d) compare the detection of all critical variants on the
days they first appeared in three countries; (e) analog dynamic monitoring.
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2.4.5. Datasets for Analog Dynamic Monitoring

To simulate dynamic monitoring, we selected one month from different time periods
for each of the three countries (Figure 3e). For each selected day, the samples collected
in that country formed the test set. The corresponding training set for that day consisted
of all the samples collected in that country during the previous 30 days. Similarly, any
non-VOC samples present in the country prior to that day were included as training sets
for the critical variant detection step in the stacking models.

3. Results
3.1. Evaluation of New Variant Detection

In this section, we conducted performance testing on six anomaly detection models
using three different datasets. All models utilized the default parameters provided by
PyOD [29]. We evaluated the models using various metrics, such as the Matthews correla-
tion coefficient (MCC) [45], f1-score, accuracy, recall, accuracy, specificity and area under
the curve (AUC). The average values of these metrics were calculated (Tables 1 and S1).
The recall metric indicates the model’s ability to identify correct “abnormal samples”, while
the AUC reflects the model’s classification performance. The MCC is a comprehensive
indicator that assesses the model’s classification ability in the presence of imbalanced
sample categories. Thus, our focus was on these three metrics. From our analysis, we
observed that both KNN and LUNAR models outperformed other models in terms of their
capability to detect “abnormal samples” accurately. However, it is worth noting that most
models struggled with the MCC, particularly those with MCC values below 0, indicating
poorer performance in classifying imbalanced datasets.

Table 1. Evaluation of new variant detection.

Model MCC F1-Score Precision Recall Accuracy Specificity AUC

AutoEncoder [34] −0.016 0.004 0.002 0.078 0.838 0.842 0.460

ECOD [30] −0.005 0.008 0.004 0.078 0.887 0.891 0.485

IForest [33] −0.012 0.005 0.003 0.078 0.857 0.860 0.469

KNN [32] 0.092 0.035 0.018 0.741 0.793 0.792 0.767

LUNAR [35] 0.080 0.036 0.019 0.556 0.837 0.838 0.697

OCSVM [31] 0.006 0.010 0.005 0.207 0.874 0.878 0.543

3.2. Evaluation of Critical Variant Detection

We also tested the ability of the six models to detect critical variants. We calculated
the evaluation metrics of the models’ predictions over five prepared datasets and then took
their average (Tables 2 and S2). Compared with the poor performance of many models in
the step of new variant detection, the prediction effect of most models in critical variant
detection appears to be quite good, because these models have learned the non-VOC
sequence features well in the training set. This indicates that anomaly detection methods
hold significant potential for detecting critical variants. Notably, the AutoEncoder and
LUNAR models, both of which are anomaly detection methods based on deep learning,
exhibited superior performance. This highlights the advantages of deep learning methods
in handling complex relationships and features within sequences. We know that k-mers
carry sequence information. Each k-mer does not exist alone, and there may be complex
correlations among them which are also very likely to contain sequence characteristics.
While conventional machine learning methods struggle to handle such high-dimensional
information, deep learning methods can extract crucial features that contribute to excellent
classification abilities.
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Table 2. Evaluation of critical variant detection.

Model MCC F1-Score Precision Recall Accuracy Specificity AUC

AutoEncoder [34] 0.539 0.722 0.855 0.625 0.759 0.893 0.759
ECOD [30] 0.122 0.303 0.643 0.200 0.544 0.889 0.544
IForest [33] 0.192 0.372 0.697 0.257 0.576 0.895 0.576
KNN [32] 0.171 0.345 0.691 0.231 0.564 0.897 0.564

LUNAR [35] 0.663 0.811 0.891 0.745 0.827 0.908 0.827
OCSVM [31] −0.009 0.174 0.487 0.107 0.497 0.888 0.497

3.3. Evaluation of New Critical Variant Detection

In this round of evaluation, we tested the ability of 6 single models and 36 stacking
models to detect new critical variants, calculated the metrics and averaged them (Tables 3
and S3). We found that the effects of KNN, LUNAR and three stacking models, which are
KNN+KNN, KNN+LUNAR and LUNAR+LUNAR, were relatively outstanding among
all models, with recall rates exceeding 0.5 and AUC scores surpassing 0.6. However, our
findings also indicate that, similar to the evaluation outcomes for new variant detection,
the low MCC values highlight room for improvement in the models’ classification abilities,
particularly when dealing with imbalanced datasets.

3.4. Comparing the Detection of All Critical Variants on the Days They First Appeared in
Three Countries

For all VOCs that occurred in Argentina, China and Portugal between 2020 and 2022,
we investigated the days they first appeared in each country. And we calculated the number
of samples collected on the days the critical variants first appeared, as well as the samples
collected in the 30 days before the critical variants appeared (Table S4). After a prelimi-
nary model evaluation of the new critical variant detection, we found that KNN, LUNAR,
KNN+KNN, KNN+LUNAR and LUNAR+LUNAR performed better than other models,
so we used these models for further testing. They were used to predict samples collected
on the day all critical variants first appeared in the three countries. Although the training
set entered by the stacking model in the new variant detection is the samples collected in
the 30 days before the critical variant appeared, the training set used in the critical variant
detection is all the non-VOC samples recorded in this country before the day when the critical
variant appeared. We calculated the MCC, f1-score, accuracy, recall, accuracy, specificity and
AUC for each round of testing, then compared and counted them (Figure 4). Since on the
day that each new critical variant appeared, and usually only the variant sample was an
anomaly, this accounts for a small proportion of the test set. So, this is a very unbalanced
data set, and this is the reason why the models performed poorly on the MCC evaluation
index. We believe that, if the MCC is greater than 0, the classification ability of the model is
stronger than that of random classification. As shown in Figure 4, the median of the MCC is
around 0, while the average is greater than 0. Combined with the distribution of the AUC,
these models have a certain ability to detect new critical variants. In addition to the MCC
and AUC, we also paid special attention to the recall. According to Table S4, we can see
that the number of new critical variants in the test sets is mostly 1, which caused the model
to display a recall of 0 when the critical variants were not correctly identified, and a recall
of 1 when they were identified. This explains why the distribution of recall in Figure 4 is
from 0 to 1. In this case, though, we can look at the median and average of the recall to
compare the performance of the different models. As you can see from Figure 4, LUNAR
and LUNAR+LUNAR performed better than the other models. What is more, we further
compared the performance of the three stacking models in the new variant detection step. In
this step, only KNN and LUNAR play a role. We found that LUNAR was superior to KNN in
this step (Figure 5). At the same time, comparing the results of the new variant detection step
(Figure 5) with the results of the stacking models after two steps (Figure 4), in terms of the
stacking model, the new variant detection step has a great impact on the overall new critical
variant detection. And the effect of LUNAR in the first step is better than that of KNN.
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Table 3. Evaluation of new critical variant detection.

Model MCC F1-Score Precision Recall Accuracy Specificity AUC

AutoEncoder [34] −0.014 0.004 0.002 0.078 0.839 0.842 0.460

ECOD [30] −0.003 0.008 0.004 0.078 0.888 0.891 0.485

IForest [33] −0.008 0.006 0.003 0.098 0.850 0.853 0.476

KNN [32] 0.105 0.035 0.018 0.852 0.794 0.793 0.822

LUNAR [35] 0.104 0.046 0.024 0.722 0.811 0.811 0.767

OCSVM [31] 0.008 0.010 0.005 0.207 0.875 0.878 0.543

AutoEncoder+AutoEncoder −0.011 0.004 0.002 0.078 0.860 0.862 0.470

AutoEncoder+ECOD −0.016 0.001 0.001 0.010 0.920 0.924 0.467

AutoEncoder+IForest −0.005 0.006 0.003 0.078 0.890 0.893 0.486

AutoEncoder+KNN −0.010 0.004 0.002 0.078 0.864 0.867 0.473

AutoEncoder+LUNAR −0.011 0.004 0.002 0.078 0.861 0.864 0.471

AutoEncoder+OCSVM −0.006 0.007 0.004 0.069 0.887 0.891 0.480

ECOD+AutoEncoder 0.000 0.008 0.004 0.078 0.907 0.910 0.494

ECOD+ECOD −0.013 0.003 0.002 0.020 0.919 0.923 0.471

ECOD+IForest 0.000 0.008 0.004 0.078 0.906 0.909 0.494

ECOD+KNN 0.000 0.008 0.004 0.078 0.908 0.911 0.495

ECOD+LUNAR 0.000 0.008 0.004 0.078 0.907 0.910 0.494

ECOD+OCSVM −0.005 0.007 0.004 0.069 0.894 0.897 0.483

IForest+AutoEncoder −0.002 0.007 0.004 0.078 0.902 0.905 0.492

IForest+ECOD −0.015 0.001 0.001 0.010 0.921 0.925 0.467

IForest+IForest −0.003 0.007 0.004 0.069 0.905 0.909 0.489

IForest+KNN −0.004 0.007 0.003 0.098 0.878 0.881 0.489

IForest+LUNAR 0.000 0.008 0.004 0.088 0.900 0.903 0.496

IForest+OCSVM −0.006 0.007 0.004 0.069 0.888 0.891 0.480

KNN+AutoEncoder −0.002 0.007 0.004 0.108 0.876 0.879 0.493

KNN+ECOD −0.016 0.001 0.001 0.010 0.920 0.924 0.467

KNN+IForest −0.006 0.006 0.003 0.078 0.888 0.891 0.485

KNN+KNN 0.081 0.031 0.016 0.578 0.864 0.864 0.721

KNN+LUNAR 0.064 0.025 0.013 0.500 0.845 0.845 0.672

KNN+OCSVM 0.011 0.010 0.005 0.254 0.861 0.864 0.559

LUNAR+AutoEncoder 0.008 0.012 0.006 0.108 0.907 0.910 0.509

LUNAR+ECOD −0.010 0.005 0.002 0.029 0.918 0.921 0.475

LUNAR+IForest −0.004 0.006 0.003 0.069 0.901 0.904 0.486

LUNAR+KNN 0.075 0.037 0.020 0.412 0.909 0.910 0.661

LUNAR+LUNAR 0.110 0.047 0.025 0.637 0.891 0.891 0.764

LUNAR+OCSVM 0.012 0.011 0.006 0.291 0.834 0.837 0.564

OCSVM+AutoEncoder −0.005 0.006 0.003 0.059 0.909 0.913 0.486

OCSVM+ECOD −0.013 0.003 0.002 0.020 0.921 0.925 0.472

OCSVM+IForest −0.005 0.006 0.003 0.059 0.910 0.913 0.486

OCSVM+KNN −0.005 0.006 0.003 0.059 0.911 0.914 0.486

OCSVM+LUNAR −0.005 0.006 0.003 0.059 0.910 0.913 0.486

OCSVM+OCSVM 0.008 0.010 0.005 0.207 0.875 0.878 0.543
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Figure 5. Compare the new variant detection of all critical variants on the days they first appeared in
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lines in the boxplots indicate the medians, the blue lines indicate the mean values and the pink dots
indicate the outliers.

3.5. Analog Dynamic Monitoring

In addition to comparing the detection capabilities of models on the day the critical
variants first appeared in the three countries, we also used these five relatively reliable
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models to simulate real dynamic detection scenarios. We selected a month in different
time periods for the three countries and analyzed the samples with the models every day.
We compared the number of new critical variants predicted by the models with the actual
number of new critical variants (Figure 6). In fact, the days that a new critical variant
appeared were a few, and so were the new critical variants. And our models, despite their
ability to spot critical new variants on the day they appear, still produced false positives
most of the time (Table S5). We used the specificity in Table S5 to calculate the false positive
rate (FPR) (FPR = 1 − specificity). According to the bootstrap interval estimation [46], we
calculated the 95% confidence interval of the false positive rate of each model: KNN was
(0.072, 0.142), LUNAR was (0.100, 0.187), KNN+LUNAR was (0.075, 0.146), KNN+KNN was
(0.076, 0.145) and LUNAR+LUNAR was (0.068, 0.136). Summing over all three countries,
there were six days on which a new VOC occurred. On three of those six days, all five
models predicted at least one new critical variant, but on only two days did all five models
correctly predict the real new critical variant. And all five models failed to predict any new
variant on two of these six days. On one of these six days, LUNAR correctly predicted one
new variant, while the other models did not. Of the 81 days in which no new critical variant
appeared, only on 19 of these days did all five models predict no new critical variants.
Therefore, at least in the context evaluated, this approach would need to be considerably
improved before deployment in a real-world situation. This is because the existing models
still have many shortcomings in the case of conditional anomaly detection.
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(b) comparison of the predicted quantity with the actual quantity in China; (c) comparison of the
predicted quantity with the actual quantity in Portugal.

When we tested the method of Giovanna Nicora et al. [38] on the data sets used here,
we found that their model had much better precision, although there were cases where
some VOCs were not identified (Figure 7). This is because the method of Giovanna Nicora
et al. [38] was used for VOC detection. For recurring VOCs over a period, the model
also considered them abnormal samples. This anomaly detection method is based on the
difference of sequence features between VOC and non-VOC. According to the evaluation
results of the ability of each anomaly detection model in the critical variant detection, this
is reasonable, since many anomaly detection models are fully capable of doing so.
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period using OCSVM. (a) Comparison of the predicted quantity with the actual quantity in Argentina;
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predicted quantity with the actual quantity in Portugal.

4. Discussion

For infectious viruses such as SARS-CoV-2, which are highly transmissible and mutate
frequently [47], it is important to detect new and noteworthy variants in a region in good
time. These variants may have increased transmissibility and pathogenicity, posing a
significant threat to global or regional public health security. Therefore, detecting these
variants promptly can assist relevant agencies in rapidly developing prevention and control
strategies. We proposed the use of the anomaly detection models to analyze SARS-CoV-2
virus genome k-mers and predict the new critical variants that may exist in the collected
samples. Multiple rounds of testing and evaluation were conducted on several anomaly
detection models, aiming to assess the feasibility of this early warning concept and identify
suitable models for real-life epidemic surveillance.

For the performance evaluation of anomaly detection models in detecting new critical
variants, we carried out five tests using sample sequences obtained from Argentina, China
and Portugal between 2020 and 2022, sourced from GISAID. Throughout the testing rounds,
which included new variant detection, critical variant detection and new critical variant
detection, we observed that the comprehensive performance of the five models (KNN,
LUNAR, KNN+LUNAR, LUNAR+LUNAR and KNN+KNN) surpassed that of the other
4 single models and 33 stacking models examined in this study. Additionally, indicators
such as the MCC and AUC demonstrated the models’ capacity to classify samples, even
when the categories were highly imbalanced. Subsequently, we employed these five models
to assess their ability to detect variants on the day when all critical variants first appeared
in the aforementioned three countries. Based on the test results, we have determined that
the new variant detection step is crucial in the overall identification of new critical variants
for the stacking model. Additionally, LUNAR, as a deep learning method, outperformed
KNN in both the independent detection of new critical variants and prediction as part
of the stacking models. This demonstrates the significant advantages of LUNAR, which
falls under the graph neural network method, in handling complex relationships between
features. To assess the feasibility of our approach in real-time epidemic surveillance, we
utilized these five models to predict daily samples from three different countries during
various periods. Apart from evaluating VOC as a crucial variant, we also conducted tests on
both VOC and VOI as crucial variants (Tables S6–S9, Figures S1–S4). Although the models
all have certain false positive rates, we pay more attention to the recall of the models because,
in virus surveillance, we are more worried about missing abnormal samples. The test results
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further confirm that LUNAR exhibits the highest level of comprehensive performance
among all the models tested across multiple rounds. We compared the performance of our
proposed method to the method proposed by Giovanna Nicora et al. [38] on the same data.
The results revealed that our method, unlike the method of Giovanna Nicora et al. [38],
which solely predicts VOC in samples, incorporates the ability to detect new variants,
enabling the identification of new critical variants. This helps reduce the workload of
personnel involved in inspecting “key” samples and enhances the efficiency of epidemic
prevention and control. However, the detection capability of the five models currently
used still has some room for improvement. Therefore, phylogenetic approaches continue
to play a crucial role in virus surveillance and early warning. Laboratories equipped
with high-performance computing and programming resources may benefit from utilizing
analysis pipelines that incorporate phylogenetic considerations.

We propose using anomaly detection models to analyze SARS-CoV-2 virus genome
k-mers and predict new critical variants that may exist in collected samples, and evaluate
some models in various aspects. This approach could be extended to other infectious
viruses, such as seasonal influenza viruses [48]. The study in this paper is an attempt to
apply machine learning to epidemic surveillance. Despite the limitations of the models
tested in this paper, it demonstrates the feasibility of using anomaly detection in epidemic
surveillance, even when dealing with large volumes of unanalyzed genomic data. In the
future, we have the option to optimize the feature extraction of a viral genome. We ob-
serve that a current package, named MathFeature [49], integrates the methods for deriving
numerical data from biological sequences. The performance of downstream model predic-
tions may be enhanced by the introduction of these efficient feature extraction methods.
Furthermore, we can introduce incremental learning to enable the model to quickly detect
real-time data [50], thereby improving its practicality in real-world scenarios.

5. Conclusions

This work proposed using anomaly detection models to analyze SARS-CoV-2 virus
genome k-mers and predict new critical variants that may exist in collected samples. Several
anomaly detection models were evaluated through multiple rounds of tests. To verify the
feasibility of this virus early warning idea and find a suitable anomaly detection model
for actual epidemic surveillance, the dynamic monitoring of SARS-CoV-2 in a real-world
scenario was simulated in this work.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11112773/s1. Table S1: Evaluation metrics of new
variant detection; Table S2: Evaluation metrics of critical variant detection: Table S3: Evaluation metrics
of new critical variant detection; Table S4: Evaluation metrics of the detection of all critical variants on
the days they first appeared in three countries; Table S5: Results of analog dynamic monitoring of new
critical variant detection; Table S6: Evaluation of new variant detection (consider VOC/VOI as critical
variants); Table S7: Evaluation of critical variant detection (consider VOC/VOI as critical variants);
Table S8: Evaluation of new critical variant detection (consider VOC/VOI as critical variants); Table S9:
Results of analog dynamic monitoring of new critical variant detection (consider VOC/VOI as critical
variants); Figure S1: Compare the detection of all critical variants on the days they first appeared in
three countries (consider VOC/VOI as critical variants); Figure S2: Compare the new variant detection
of all critical variants on the days they first appeared in three countries (consider VOC/VOI as critical
variants); Figure S3: Analog dynamic monitoring of the new critical variants in three countries during
a certain period (consider VOC/VOI as critical variants); Figure S4: Analog dynamic monitoring of
the critical variants in three countries during a certain period using OCSVM (consider VOC/VOI as
critical variants).
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