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Abstract: The bacterium Yersinia pestis has developed various strategies to sense and respond to
the complex stresses encountered during its transmission and pathogenic processes. PurR is a
common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates
the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP).
This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly,
we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the
null mutant (201-∆purR) and the wild-type strain (201-WT). The results show that deleting purR has no
significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress
conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity
of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found
no difference of the virulence in mice between 201-∆purR and 201-WT. Furthermore, RNA-seq and
EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis
strain 201, primarily involved in purine biosynthesis, along with others not previously observed in
other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including
a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine
biosynthesis, purR in Y. pestis may have additional regulatory functions.

Keywords: Yersinia pestis; purR; transcriptional regulation; purine biosynthesis

1. Introduction

Yersinia pestis is the causative agent of the plague, a highly infectious disease that has
caused three global pandemics throughout human history [1,2]. This bacterium possesses
the ability to adapt to both flea (26 ◦C) and mammalian (37 ◦C) body temperatures, as
transmission between these hosts is crucial for its natural life cycle [3]. However, Y. pestis can
undergo physiological changes in anabolism when exposed to different environments. As
a relatively young bacterium that diverged from Yersinia pseudotuberculosis approximately
7000 years ago [4,5], Y. pestis displays a moderate degree of sequence diversity.

Purine plays a vital role in the survival of microorganisms, and most bacteria rely on
de novo synthesis for its production. The purR gene is widely present in bacterial genomes
and functions as a transcriptional repressor, regulating purine biosynthesis by controlling
the expression of the pur operon [6–8]. The deletion of purR had been proven to enhance
the metabolic flow of the purine pathway and improve the production of riboflavin in
Escherichia coli, Bacillus subtilis, and Ashbya gossypii [9–11]. However, in certain bacteria,
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purR serves additional roles beyond its involvement in purine regulation. For instance,
in Escherichia coli, purR contributes to the bacterium’s tolerance to organic solvents and
enhances its viability when exposed to them [12]. Moreover, mutations in purR have been
shown to increase the virulence of Staphylococcus aureus [13]. Nevertheless, the precise
functions of the purR gene in Y. pestis remains incompletely understood.

To investigate the functions of the purR gene in Y. pestis, we compared the adaptabilities
of Y. pestis strain 201 (201-WT) and its purR knockout mutant (201-∆purR). We observed that
the deletion of purR had minimal impact on the environmental adaptability of Y. pestis strain
201. To further elucidate the role of purR as a transcriptional regulator, we conducted RNA-
seq and assessed the expression of the PurR protein. RNA-seq results revealed significant
alterations in the transcription levels of numerous genes across the entire genome upon
deletion of purR, indicating specific associations between certain genes and purR in Y. pestis.
Moreover, Electrophoretic Mobility Shift Assay (EMSA) results demonstrated that PurR
could directly bind to the promoter regions of multiple genes within the Y. pestis genome,
suggesting its direct regulation of their transcription and expression. Collectively, our
findings offer valuable insights into the regulatory function of purR in governing gene
expression in Y. pestis.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The strains and plasmids used in this study are presented in Table 1, with the primer
sequences listed in Supplementary Table S1. Y. pestis strain 201 has an identical genome
as strain 91,001, which is highly lethal to mice but avirulent to humans [14,15]. Differ-
ent culture conditions were employed for Y. pestis and E. coli throughout the experiment.
Y. pestis was cultivated in LB (Luria-Bertani) medium at a temperature of 26 ◦C to mimic the
temperature of fleas (the vector of Y. pestis in the flea transmission process of plague) [16],
whereas E. coli was cultured in LB medium at 37 ◦C. Chloramphenicol (34 µg/mL) was
added during the cultivation of the complementation strain harboring the pACYC184
plasmid, while kanamycin (50 µg/mL) was necessary for the growth of the strain car-
rying the pET28a (+) plasmid. All bacterial experiments were performed in a biological
safety cabinet.

Table 1. Bacterial strains and plasmids used in this study.

Strain or Plasmid Genotype Reference

E. coli
S17λpir Tpr Smr recA thi pro hsdR−M+ (RP4-2-Tc::Mu: KanrTn7) λpir [17]

S17-pDS132-purR-del pDS132-purR-del was introduced into S17λpir This study

DH5α F- ϕ80lacZ∆M15 ∆(lacZYA-arg F) U169 endA1 recA1 hsdR17(rk−, mk+) supE44
λ- thi-1 gyrA96 relA1 phoA [17]

DH5α-pACYC184- purR pACYC184-purR was introduced into DH5α This study
DH5α-pET28a (+)-purR pET28a (+)-purR was introduced into DH5α This study

BL21(DE3) F-ompT hsdSB(rB
−mB

−) gal dcm (DE3) [18]
BL21(DE3)-pET28a (+)-purR pET28a (+)-purR was introduced into BL21 (DE3) This study

Y. pestis
201-WT Y. pestis biovar Microtus strain 201, WT [14]

201-∆purR deleted purR based on strain 201 This study
201-∆purR-Comp 201-∆purR containing plasmid pACYC184-purR This study

plasmids

pDS132 suicide vector, derived from pCVD442, without IS1 sequences. bla gene
replaced by the cat gene [17]

pACYC184 cloning vector, Cmr Tetr [17,19]

pET28a (+) overexpression vectors, carry an N-terminal His-Tag/T7-Tag configuration
plus an optional C-terminal His-Tag sequence, Kanr [18]
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2.2. DNA Extraction and Amplification

Genomic DNA and plasmids were extracted using the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany) and QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany), respectively,
following the manufacturer’s instructions. The target segments were amplified using PCR
with 1.1× GoldenStar mix (Green) (Tsingke Biotechnology Co., Ltd., Beijing, China).

2.3. Construction of the Mutant and Complementation Strain

The pDS132 was digested by incubating overnight at 37 ◦C with SphI and SacI enzymes
(LMAI Bio, Shanghai, China) together. The upstream and downstream homology arms
of purR were then ligated with the linearized pDS132 using 2× Seamless Cloning Mix
(Biomed, Beijing, China) at 50 ◦C for 15 min with a molar ratio of vector to DNA of 1:3, and
the recombinant vector was introduced into E. coli S17λpir to obtain S17-pDS132-purR-del
for conjugation with Y. pestis.

S17-pDS132-purR-del and 201-WT strains were cultured in LB medium at either 37 ◦C
or 26 ◦C until reaching an OD620 of 0.8. After centrifugation at 1900× g for 5 min, the
pellet of S17-pDS132-purR-del (1.5 mL) and 201-WT (100 µL) cultures was resuspended
and added dropwise onto a filter membrane (0.45 µm) placed on LB plates. The cells
on the filter paper were then incubated overnight at 26 ◦C, and the resulting eluate was
spread onto Yersinia Selective Agar Base plates (Oxoid, Basingstoke, UK) supplemented
with chloramphenicol (6.8 µg/mL) and incubated at 26 ◦C. Conjugations were expected to
occur under these conditions and were selected on LB plates containing 7% sucrose. The
obtained colonies were further analyzed to confirm the expectant conjugant through PCR
amplification and sequencing; the correct sequencing results indicate that purR has been
successfully knocked out, and this strain has been named 201-∆purR.

For complementation of purR, the pACYC184 plasmid was digested with Hind III
and BamH I enzymes (LMAI Bio, Shanghai, China), and the purR fragment and linearized
pACYC184 were then ligated as described previously. The resulting recombinant vec-
tor was introduced into competent E. coli DH5α cells. The expected recombinant plas-
mid was identified using PCR sequencing and extracted before being transferred into
201-∆purR. The resulting transformant was confirmed using PCR sequencing and desig-
nated as 201-∆purR-Comp.

2.4. Growth Rate Determination

The 201-WT and 201-∆purR strains were cultured until they reached an optical density
of 1.0 at OD620 (ca.2 × 108 CFU/mL). Subsequently, the bacterial cultures were inoculated
at a ratio of 1:100 in Erlenmeyer flasks containing 60 mL of either fresh LB or a chemi-
cally defined TMH liquid medium [20]. The size of Erlenmeyer flasks was 150 mL. All
Erlenmeyer flasks were then placed in a precision cell culture shaker (Zhicheng ZWYF-290,
Shanghai, China) set at 26 ◦C with shaking at 200 rpm, and the OD600 values of the cultures
were measured hourly. Once all strains entered the decline phase, data were collected and
plotted for analysis. Each strain underwent three independent biological replications under
identical conditions, and the results were expressed as the mean ± standard deviation
of the three biological replicated experiments. The experimental procedure at 37 ◦C was
similar to the above, with the exception that the temperature was adjusted accordingly.

2.5. Biofilm Formation Analysis

The 201-WT and 201-∆purR strains were cultured until they reached an optical density
of 1.0 at OD620 (ca.2 × 108 CFU/mL) and stored at 4 ◦C for 16 h. Subsequently, the cultures
were diluted by a factor of 10 and transferred into a 24-well cell culture plate, with 1 mL per
well. Six independent biological replicates were established for each strain under identical
conditions. The plate was then shaken at either 26 ◦C or 37 ◦C for 24 h. After removing
the bacterial cultures from the wells, OD620 was measured. The wells were gently washed
twice with deionized water, and the biofilm was fixed at 80 ◦C for 15 min. Then, 3 mL of
0.1% crystal violet solution (Solarbio, Beijing, China) was added dropwise to each well.
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The crystal violet solution was discarded after 15 min staining, and the wells were gently
washed three times with deionized water. Subsequently, 2.8 mL of ethanol was added to
each well and left at room temperature for 3 h. OD570 of the solution was determined after
a five-fold dilution. The relative amount of biofilm formation was calculated using the
formula: 100 × OD570/OD620.

2.6. Survivability under Stressful Environments

The strains 201-WT and 201-∆purR were cultured until they reached an OD620 of 1.0.
These strains were then exposed to various stressful conditions, including 0.5 M sorbitol
for 0.5 h and 1.5 h, 7.5% NaCl for 1.5 h, cold shock for 24 h, or heat shock for 0.5 h. Bacterial
numbers were counted before and after the stimulation to determine the survival rate of
these two strains under different stressful conditions. Each strain was subjected to three
independent biological replicates, and the results were reported as the mean standard
deviation of the three experiments.

2.7. Real-Time Cell Analysis (RTCA) Assay

HeLa and 293 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
Solarbio, Beijing, China) supplemented with 10% fetal bovine serum (FBS), at 37 ◦C and
5% CO2. The baseline measurement was taken using 50 µL of DMEM with 10% FBS on
the pre-incubated RTCA iCELLigence system (ACEA Biosciences, San Diego, CA, USA),
maintained at same conditions. Subsequently, 5 × 103 cells were added to each well of an
E-plate and incubated at room time for 30 min. The cells were then transferred to the RTCA
iCELLigence system and incubated overnight [21]. The bottom of the cell culture plate
compatible with the RTCA system has electrodes to record cell detachment as cell index
(CI). Strains were cultivated in LB until they reached an optical density of 1.0 at OD620, after
removing the supernatant via centrifugation, the bacterial were resuspended in PBS to an
optical density of 1.0 at OD620 (ca.2× 108 CFU/mL). Subsequently, the appropriate volume
of bacterial suspension was added at a ratio of MOI = 5 or 10 as calculated. Incubation was
continued, and the cell index was measured every 15 min and normalized based on the
time point at which bacteria were added. Each strain was subjected to three independent
biological replicates under identical conditions.

2.8. Survival Curves

The 201-WT and 201-∆purR strains were cultured until they reached an optical
density of 1.0 at OD620 (ca.2 × 108 CFU/mL), and the concentration was adjusted to
3 × 104 CFU/mL with PBS. Female BALB/c mice, aged 8–10 weeks, were randomly di-
vided into three groups (n = 10) and intraperitoneally challenged with a 100 µL diluted
culture. The control group received an equal volume of PBS via the same injection route.
Mouse mortality was monitored daily, and the survival curve was plotted.

2.9. RNA-Seq and Quantitative Reverse Transcription PCR (qRT-PCR)

201-WT and 201-∆purR were cultured in LB medium at either 26 ◦C or 37 ◦C until
reaching an OD620 of 1.0, and each strain had three biological replicates. Total RNA was
extracted from the bacteria using the PureLink™ RNA Mini Kit (Tiangen, Beijing, China)
following the manufacturer’s instructions. After measuring the concentration of total
RNA, they were sent to Beijing macro & micro- test Bio-Tech Co., Ltd. (Beijing, China) for
sequencing. The company created a cDNA library and used Illumina NovaSeq 6000 for
sequencing. The extracted RNA was used to create a cDNA library with at least 2 G raw
data. The raw data were trimmed with Trimmomatric software fastp version 0.23.4 to filter
adapters and low-quality reads (<Q20).

The genes for qRT-PCR were selected based on the results of the RNA-seq analysis
under 26 ◦C culture conditions, and they were YP_RS00205, purK, purE, purT, purF, cvpA,
purL, YP_RS13225, purM, purN, purH, YP_RS20395, ybtE, ybtT, ybtU, irp1, and YP_RS10830,
respectively. The RNA samples used for RNA-seq were reverse transcribed into cDNA
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using SynScript III RT SuperMix (Tsingke Biotechnology Co., Ltd., Beijing, China). Linear
regression analysis was employed to determine the correlations between the RNA-seq data
and the outcomes of qRT-PCR

2.10. Expression and Purification of PurR

The pET28a (+) plasmid which contains T7 promoter and the target purR fragment
were digested with Hind III and BamH I enzymes (LMAI Bio, Shanghai, China). After
ligation of the purR fragment and linearized vector using T4 DNA ligase (Sangon, Shanghai,
China), the resulting recombinant plasmid containing purR was introduced into E. coli
DH5α. Subsequently, the recombinant plasmid was extracted and transferred into E. coli
BL21(DE3), with the transformed strain designated as BL21(DE3)-pET28a (+)-purR.

For protein expression, BL21(DE3)-pET28a (+)-purR was cultured until reaching an
OD600 of 0.6–1.0. Then, lactose induction (4 mM) was performed, and the culture was
incubated at 16 ◦C under low-speed shaking for more than 12 h. The bacterial pellet
was resuspended in a solution containing 300 mM NaCl, 50 mM NaH2PO4, and 10 mM
imidazole, and pH adjusted to 7.0. Ultrasonication was used to disrupt the cells, and the
supernatant was obtained via centrifugation at 10,000× g for 15 min. PurR protein in the
supernatant was purified using a Ni-NTA resin column, and its presence was confirmed
with SDS-PAGE and Western Blotting. After desalting using G25 rapid desalting column
(Bersee, Beijing, China), a final concentration of 2.0 mg/mL PurR was obtained.

2.11. Motif Prediction of PurR

Six genes (purH, purE, purT, purL, purF, purM) were chosen from the pur operon based
on findings from RNA-seq analysis and the existing literature. The promoter regions of
these genes were used for PurR motif prediction using the online MEME website to identify
potential DNA binding sites [22]. The predicted motif was then matched with the promoter
regions of the Y. pestis genome using the FIMO module of the online MEME website to
determine the genes that can be bound by PurR in the promoter region [23].

2.12. Electrophoretic Mobility Shift Assay (EMSA)

Genes with significant transcriptional changes and a high FIMO matching score were
selected for EMSA analysis. Fragments containing the motif region or 500 bp upstream of
the start codon were used as probes in EMSA. The probes were labeled using the EMSA
Probe Biotin Labelling Kit (Beyotime Biotech. Inc., Shanghai, China). After obtaining
the double-stranded probe, it was denatured to single-stranded probe at 95 ◦C for 5 min.
The labeling system was prepared following the manufacturer’s instructions, and biotin
was added to the 3′ end by incubating at 37 ◦C for 30 min. The labeled probes were
then mixed with chloroform–isopentanol (24:1) and gradually cooled to allow the single
strands to reanneal into labeled double-stranded probes. Subsequently, 1/4 volume of
5 M ammonium acetate and 2 times the volume of anhydrous ethanol were added, and
the mixture was precipitated at −20 ◦C overnight. After centrifugation and resuspension,
purified labeled probes were obtained.

EMSA was performed using the Light Shift Chemiluminescent EMSA Kit (Beyotime
Biotech. Inc., Shanghai, China). The EMSA binding reaction system was prepared ac-
cording to the manufacturer’s protocol and experimental demands, with gentle mixing at
each step, and allowed to bind at room temperature for 30 min. Following this, loading
buffer was added. Low-voltage electrophoresis was then performed in 0.5 × TBE buffer
until the bromophenol blue dye migrated to approximately 2/3 to 3/4 of the gel length.
Subsequently, the gel was transferred onto a nylon membrane with a positive charge,
and cross-linked under UV light for 20 min. The membrane was then incubated at room
temperature for 15 min in blocking buffer for blocking, followed by a 30 min reaction with
conjugate/blocking buffer. The membrane was washed four times with wash buffer, gently
agitated for 5 min in substrate equilibration buffer, and then incubated with substrate solu-
tion for visualization. Finally, the membrane was exposed and photographed. A negative
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control protein was the F1 antigen of Y. pestis, which is a non-transcriptional regulatory
factor, and a labeled segment of 16 s rRNA gene served as a negative labeled probe in this
experiment. The concentrations of PurR protein and targeted DNA fragments are listed in
Supplementary Table S2.

2.13. Reverse Transcription PCR (RT-PCR)

Gene clusters exhibiting similar transcriptional changes were identified based on the
RNA-seq results. Primers were designed to amplify the intergenic regions adjacent to
two genes that were potentially part of the same operon. The DNA extraction procedure
followed the protocol described in Section 2.2, while the RNA extraction procedures
and reverse transcription of RNA were carried out following the protocol described in
Section 2.9. The obtained DNA, RNA, and cDNA were utilized as templates for PCR
amplification of the predicted operon intergenic regions, with deionized water serving as a
negative control. Agarose gel electrophoresis was then employed to confirm the presence
of the predicted operon intergenic sections in the amplified products.

2.14. Ethics Statement

All animal experiments adhered to the ethical guidelines for laboratory animals in
China and were conducted in accordance with the regulations outlined in laboratory animal
permit no. SCXK (Jing) 2021-0006, obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). The study was approved by the Institutional Review
Board at the Beijing Institute of Microbiology and Epidemiology (IACUC-IME-2023-001).

2.15. Statistical Analysis

The mean and variation of each of the three experimental groups were computed from
three independent experiments. A t-test was employed to evaluate differences in the data,
assuming the prerequisites of normal distribution and homogenous variance were fulfilled.
When data diverged from a normal distribution, a nonparametric analysis was conducted.
A one-way analysis of variance was performed, and the Student–Newman–Keuls q test was
applied for multiple comparisons. Evaluation of survival curves employed the Mantel–Cox
test, emphasizing the utilization of log-rank analysis. Statistical significance was set as
follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.16. Data Availability Statement

The RNA-seq data generated and analyzed in this study have been deposited at
the National Microbiology Data Center under the accession numbers of NMDC40041563-
40041574 (https://nmdc.cn/resource/genomics/sra/detail/NMDC40041563, accessed on
7 November 2023).

3. Results
3.1. Deletion of the PurR Makes No Difference in Growth of Y. pestis

To assess the contribution of purR to the growth capacity of Y. pestis, a comparative
analysis of growth curves was performed for both strains in LB and TMH media. The
findings indicated no significant differences in growth rate between these strains at tem-
peratures of 26 ◦C or 37 ◦C. Moreover, the deletion of purR had no discernible effect on
the growth of Y. pestis under two nutritional conditions, including LB medium and the
nutrient-limited TMH medium (Figure 1).

https://nmdc.cn/resource/genomics/sra/detail/NMDC40041563
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Figure 1. The growth curves of 201-WT and 201-∆purR. The growth curves of 201-WT and 201-∆purR
were assessed under different culture conditions. The conditions included: (A) growth at 26 ◦C
in LB medium, (B) growth at 37 ◦C in LB medium, (C) growth at 26 ◦C in TMH medium, and
(D) growth at 37 ◦C in TMH medium. The bar graph presented below the growth curves illustrates
the cumulative areas under the curves and is applied to statistical analysis. Each experiment included
three independent biological replicates, and the results were expressed as mean ± standard deviation
from three independent experiments. ns: not statistically significant.

3.2. No Differences Were Observed in the In Vitro Phenotypes of 201-WT and 201-∆PurR

Biofilm formation plays a crucial role in the dissemination of Y. pestis by fleas. To in-
vestigate this phenomenon, we utilized crystal violet staining to evaluate biofilm formation
in both 201-WT and 201-∆purR strains. The results revealed no significant disparities in
biofilm formation between the two strains at either 26 ◦C or 37 ◦C (Figure 2A). In order to
simulate the environmental stresses that Y. pestis may encounter in natural environments,
in this study, we exposed 201-WT and 201-∆purR to various stressful in vitro conditions,
including hypersaline, hypertonic, heat shock, and cold shock. The results demonstrated
that there were no significant differences in survivability between 201-WT and 201-∆purR
under these environmental stresses (Figure 2B–E). These findings suggest that purR may
not be critical for Y. pestis to withstand the simulated stressful environments.
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Figure 2. The in vitro phenotypes of 201-WT and 201-∆purR. Biofilm formation of 201-WT and
201-∆purR and a comparison of their survival rates in vitro under different simulated stress environ-
ments were assessed. (A) 0.1% crystal violet solution was used to quantify the relative amount of
biofilm formation for both strains cultured at 26 ◦C or 37 ◦C (B). The survival rates of both strains
after being stimulated by high osmotic pressure environment simulated by 0.5 M sorbitol after 30 min
and after 1.5 h were compared. The survival rates of both strains after being stimulated by heat shock
at 50 ◦C for 0.5 h (C) and cold shock at 4 ◦C for 24 h (D) were compared. (E) The survival rates of both
strains after being stimulated by high salt environment simulated by 7.5% NaCl were compared after
1 h of stimulation. There were no significant differences in all results between 201-WT and 201-∆purR.
Each experiment was independently replicated three times for both strains, and statistical analysis
was performed using a two-sample t-test for each comparison.

3.3. Deletion of the PurR Attenuated the Cytotoxicity to HeLa and 293 Cells of Y. pestis

RTCA was used to investigate any differences in the cytotoxicity of 201-WT and
201-∆purR on HeLa or 293 cells. The cell index indicated that 201-∆purR exhibited signifi-
cantly lower cytotoxicity to cells compared to the 201-WT strain after 10 h of stimulation.
These findings were further supported by the RTCA results for 201-∆purR-Comp (Figure 3).
The knockout of purR was found to weaken the cytotoxicity of Y. pestis strain 201 to-
wards HeLa and 293 cells. However, the survival curve analysis suggested that both
201-WT and 201-∆purR strains exhibited similar levels of virulence when tested on mice
(Supplementary Figure S1).
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Figure 3. 201. purR showed cytotoxicity attenuation on HeLa cells and 293 cells. Cells were
infected with 201-WT, 201-∆purR, and 201-∆purR-Comp at a specific multiplicity of infection (MOI).
(A) Bacterial infection of HeLa cells at an MOI of 5. (B) Bacterial infection of 293 cells at an MOI
of 5. (C) Bacterial infection of HeLa cells at an MOI of 10. (D) Bacterial infection of 293 cells at an
MOI of 10. The cell index was measured every 15 min. The bar graph presented next to the curves
illustrates the cumulative areas under the curves and is applied to statistical analysis. At the same
time point, a larger “Normalized cell index” indicates more cells or a better cell status. The higher the
curve, the larger the area under the curve, indicating that the bacterial strain has weaker cytotoxicity
to the cells. Each experiment included three independent biological replicates, and the results were
expressed as mean ± standard deviation from three independent experiments. * p < 0.05, ** p < 0.01,
**** p < 0.0001, ns: not statistically significant.

3.4. Deletion of the PurR Significantly Alters Gene Expressions in Y. pestis

In many bacteria, the main identified role of PurR is a transcriptional repressor of
purine biosynthesis [6]. In this study, we conducted RNA-seq analysis of 201-∆purR to iden-
tify genes potentially associated with purR in Y. pestis strain 201. Differentially expressed
genes were selected based on the criteria |log2 (fold change) | > 0 and p-adjust < 0.05.
Comparing these genes with 201-WT, we found significant enrichment in pathways like
ribosome, carbon metabolism, and others at 26 ◦C (Supplementary Figure S2A) and in path-
ways such as carbon metabolism, purine metabolism, sulfur metabolism, ABC transport,
and other metabolic processes at 37 ◦C (Supplementary Figure S2B).
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The RNA-seq results showed the up-regulation of genes involved in purine biosyn-
thesis, including the pur operon, guaB, and carA, consistent with the role of purR as a
purine repressor (Figure 4A, Tables 2 and 3). Additionally, genes indirectly involved in
purine biosynthesis, such as glycine cleavage system genes (YP_RS13225, gcvT, gcvH), were
also up-regulated. However, yersiniabactin (Ybt) siderophore-related genes, which are
crucial for iron uptake and Y. pestis virulence, such as ybtU [24], were down-regulated
(Supplementary Tables S3 and S4). At 26 ◦C, the type VI secretion system (T6SS) was up-
regulated (Table 2), while genes encoding peroxidase and cytochrome (katG, cybB, and
cybC) were down-regulated (Supplementary Table S3). At 37 ◦C, genes involved in sulfur
metabolism (ssuB, ssuC, and ssuD) and taurine ABC transport permeases (tauA, tauB, and
tauC) were additionally down-regulated (Table 3). Furthermore, among the up-regulated
genes, ppsA, encoding phosphoenolpyruvate synthase, and cytR, involved in DNA tran-
scription, were included (Supplementary Table S4).
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Figure 4. Common differentially expressed genes of 201-∆purR cultured at 26 ◦C and 37 ◦C. The
transcriptional level of 201-∆purR was analyzed using RNA-seq and qRT-PCR under 26 ◦C and 37 ◦C
culture conditions. (A) The 21 up-regulated or down-regulated genes that were shared under 26 ◦C
and 37 ◦C culture conditions, screened with the criterion of |log2(FoldChange)| > 1.0; all the selected
genes had a p-adjust value of < 10−5. (B) The correlation analysis between the 17 genes selected for
qRT-PCR and these same 17 genes in the RNA-seq under 26 ◦C culture conditions, and the figure
took point (2,2) as the origin. The selected genes were listed in the Section 2.9.

Table 2. Differential expressions of genes associated to purine biosynthesis and T6SS in 201-∆purR in
comparison with 201-WT at 26 ◦C.

Locus Tag * Log2FC p-Adjust Gene
Name Gene Description Pathway

Name

YP_RS08450 3.92 5.23 × 10−120 purT formate-dependent phosphoribosylglycinamide
formyltransferase

Purine
metabolism

YP_RS04375 3.12 4.25 × 10−46 purE 5-(carboxyamino)imidazole ribonucleotide mutase
YP_RS04370 3.01 2.65 × 10−52 purK 5-(carboxyamino)imidazole ribonucleotide synthase

YP_RS16125 2.30 1.50 × 10−46 purH bifunctional phosphoribosylaminoimidazolecarboxamide
formyltransferase/IMP cyclohydrolase

YP_RS14005 2.29 1.70 × 10−55 purM phosphoribosylformylglycinamidine cyclo-ligase
YP_RS12405 1.98 2.79 × 10−52 purF amidophosphoribosyltransferase
YP_RS16130 1.97 1.56 × 10−34 purD phosphoribosylamine--glycine ligase
YP_RS14010 1.97 1.16 × 10−26 purN phosphoribosylglycinamide formyltransferase
YP_RS13160 1.90 1.40 × 10−21 purL phosphoribosylformylglycinamidine synthase
YP_RS14225 1.21 2.03 × 10−16 guaB IMP dehydrogenase
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Table 2. Cont.

Locus Tag * Log2FC p-Adjust Gene
Name Gene Description Pathway

Name

YP_RS19195 1.95 3.45 × 10−27 - Hcp family type VI secretion system effector

Bacterial
secretion
system

YP_RS19175 1.89 3.77 × 10−24 tssH type VI secretion system ATPase TssH
YP_RS19210 1.83 3.03 × 10−21 - ImpA family type VI secretion system protein
YP_RS19205 1.82 2.89 × 10−25 tssB type VI secretion system contractile sheath small subunit
YP_RS19200 1.80 2.38 × 10−27 tssC type VI secretion system contractile sheath large subunit
YP_RS19185 1.79 1.88 × 10−18 tssF type VI secretion system baseplate subunit TssF
YP_RS19145 1.78 4.53 × 10−19 tssJ type VI secretion system lipoprotein TssJ
YP_RS19180 1.72 8.93 × 10−18 tssG type VI secretion system baseplate subunit TssG
YP_RS19140 1.71 1.51 × 10−25 tssK type VI secretion system baseplate subunit TssK
YP_RS19135 1.68 5.57 × 10−37 icmH type IV secretion system protein IcmH/DotU
YP_RS19170 1.62 1.09 × 10−15 vgrG type VI secretion system tip protein VgrG
YP_RS19190 1.60 2.14 × 10−18 - type VI secretion system baseplate subunit TssE
YP_RS19130 1.45 3.02 × 10−28 tssM type VI secretion system membrane subunit TssM
YP_RS15960 1.44 2.50 × 10−5 tssE type VI secretion system baseplate subunit TssE
YP_RS15965 1.11 1.88 × 10−15 tssC type VI secretion system contractile sheath large subunit
YP_RS15970 1.03 2.09 × 10−6 tssB type VI secretion system contractile sheath small subunit
YP_RS15955 0.96 8.61 × 10−4 tssF type VI secretion system baseplate subunit TssF

*: NCBI reference sequence: ASM788v1.

Table 3. The genes of purine biosynthesis and sulfur metabolism system expression changes in
201-∆purR in comparison with 201-WT at 37 ◦C.

Locus Tag * Log2FC p-Adjust Gene
Name Gene Description KEGG

YP_RS08450 4.18 1.68 × 10−95 purT formate-dependent phosphoribosylglycinamide
formyltransferase

Purine
metabolism

YP_RS04375 3.76 4.12 × 10−46 purE 5-(carboxyamino)imidazole ribonucleotide mutase
YP_RS04370 3.60 5.14 × 10−64 purK 5-(carboxyamino)imidazole ribonucleotide synthase

YP_RS16125 2.97 1.89 × 10−64 purH bifunctional phosphoribosylaminoimidazolecarboxamide
formyltransferase/IMP cyclohydrolase

YP_RS13160 2.83 4.37 × 10−41 purL phosphoribosylformylglycinamidine synthase
YP_RS14005 2.76 8.61 × 10−66 purM phosphoribosylformylglycinamidine cyclo-ligase
YP_RS16130 2.70 2.68 × 10−33 purD phosphoribosylamine--glycine ligase
YP_RS14225 2.47 3.44 × 10−23 guaB IMP dehydrogenase
YP_RS14010 2.36 1.28 × 10−22 purN phosphoribosylglycinamide formyltransferase
YP_RS12405 2.24 4.64 × 10−27 purF amidophosphoribosyltransferase

YP_RS13925 1.95 8.44 × 10−11 - phosphoribosylaminoimidazolesuccinocarboxamide
synthase

YP_RS14215 1.75 1.04 × 10−14 guaA glutamine-hydrolyzing GMP synthase
YP_RS09185 1.26 1.20 × 10−7 purB adenylosuccinate lyase

YP_RS20415 −2.40 3.19 × 10−8 ssuD FMNH2-dependent alkanesulfonate monooxygenase

Sulfur
metabolism

YP_RS20410 −1.80 2.48 × 10−4 ssuC aliphatic sulfonate ABC transporter permease SsuC
YP_RS00940 −1.79 7.13 × 10−4 tauA taurine ABC transporter substrate-binding protein
YP_RS00950 −1.79 1.23 × 10−3 tauC taurine ABC transporter permease TauC
YP_RS00945 −1.59 1.27 × 10−3 tauB taurine ABC transporter ATP-binding subunit
YP_RS20405 −1.35 5.37 × 10−2 ssuB aliphatic sulfonates ABC transporter ATP-binding protein
YP_RS00425 −1.19 5.53 × 10−2 - sulfate ABC transporter substrate-binding protein

*: NCBI reference sequence: ASM788v1.

Our investigation revealed that PurR regulates purine biosynthesis in Y. pestis as in
other bacteria, but it may also have additional functions. To validate the RNA-seq data, we
selected five down-regulated genes and twelve up-regulated genes for confirmation using
qRT-PCR, and the results supported the findings of RNA-seq (Figure 4B).
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3.5. Motif Prediction of PurR

Transcriptional regulators are DNA-binding proteins that can modulate gene transcrip-
tion by interacting with specific promoter regions. To identify the DNA-binding domain
of PurR, we conducted a search for the protein structure of Y. pestis PurR in Uniprot and
identified an HTH (helix-turn-helix) domain at the N-terminal of PurR, known for its ability
to bind to DNA (Figure 5A). HTH is a common DNA-binding motif found in prokaryotic
transcription factors, consisting of a short chain connecting two helices in the structure [25].
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A motif is a specific DNA sequence that transcriptional regulators can recognize
and bind to. In our study, we employed the online MEME tool to predict a 15-bp motif
(5′-ACGCAAWCGKTTTCS-3′) for PurR (Figure 5B) [22], which exhibited high similarity
to motifs previously predicted in other studies [26]. Notably, the PurR motif in Y. pestis
was found to be similar to that of E. coli [7]. This observation might be attributed to the
significant homology between PurR in Y. pestis strain 201 and PurR in E. coli, as the two
share 82.4% identical amino acids. To identify potential promoter regions where PurR could
bind, we conducted FIMO analysis on the complete promoter regions of the Y. pestis genome
using this motif [23]. By employing a screening threshold of a p-value ≤ 1.0 × 10−4, we
predicted that the promoter regions of 486 genes in Y. pestis strain 201 contain a motif that
closely resembles a specific sequence pattern (Supplementary Table S5).

3.6. PurR Regulates Potential Operons in Y. pestis Strain 201

As mentioned previously, this study confirms that PurR can regulate purine biosyn-
thesis by binding to the promoter region of relevant genes in Y. pestis. Our findings
demonstrate that several PurR-regulated genes involved in purine biosynthesis are co-
transcribed. For example, the purM-purN, purH-purD, and purE-purK loci are part of the pur
operon and contribute to IMP synthesis [27,28]. Additionally, guaB-guaA participates in the
conversion of IMP to GMP and AMP (Figure 6). The carA gene, co-transcribed with carB
(Supplementary Figure S3B), provides arginine and uracil, which are essential for bacterial
growth [29,30]. Another gene, gcvT, encodes glycine lyase and is part of the GCV operon,
which consists of gcvT, gcvH, and gcvP (Supplementary Figure S3C) [31].
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PurR in Y. pestis strain 201, involving genes related to purine biosynthesis. (A) The figure illustrates
the experimental setup and schematic representation of each lane in the EMSA experiment. The filled
black color represents the result of the experimental group, and the shaded grid indicates the result
of the negative control group. The concentrations of the components added in each experimental
channel are shown in Supplementary Table S2. The width of the bands reflects the quantity of
binding between the tracer probe and PurR, while the number of ‘+’ signs corresponds to the amount
of the respective samples added. The identified operons include: (B) purM-purN; (C) purH-purD;
(D) purE-purK; and (E) guaB-guaA. The left figure displays the EMSA results, while the right figure
presents the RT-PCR results. In the RT-PCR results, the template for each gene intergenic region is
indicated as DNA, RNA, cDNA, or water. The blue dotted line indicates the expected amplification
fragment size for each gene intergenic region.

In addition to regulating the co-transcribed genes involved in purine biosynthesis,
PurR was found to regulate two other operons, as confirmed in this study. This suggests
that PurR may have additional roles in Y. pestis strain 201, consistent with previous findings
of PurR having multiple functions in various bacterial species [12,32]. PurR was observed
to interact with the promoter regions of ssuE and katG, which belong to the sulfur-starvation
utilization (ssu) and katG-cybC-cybB operons [26,33], indicating that PurR could function as
a regulator for these genes (Supplementary Figure S3D,E). In summary, these results imply
that PurR may influence Y. pestis sulfur metabolism and suggest a connection between purR
and Y. pestis energy metabolism.

3.7. PurR May Potentially Regulate Other Gene Expressions in Y. pestis Strain 201

We employed a combination of RNA-seq data and FIMO prediction to explore the
potential regulatory roles of PurR in Y. pestis. Our findings revealed a correlation be-
tween significant transcriptional up- or down-regulation of certain genes and high match-
ing scores in the FIMO prediction results. PurR was found to bind to the promoter
regions of several other genes in the microorganism, including pyrD that can interact
with PurR in other bacteria and contribute to the regulation of pyrimidine biosynthesis
(Supplementary Figure S4C) [7]. Furthermore, PurR also exhibits self-regulation, adding
an extra layer of security to its regulatory system (Supplementary Figure S4B).

Furthermore, our investigation unveiled previously unknown promoter regions of
additional genes (serA, ogt, fur, ybtA, djlA) that PurR may bind to in Y. pestis strain 201
(Supplementary Figure S4D–H). Additionally, the results of EMSA and RT-PCR supported
the presence of the ybt operon (irp2-irp1-ybtU-ybtT-ybtE) located on the high pathogenicity
island (HPI) of Y. pestis (Supplementary Figure S5). These findings suggest that PurR might
regulate various biological functions of Y. pestis beyond purine biosynthesis.

3.8. Potential Operons of Y. pestis

We performed an analysis of genes that potentially undergo co-transcription based
on RNA-seq data. Our investigation confirmed the presence of two potential operons in Y.
pestis, i.e., the T6SS gene cluster and YP_RS00935-tauA-tauB-tauC-tauD (Figure 7). Similar
to the ssu operon, the tauABCD operon is involved in sulfur biosynthesis in E. coli [34]. The
T6SS is a versatile secretion system observed in various Gram-negative bacteria, and it
plays a role in multiple physiological functions in Yersinia, including host infection, bacterial
competition, and stress responses [35,36]. These findings provide evidence for the first time
that T6SS undergoes co-transcription in Y. pestis.
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Figure 7. Other operon of Y. pestis strain 201. The RT-PCR results revealed the co-transcription
of specific genes in the genome of Y. pestis strain 201, which was supported with RNA-seq
analysis (excluding previously mentioned genes). The co-transcribed regions identified include:
(A) YP_RS00935-tauA-tauB-tauC-tauD and (B) the type VI secretion system (T6SS).

4. Discussion

Y. pestis, as a multi-host pathogen, demonstrates remarkable adaptability to various
environmental changes throughout its life cycle, allowing it to survive in nature, transmitted
by fleas, and propagate within hosts. Y. pestis encounters stressful conditions, including
decreased temperature, acidity, and hyperosmotic environments in nature and within fleas.
Thus, we hypothesis that the loss of purR might plays a role in the fitness of Y. pestis.

As there is no significant variation in the growth rates of 201-WT and 201-∆purR
grown in different culture media (LB or TMH) at different temperatures (26 ◦C or 37 ◦C), it
is reasonable to exclude the influence of strain growth rates in the other phenotypic tests
(Figure 1). However, our study revealed that purR does not play a central role in Y. pestis’
ability to adapt to tested stressful conditions in vitro (Figure 2), even though certain genes
involved in the adaptation of Y. pestis to harsh environments showed significant changes in
transcription levels for the 201-∆purR mutant (Table 2). An effective transfer approach of
Y. pestis necessitates the production of biofilms to facilitate its transmission from fleas to
mammals [37], while the results showed that the loss of purR makes no difference in the
formation of biofilms of Y. pestis. Data from the multi-omics online database for Yersinia
suggest that the transcription of purR remains relatively stable in Y. pestis [38]. Interestingly,
the knockout of purR did not impact the growth of Y. pestis 201 at different temperatures
and nutritional levels, consistent with findings in S. aureus [39]. These suggest that the
transcriptional regulation of PurR alone may not be sufficient to disrupt the adaptive
mechanism of Y. pestis. As mature mechanisms are often complementary and mutually
reinforcing, with each factor playing a distinct role, any gaps in the regulatory system may
be supplemented by other aspects.

In our study, the knockout of purR resulted in reduced cytotoxicity of Y. pestis towards
HeLa and 293 cells. However, the absence of purR did not affect the toxicity of Y. pestis
in mice. Due to the complexity of the infection progress, the performance of bacteria
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in vivo and in vitro may be inconsistent. The result in cytotoxicity of 201-∆purR stands in
contrast to the findings in S. aureus, in which the virulence is increased after the deletion
of purR, as the mutant expresses more virulence effectors [27], whereas the expression of
virulence-related Ybt siderophore-related genes decreased in the Y. pestis purR knockout
strains. We only performed preliminary animal challenge experiments in this study; it can
be determined if the knockout of purR affects the toxicity of Y. pestis to animals based on
the bacterial load and pathological changes of specific organs in a follow up study.

Previous research has identified the PurR protein as an HTH-type transcriptional
repressor in bacteria, and has already confirmed its role in regulating purine biosynthesis
by repressing the pur operon in other bacterial species [6,40,41]. In this study, we examined
the purine regulatory function of PurR in Y. pestis 201. Our findings revealed that the
absence of purR led to an upregulation of purine biosynthesis-related genes and that PurR
exhibited binding affinity to the promoter region of nearly all these genes. Furthermore,
we also identified eleven potential operons in Y. pestis 201 through RT-PCR analysis, eight
of which could be bound by PurR, highlighting the role of PurR as a regulator of multiple
operons and thereby establishing a potential regulon. Interestingly, PurR was shown
to bind to the promoter region of fur, the gene encoding ferric uptake regulator Fur in
Y. pestis, which was also found to regulate siderophore-associated operons including the ybt
operon [42], indicating a cross-regulation of transcriptional regulators. This interconnection
creates a vast and complex regulatory network for PurR in Y. pestis.

In addition to its role in regulating purine biosynthesis, we sought to explore other
potential functions of purR in Y. pestis. Our analysis revealed that purR may also influence
the virulence, sulfur metabolism, and energy synthesis of Y. pestis by directly or indirectly
regulating specific operons, i.e., irp2-irp1-ybtU-ybtT-ybtE, ssuE-YP_RS20420-ssuD-ssuC-ssuB,
and katG-cybC-cybB, respectively. Notably, we discovered that the T6SS (Type VI Secretion
System) gene cluster was co-transcribed in Y. pestis 201, and the knockout of purR resulted
in an increase in transcription of these genes. T6SS has been shown to play a crucial role
in the interaction between Y. pestis and macrophages [43]. This finding provides valuable
insights for studying the mechanism of interaction between Y. pestis and macrophages.

In summary, this study conducted a preliminary investigation into the function of
purR in Y. pestis 201 and provided an initial analysis of the regulatory network of PurR.
The findings laid the groundwork for future research, but a more comprehensive under-
standing of the underlying mechanism requires additional methods and robust evidence
for validation.
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strain 201; Figure S4: PurR may regulate some genes of Y. pestis strain 201; Figure S5: The ybt operon
in Y. pestis strain 201; Table S1: Primers used in the study; Table S2: EMSA settings for different target
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