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Abstract: Bacteria in lake water bodies and sediments play crucial roles in various biogeochemical
processes. In this study, we conducted a comprehensive analysis of bacterioplankton and sedimentary
bacteria community composition and assembly processes across multiple seasons in 18 outdoor
mesocosms exposed to three temperature scenarios. Our findings reveal that warming and seasonal
changes play a vital role in shaping microbial diversity, species interactions, and community assembly
disparities in water and sediment ecosystems. We observed that the bacterioplankton networks were
more fragile, potentially making them susceptible to disturbances, whereas sedimentary bacteria
exhibited increased stability. Constant warming and heatwaves had contrasting effects: heatwaves
increased stability in both planktonic and sedimentary bacteria communities, but planktonic bacterial
networks became more fragile under constant warming. Regarding bacterial assembly, stochastic
processes primarily influenced the composition of planktonic and sedimentary bacteria. Constant
warming intensified the stochasticity of bacterioplankton year-round, while heatwaves caused a
slight shift from stochastic to deterministic in spring and autumn. In contrast, sedimentary bacteria
assembly is mainly dominated by drift and remained unaffected by warming. Our study enhances
our understanding of how bacterioplankton and sedimentary bacteria communities respond to global
warming across multiple seasons, shedding light on the complex dynamics of microbial ecosystems
in lakes.

Keywords: climate warming; bacterioplankton; sedimentary bacteria; multi-seasons; community
composition; assembly process

1. Introduction

With continued warming this century, extreme weather events, such as heatwaves
and large temperature fluctuations, are projected to become more frequent [1,2]. Ongoing
climate warming is threatening global biodiversity and altering ecosystem functions, which,
in turn, can lead to feedback on climate warming [3]. Lakes are generally considered to be
more vulnerable to global warming than air and oceans [4,5].

Aquatic microbial communities are highly dynamic and continually change in re-
sponse to seasonal environmental variables (e.g., temperature and nutrients) [6,7]. The
composition, activity, and assembly mechanisms of microbial communities have been
shown to change seasonally in freshwater environments. Aquatic microbial communities
are highly diverse, and the extent to which this diversity arises from deterministic factors,
such as ecological niche differentiation, or stochastic factors, such as ecological drift, is
debated [8,9]. Deterministic processes affect the fitness of microbial communities and
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determine their composition and abundance [10], whereas stochastic processes lead to
unpredictable community changes [11]. The dominance of deterministic processes results
in a community that is well adapted to environmental conditions, whereas the dominance
of stochastic processes increases the likelihood of a high proportion of maladapted taxa and
may reduce some biogeochemical functions at the microbiome level [12]. The cumulative
balance of deterministic and stochastic processes affects microbiome composition, which
in turn affects ecosystem function [13]. Assembly theory provides a framework to better
understand microbiome changes and their impact on community function and climate
feedback, helping to disentangle the mechanisms of microbial communities in response to
climate change [14,15].

The water column and sediment are two distinct lacustrine habitats [16], which interact
in complex patterns through biogeochemical processes in lake systems [17–19]. There is
a distinct difference in the composition of the community structure between the water
and sediment [20,21]. However, to fully understand the ecological and biogeochemical
implications of climate change, we need to consider climatic influences on community
structure and microbiome assembly mechanisms across aquatic habitats. Physicochemical
and biological constituents in the water column can settle into the surface sediments and
can be resuspended from the surface sediments back into the water column [22,23]. The
abiotic and biotic properties of the water column and surface sediments are inherently
intertwined and inseparable [24]. Bacteria are key components of biogeochemical cycles
and food webs in various aquatic ecosystems [25,26] and are commonly found in the water
column and sediments, maintaining the stability of ecological functions and services [27].
Many planktic species form dormant or resting stages (propagules) that accumulate in
aquatic sediments over time and remain viable for centuries [28,29]. Elucidating their spatio-
temporal variation and potential drivers is widely regarded as a fundamental ecological
goal, with important implications for predicting ecosystem responses to environmental
change and regulating the ecosystem function [30].

How climate warming will affect microbial communities is a matter of debate [31–34].
Temperature has important effects on microbial growth and physiology, and previous stud-
ies have shown that microbes are sensitive to changes in environmental temperature [35,36].
Different microbial groups have optimal temperature ranges for growth and activity [37].
While individual microbes shift their physiology in response to temperature changes, the
dominance of a population within a community will change based on competition between
groups with different growth rates at different temperatures or environmental conditions,
thus affecting the composition of the microbial community [38]. Temperature also mediates
the balance between stochastic and deterministic assembly processes in bacteria. One
study found that temperature and ferrous iron were the main factors mediating the balance
between stochastic and deterministic assembly processes in sediment communities [39],
while another found that warming and nutrient enrichment did so [40]. Nevertheless,
little attention has been paid to investigating the underlying mechanisms of bacteria in
water and sediment in response to global warming and rapidly changing weather events
through experimental manipulation in mesocosms. The generality of bacterial assembly
patterns across lake water and sediment remains uncertain, limiting our ability to predict
biogeochemistry and microbial community responses to climate change.

Based on the above findings, we aimed to investigate (1) how planktonic and sedimen-
tary bacterial communities respond to different warming scenarios, (2) what the seasonal
differences in the response of bacterial communities to warming, and (3) which ecological
processes mediate the bacterial assembly in water and sediment. We tested the community
structure, co-occurrence patterns, and assembly mechanisms of the sedimentary and plank-
tonic bacterial communities in the 18 mesocosms and showed the temporal changes in the
community. The effects of stochastic and deterministic processes on the bacterial commu-
nity were elucidated, and their drivers were identified. At the same time, co-occurrence
networks were used to explore how ecological processes affect putative interactions be-
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tween taxa. The results may provide helpful information for better understanding and
predicting the response of lacustrine lakes in a warming future.

2. Materials and Methods
2.1. Mesocosm Experiment Setup

The mesocosms used in our experiment are situated at the Huazhong Agricultural
University in Wuhan City, Central China (30◦29′ N; 114◦22′ E). The experimental design of
this study has been described previously [41,42] and will only be briefly described here.
The experimental setup included 18 fully mixed outdoor mesocosms (diameter = 1.5 m,
height = 1.4 m, and lake sediment = 0.1 m) to mimic shallow lake ecosystems. Heating
was provided by a heater (Xin Shao Guang A10-3, Xin Shao Guang Technology Co., Ltd.,
Wuhan, China) and temperature sensors (Maxim IC DS18B20, Maxim Integrated Products,
Inc., San Jose, CA, USA) connected to each tank, allowing us to monitor the temperature
in each heated and unheated treatment pair in real time [42]. Each tank had a 10 cm deep,
well-mixed bed layer of lake sediment and was filled with 20 µm mesh filtered lake water
collected from Liangzi Lake at a depth of 1 m. Prior to the start of the experiment, all
tanks were allowed to colonize under ambient conditions for two months (November to
December 2018) to simulate the conditions of natural ecosystems as closely as possible and
to reflect natural water bodies.

We conducted a long-term and multi-seasonal study using 18 outdoor mesocosms with
the aim of investigating the microbial communities’ long-term adaptation and evolutionary
processes in water and sediments. These mesocosms simulate shallow lake systems under
three temperature scenarios with six replicates: (1) control (‘C’, environment temperature);
(2) constant warming (‘T’, +4 ◦C above control temperature) according to the IPCC climate
scenario RCP8.5 [43]; and (3) heatwave (‘H’, with water temperatures fluctuating ±4 ◦C
relative to constant warming).

2.2. Samples Collection and Environmental Parameters

Water samples were collected from each tank every 2 weeks in winter and every week
in the other seasons using a Plexiglas tube (diameter 70 mm; length 1 m). Total nitrogen
(TN) and total phosphorus (TP) were determined by spectrophotometry (Unico UV-2800,
Unico Scientific Instruments, Shanghai, China) after digestion with alkaline potassium
persulfate [34]. Water was filtered through GF/C filters in order to determine PO4

3−-P
concentration using the molybdenum blue method [44], NH4

+-N concentration in filtered
water was determined using Nessler’s reagent colorimetric method [44], and NO3

−-N
was determined using spectrophotometric microdetermination method employing chro-
motropic acid reagent [45,46]. Chlorophyll-a was determined by water filtration through
Whatman GF/C filters and spectrophotometric analysis (Unico UV-2800, Unico Scientific
Instruments, Shanghai, China ) after ethanol extraction [47]. Dissolved oxygen (DO), pH,
and conductivity were measured using HACH HQD Portable Meters (HACH HQ40d,
Hach, Loveland, CO, USA).

Sediment samples were simultaneously collected alongside water samples and sub-
jected to rigorous analysis using established methodologies. Upon collection, fresh samples
underwent meticulous thawing, homogenization, and subsequent processing to quantify
critical parameters, including TN, NH4

+-N, NO3
−-N, NO2

−-N, TP, and inorganic phospho-
rus (IP) [48]. The determination of TN and TP was accomplished through the application of
the peroxysulfate-assisted digestion method (HJ 832-2017). The quantification of NH4

+-N,
NO3

−-N, and NO2
−-N levels was achieved utilizing precise spectrophotometric techniques

in accordance with the potassium chloride processing protocol (HJ 634-2012). Furthermore,
the determination of IP was conducted using the sodium hydrogen carbonate solution–Mo–
Sb anti spectrophotometric method (HJ 704-2014), ensuring the robustness and accuracy of
the analytical procedures.

Bacterioplankton and sediment microbial samples were collected quarterly throughout
the year (i.e., May, August, and November of 2018 and February of 2019). To obtain
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these samples, 100 mL of water from each tank was filtered through a 0.22 µm white
polycarbonate membrane. The filtered water was subsequently preserved at −80 ◦C until
DNA extraction. Likewise, the sediment microbial samples were also stored at −80 ◦C
until DNA extraction.

2.3. DNA Extraction, PCR, and Sequencing

Water and sediment samples for molecular analysis were stored in a freezer at −80 ◦C
prior to use. Genomic DNA from water and sediment samples was extracted and purified
using the MOBIO PowerWater® DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
USA) according to the manufacturer’s protocols. The barcoded primer sets 338F (5′-
ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) [44]
were used for bacterial 16S rRNA gene amplification. The V4–V5 region of the bacterial 16S
ribosomal RNA gene was amplified by PCR (95 ◦C for 2 min, followed by 25 cycles of 95 ◦C
for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min). PCR
reactions were performed in a 20 µL reaction system containing 4 µL of FastPfu buffer (5×),
2 µL of dNTP mix (2.5 mM), 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu polymerase,
and 10 ng of template DNA, and 0.2 µL of BSA. Triplicate amplifications from each sample
were mixed for library preparation.

Amplicons were extracted from 2% agarose gels and purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions and quantified using QuantiFluor™-ST (Promega, Madison,
WI, USA). Purified amplicons were pooled in equimolar amounts and sent for paired-end
sequencing on an Illumina Miseq PE300 platform (Majorbio, Shanghai, China).

Raw reads were trimmed using Trimmomatic (version 0.38) and Flash (version 1.2.11)
to remove those of low quality (<20) and short length (<50 bp). Briefly, the raw reads were
combined, denoised, trimmed, quality-filtered, and aligned [49] to the SILVA 128 databases
using Mothur (version 1.30.2). After initial processing, UCHIME was used to remove
chimera, and operational taxonomic units (OTUs) were clustered at a 97% sequence similar-
ity level [50] using Usearch (version 7.0). To avoid potential sequencing bias, all singletons
and OTUs occurring in only one sample were excluded from the OTU table.

2.4. Network Construction and Analysis

The total datasets were divided into two subgroups: water and sediment samples,
which were analyzed individually. Network analysis was performed at the microbiome
OTU level, and OTUs with total relative abundance > 0.1% were selected to reduce com-
putational complexity and ensure the reliability of the constructed network [51]. Only
Spearman’s rank correlation coefficients > 0.6 (or <−0.6) and p < 0.05 were accepted for
network analysis [52,53]. Corrections for multiple testing were considered, and p-values
were corrected for a false discovery rate (FDR) of 0.05 using the Benjamini–Hochberg
method [54]. The resulting correlations were imported into the Gephi platform (version
0.10.1) [55] and then visualized using the Fruchterman–Reingold algorithm. The microbial
co-occurrence network’s properties were characterized using several properties, including
nodes, edges, average degree, average transitivity, average clustering coefficient, average
path length, diameter, modularity, graph density, and percentage of positive relationships.
These properties collectively provide insight into the network structure, connectivity, orga-
nization, and prevalence of cooperative interactions among microbial community members.
The topological properties of the networks were also computed in Gephi.

2.5. Bacterial Community Assembly Analysis

Interspecific phylogenetic distances were calculated using the maximum likelihood
method in MEGA 7 [56,57]. To investigate the mechanisms of bacterial community as-
sembly, the mean nearest taxon distance (MNTD) and the standardized effect size (SES)
of the MNTD (opposite number of NTI) were calculated using the ‘ses.mntd’ function
in the ‘picante’ package of R [58–60]. Overall, if the NTI values are between −2 and 2,
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the community assembly for a given pairwise comparison is considered to be primarily
driven by dispersal-related or stochastic processes. However, if the NTI values are outside
of this range (−2 to 2), then deterministic processes have a more important function in
structuring the turnover of the microbial phylogeny [61]. To explore the contribution of
five ecological processes (including homogenizing selection, variable selection, dispersal
limitation, homogenizing dispersal, and ecological drift) to bacterial community structure,
we applied a quantitative ecological framework based on null models, as previously re-
ported [62]. First, βNTI was calculated. Values > +2 or <−2 indicate that deterministic
processes influence community structure, whereas the values between −2 and +2 indicate
that stochastic processes are highly influential [63]. Second, βNTI and Bray–Curtis-based
Raup–Crick (RCbray) were combined and used to infer the relative importance of key
ecological processes in influencing bacterial communities [63]. βNTI values > +2 or <−2
indicate that community turnover is determined by variable or homogeneous selection
(similar community composition under consistent environmental conditions), respectively.
Pairwise comparisons with RCbray > +0.95 and |βNTI| < 2 correspond to dispersal lim-
itation (high compositional turnover is mainly caused by low dispersal rates, allowing
community composition to drift apart). RCbray < −0.95 and |βNTI| < 2 correspond
to homogenizing dispersal, which is similar to mass effects and source-sink dynamics;
however, these terms invoke additional assumptions and processes. Therefore, homoge-
nizing dispersal simply indicates that dispersal is high enough to cause low turnover by
overwhelming other processes. Pairwise comparisons with |RCbray| < 0.95 correspond to
drift (undominated processes).

2.6. Statistical Analysis

Alpha diversity was calculated using Mothur (version 1.30.2), and Bray–Curtis was
calculated from the relative abundances of OTUs using Fast Tree and UniFrac [64]. Per-
mutational multivariate analysis of variance (PERMANOVA) was performed using the R
vegan package [65] to assess the effects of the different treatments on changes in bacterial
community composition. p < 0.05 (adjusted for false discovery rate) was considered signifi-
cant for all statistical tests unless otherwise stated. Box plots, bar plots, and heatmaps were
generated using R version 4.3.0 with the vegan, linkET, and ggplot2 packages [66].

3. Results
3.1. Warming Effects on Physical and Chemical Indicators

Water temperature in the mesocosms for the duration of the experiment followed
the desired experimental design (Figure S1). In the constant warming treatment (T), the
water temperature was consistently maintained at a level +4 ◦C higher than that of the
control treatment (C). Meanwhile, in the heatwave treatment (H), the temperature exhibited
fluctuations relative to the T treatment. Continuous monitoring revealed that the annual
mean water temperature within the ambient temperature mesocosms was 19.5 ◦C, while
both heated mesocosms maintained an identical average annual temperature of 23.5 ◦C,
signifying a similar accumulation of water temperature.

A set of environmental variables was monitored weekly (biweekly during the win-
ter) throughout the experimental period (March 2018–February 2019) (Tables S1 and S2).
It was observed that both the warming scenario and the changing seasons significantly
impacted the physical and chemical indicators of water and sediment. Additionally, it was
found that the season variation had a more pronounced effect on physico-chemical factors
(Tables S3 and S4). The physico-chemical factor trends between seasons remained consis-
tent across different treatments. Warming has a significant influence on several parameters
in the water column, specifically conductivity, Chl-a, TN, and NH4

+-N levels. During
spring, summer, and autumn, warming led to elevated conductivity and TN levels, while
winter experienced adverse effects. Furthermore, warming was associated with higher
concentrations of both Chl-a and NH4

+-N in the water column, with the impact being more
significant in heatwaves (Table S1). Warming also has a notable impact on nitrogen levels
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in sediment, including NH4
+-N, NO3

−N, and TN. Interestingly, the TN content remained
unaffected by seasonal variation. Warming led to an increase in the concentrations of
both TN and NH4

+-N in the sediment throughout the year. However, constant warming
resulted in a significant decrease in NO3

−-N concentration during summer and autumn,
while heatwaves led to a decrease in NO3

−-N concentration during summer but a signif-
icant increase in autumn and winter. Furthermore, water temperature was significantly
correlated with all physico-chemical factors except for PO4

3--P. In sediments, TN showed
a significant positive correlation with nitrite and a significant negative correlation with
NO3

−-N (Figure 1).
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Figure 1. Heatmap shows correlations among environmental factors of water (A) and sediment (B)
(Chl-a = chlorophyll-a, NH4

+-N = ammonium, DO = dissolved oxygen, NO3
−-N = nitrate, pH = pH

value, TN = total nitrogen, TP = total phosphorus, IP = inorganic phosphate, NO2
−-N = nitrite). Red

squares indicate positive correlations, blue squares indicate negative correlations, and square size and
color intensity reflect correlation strength. Values display Spearman correlation coefficients. * p < 0.05,
** p < 0.01, *** p < 0.001. Connecting lines depict associations between microbial communities and
environmental factors in water and sediments (Mantel test, based on Bray–Curtis distance matrix).
Red lines represent positive correlations, green lines represent negative correlations, and line thickness
reflects correlation strength.

3.2. Bacterial Community Composition and Diversity in Water and Sediments

In this dynamic environment, we comprehensively analyzed microbial community
composition using sequencing amplicon libraries. A total of 3,090,859 high-quality se-
quences were obtained from 72 water samples, while 2,603,551 high-quality sequences
were obtained from 71 sediment samples. To account for the difference in sequencing
depth, the planktonic and sedimentary bacterial sequences were normalized to 32,139
and 23,770, respectively, based on the minimum sequence number. Through clustering
at a 97% sequence similarity level, we identified 4735 OTUs for the bacterioplankton and
12,825 OTUs for the sedimentary bacterial community. The rarefaction curves of water and
sediment samples reached a plateau, indicating that the sequencing depth was sufficient
and accurate (Figure S2).

In the water samples, a total of seven dominant phyla were identified, each account-
ing for a relative abundance of more than 1% at least in one sample. These seven phyla
represented 97.07% of the sequences. In the sediment samples, a total of ten dominant
phyla were identified, each accounting for a relative abundance of more than 1% in at
least one sample, accounting for 87.11% of sequences. The phyla Proteobacteria (33.2% in
water vs. 38.91% in sediments), Actinobacteria (21.01% in water vs. 1.84% in sediments),
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Chloroflexi (1.15% in water vs. 30.67% in sediments), Firmicutes (0.44% in water vs. 23.01%
in sediments), and Acidobacteria (0.30% in water vs. 8.48% in sediments) were significantly
abundant in both water and sediments (Figure 2A). The impact of warming observed at
higher taxonomic levels was stronger on sedimentary bacteria than on planktonic bacte-
ria (Tables S5 and S6). Specifically, in the sediment, compared with the control (ambient
mesocosms), the relative abundances of Chloroflexi (Kruskal–Wallis test: p = 0.037), Amini-
cenantes (p = 0.030), and Latescibacteria (p = 0.023) significantly changed in the heatwave
mesocosms, while the constant warming (T) mesocosms did not differ from the ambient
mesocosms (Tables S7 and S8).
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Figure 2. (A) The relative abundance of the top-10 phylum taxa of the bacterioplankton and sedimen-
tary bacteria community. The presented relative abundances are based on the 97% similarity clusters
of the OTUs. (B) Heatmaps of associations between top-10 phylum taxa and environmental factors.
* p < 0.05, ** p < 0.01. (C–E) Shannon index, Chao index, and nearest-taxon index of bacterioplankton
and sedimentary bacteria between treatments in different seasons.

Dissimilarity tests confirmed significant differences between water and sediment
communities, highlighting the distinct composition and structure of these microbial com-
munities (Table S9). We observed significant influences of warming scenarios and seasonal
variations on the bacterioplankton community. In contrast, no discernible differences were
identified among the treatments concerning sedimentary bacteria (Table S10). To further
investigate the underlying mechanisms that shape the microbial community in different
habitats, a Mantel test was performed to correlate distance-corrected dissimilarities of the
microbial community with those of environmental factors (Figure 1). The results revealed
significant associations between the bacterioplankton community and all water properties,
whereas the sedimentary bacterial community exhibited a significant association with
NO2

−-N, TP, and IP contents in sediment.
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Bacterial community complexity was estimated using alpha diversity, including rich-
ness (Chao1 index) and diversity (Shannon index) (Table S11). The richness and diversity
of sedimentary bacteria were significantly higher than those of bacterioplankton. Over
time, there were no significant differences in the richness and diversity of bacterioplankton
among the three temperature scenarios from spring to winter (p > 0.05, Wilcoxon test).
However, we did observe notable differences in richness during spring between the ambi-
ent temperature group (C) and the heatwave group (H) of sedimentary bacteria. During
winter, significant differences emerged in both diversity and richness between these two
groups (p < 0.05) (Table S12).

Considering the treatment variations, the bacterioplankton diversity exhibits seasonal
fluctuations, primarily with significant differences between the spring and autumn periods,
as well as during winter. Additionally, bacterioplankton richness significantly increased
(p < 0.001) from spring to autumn, followed by a decrease in winter (p < 0.001). In contrast,
the richness and diversity of sedimentary bacteria exhibited distinct patterns, with changes
becoming apparent from autumn onwards across all three temperature scenarios. Notably,
the constant warming group exhibited a more pronounced alteration in richness and
diversity compared to the other groups. During spring, the constant warming group
showed relatively lower richness and diversity compared to the control and heatwave
groups. However, as the season transitioned to winter, both the constant warming and
heatwave groups displayed higher richness and diversity than the control group (Table S13;
Figure 1A,B).

The NTI values for both water and sediment communities exhibited significant de-
viations from zero. Notably, sediment NTI values ranged from 7.22 to 12.47, significantly
higher than water NTI values, which ranged from 0.46 to 6.19 (Figure 2C). Regarding
the water body, a significant correlation between NTI and all physicochemical factors
except PO4

3−-P was observed (Table S14). However, no significant correlations were found
between environmental factors and NTI values in sediments.

3.3. Co-Occurrence Patterns of Microbial Communities

Figure 3 presents co-occurrence networks for planktonic and sedimentary microbial
communities using Spearman’s correlation coefficients. In these networks, nodes represent
various bacterial phyla. In the planktonic bacteria community networks, the dominant
phyla represented by the nodes include Proteobacteria, Bacteroidetes, Actinobacteria,
Cyanobacteria, Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria. In the sedimen-
tary bacteria community networks, the nodes represent the dominant phyla of Chloroflexi,
Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Most
edges in the network display positive correlations, indicating a predominantly cooperative
relationship among microbial communities in both water and sediment. To assess the
degree of species co-existence in different habitats, network topology parameters were
calculated for each community group. The specific network topology parameters and their
corresponding values are provided in Tables 1 and S15. The network analysis revealed
distinct co-occurrence patterns among different communities.

Specifically, our analysis revealed that the sediment network displayed a higher aver-
age degree and graph density, as well as a lower average path length, network diameter,
modularity, and positive relationship compared to the water networks. These findings indi-
cate that the benthic community of sedimentary bacteria is more interconnected, suggesting
a higher frequency of co-occurrence among OTUs in sediment compared to planktonic
bacteria communities. The higher co-occurrence frequency in sediment further underscores
the interconnected nature of sedimentary microbial communities. Moreover, this study
observed that the positive relationships within bacterioplankton networks were stronger
than those in sedimentary bacteria networks, suggesting a more intense competition among
species in sedimentary bacterial communities.
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Table 1. Topological properties of co-occurrence networks for bacterioplankton and sedimentary
bacteria.

Habitat Scenario Nodes Edges Average
Degree

Average
Transitivity

Average
Clustering
Coefficient

Average
Path

Length
Diameter Modularity Graph

Density
Positive

Relationship
(%)

Water

Total 316 892 5.646 0.390 0.458 3.614 10.816 0.053 0.018 97.646
C 325 2012 12.382 0.487 0.502 1.230 6.838 0.009 0.038 82.604
T 351 1720 9.801 0.461 0.491 2.096 8.295 0.021 0.028 93.953
H 360 2962 16.456 0.520 0.550 0.994 5.170 0.003 0.046 86.124

Sediment

Total 831 9531 22.939 0.507 0.610 1.501 7.148 0.005 0.028 87.483
C 655 8451 25.805 0.456 0.472 0.471 4.438 0.0005 0.039 71.459
T 704 10,006 28.426 0.508 0.479 0.459 6.127 0.001 0.040 77.294
H 621 12,642 40.715 0.526 0.520 0.456 5.804 0.001 0.066 57.475

Furthermore, from a holistic perspective, the two warming scenarios both led to a
significant increase in the network complexity of sedimentary bacteria when compared
to the ambient control. This increase encompassed various aspects, such as network
size, connectivity, average clustering coefficient, relative modularity, and the number of
keystone species. On the contrary, there are differences in the impact of warming scenarios
on the network topology structure of planktonic bacteria. When compared to the ambient
warming group, we observed that the heatwave group exhibited a more interconnected
network with a higher degree of clustering and transitivity. In contrast, the constant
warming group had a less interconnected network with a lower degree of clustering and
transitivity (Table 1). However, the effects of heatwaves and constant warming on bacterial
networks vary across seasons (Tables S15 and S16). On a temporal scale, sedimentary and
bacterioplankton networks exhibit seasonal changes. Bacterioplankton, especially, exhibit
more diversity and complexity during summer and less during winter (Figure S3).

3.4. Disentangling Community Assembly Processes in Water and Sediments

The null model-based analyses were employed to explore the relative contributions
of deterministic and stochastic processes to community assembly in water and sediments.
βNTI values were calculated to assess the relative importance of two types of bacterial com-
munity assembly (deterministic and stochastic processes) in different habitats (Figure 4A).
Most samples had βNTI values between −2 and 2, indicating that the stochastic process
was the primary force influencing bacterial community assembly in all tested samples.
Weighted βNTI and Bray–Curtis-based Raup–Crick (RCbray) were combined to approxi-
mate the relative contributions of different assembly processes, and null model analysis
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was conducted to estimate the ecological processes influencing the composition of bacterial
communities.
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Figure 4. (A) Distribution of beta nearest taxon index (β-NTI) among bacterioplankton and sedimen-
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For the benthic bacterial community, stochasticity emerged as the dominant ecological
process, accounting for 85.71% to 100% of community turnover. This suggests that stochastic
processes had a more significant influence on the assembly of this community. In fact,
the undominated process (drift) accounted for 100%, indicating that no other ecological
process played a more important role in driving the assembly of bacterial communities in
sediment samples. On the other hand, the water community showed a relatively lower
proportion of stochasticity (ranging from 46.67% to 100%), indicating that determinism
played a relatively more substantial role in driving community assembly. These results
revealed that the undominated stochastic process dominated the sediment communities. In
contrast, homogenizing dispersal and homogeneous selection exerted a relatively greater
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influence on the water communities, leading to an increased similarity in planktonic
bacterial communities over the course of the year.

The impact of warming on bacterial communities in the water column was apparent in
the one-year study. However, sedimentary bacterial communities exhibited greater stability.
In terms of seasonal variations throughout the year, both the ambient temperature group
and the constant warming group exhibited a general trend of increasing importance of
deterministic processes from spring to winter. Additionally, constant warming led to an
increase in the proportion of stochastic processes throughout the entire year. However,
the effects of heatwave on community assembly appeared to be more complex; it shows
a decrease in deterministic processes in summer and an increase in autumn and winter
(Figure 4B).

Overall, the analysis revealed distinct mechanisms governing the assembly of micro-
bial communities in water and sediment communities, highlighting the context-dependent
nature of these processes. To further understand the drivers of community dissimilarities,
we examined the correlations between βNTI and environmental variables using Mantel
tests (Table 2). The results revealed significant positive correlations between water com-
munity structure and environmental variables. Specifically, pH (r = 0.2039, p = 0.001),
DO (r = 0.1067, p = 0.008), NH4

+-N (r = 0.1620, p = 0.002), TN (r = 0.1261, p = 0.019), TP
(r = 0.1160, p = 0.035), and Chl-a (r = 0.2213, p = 0.003) exhibited significant positive associa-
tions with the community structure. Moreover, sediment parameters such as TN (r = 0.1322,
p = 0.014), NO2

−-N (r = 0.1195, p = 0.029), and IP (r = 0.1180, p = 0.015) levels demonstrated
significant positive correlations with βNTI.

Table 2. Mantel tests for the correlation between environmental variables and βNTI of bacterial
communities in water and sediment.

Water Sediment
r p r p

Temperature 0.0369 0.219 TN 0.1322 0.014 *
pH 0.2039 0.001 *** NH4

+-N 0.0020 0.432
DO 0.1067 0.008 * NO2

−-N 0.1195 0.029 *
Conductivity 0.0259 0.001 *** NO3

−-N −0.0110 0.536
NO3

−-N −0.0429 0.759 TP 0.0853 0.063
NH4

+-N 0.1620 0.002 ** IP 0.1180 0.015 *
TN 0.0146 0.019 *

PO4
3−-P 0.0663 0.194

TP 0.1160 0.035 *
Chl-a 0.2213 0.003 **

* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In this study, we conducted a comparative analysis of microbial interactions and
community assembly mechanisms within mesocosms, focusing on water and sediment
environments under various scenarios. Our results demonstrated the following: (1) bacte-
rial communities in sediment exhibited higher levels of diversity, richness, stability, and
phylogenetic clustering in comparison to the water body; (2) the dominant influence shap-
ing both water and sediment communities was stochasticity, although determinism had
a stronger influence in the water environment; and (3) constant warming increases the
randomness of assembly among planktonic bacteria, whereas heatwaves present significant
seasonal variations in this process.

4.1. Habitat Differences

Habitat differentiation likely contributed to differences in microbial community struc-
ture and assembly between lake water and sediments, and exploring the underlying
ecological processes may be helpful in explaining these differences [28,67,68]. Consistent
with previous research [39], our study showed that the sedimentary microbial communi-



Microorganisms 2023, 11, 2807 12 of 19

ties exhibited higher taxonomic richness, diversity, and stronger phylogenetic clustering
compared to their planktonic counterparts. The significant correlations observed between
NTI values of planktonic bacterial communities and environmental factors suggested that
the combination of these abiotic factors imposed a stronger pressure on bacterioplankton
communities (Table S14).

Microbial correlation networks offer critical insights into the emergent properties of
microbial communities. Our results, as depicted in Figure 3 and Table 1, revealed differences
in network properties between water and sediment habitats. The more complex network in
sediment suggested that the sedimentary network was more interconnected than the water
network. Microbial interactions play a significant role in microbial community assembly by
acting as a selection force, promoting niche differentiation, and fostering diversification [39].
Both the planktonic and sedimentary bacterial networks exhibited predominantly positive
correlations, suggesting that the bacterial communities in water and sediments are primarily
shaped by niche-sharing dynamics [53] and shared abiotic affinities. Organisms that share
abiotic affinities have similar tolerances and requirements for factors such as temperature,
humidity, pH, or nutrient availability. This leads to the establishment of mature microbial
communities with niche separation and limited competition between microbes [69]. The
percentage of positive correlations was higher in the planktonic bacterial network (97%)
compared to the sedimentary bacterial network (83%), accompanied by higher diversity in
sediments. A higher proportion of negative interactions within communities can enhance
network stability under perturbations, indicating that the sedimentary bacterial network
exhibits stronger interspecies competition compared to the planktonic bacterial network,
potentially enhancing increased stability [70].

4.2. Assembly Process Differences

Phylogenetic null modeling analyses have suggested that stochastic assembly pro-
cesses dominate in high-diversity communities [71]. Consistent with this perspective,
sediment habitats are often characterized by higher heterogeneity and a wide range of
microhabitats [39], as confirmed by our results showing greater diversity in sediment bac-
teria than planktonic bacteria. These microhabitats within sediments can create conditions
distinct from the surrounding environment, providing refuge for species to survive in
otherwise unsuitable conditions. Moreover, species residing in sediments can actively
modify minerals and contribute to the formation of secondary minerals, further enhancing
heterogeneity within sediments [72].

We find that the proportion of stochastic processes in sediments was higher compared
to the water body. In sedimentary bacteria, drift dominates, while in planktonic bacteria,
the random processes are jointly dominated by drift and homogenizing dispersal. Drift
refers to the random changes in the relative abundance of different species due to random
births, deaths, and reproduction events. Homogenizing dispersal, on the other hand, refers
to the movement of organisms between different habitats, leading to a more uniform distri-
bution of species across habitats [73]. Planktonic bacteria within the aquatic environment
exhibit a tendency towards dispersal. According to the spatial insurance hypothesis, high
dispersal levels aid in the resistance of bacterioplankton against the impacts of heatwaves
and warming [74]. Dispersal allows species to move between different habitats, which
can help maintain diversity and ecosystem functioning in changing environments [75].
This difference in the dominant processes shaping the communities may be attributed
to the distinct environmental conditions and spatial structures of sediments and water
bodies. Sediments are more heterogeneous environments, with higher stability and less
affected by abiotic factors, compared to water bodies, which are more evenly mixed during
hydrodynamic movements [76]. When environmental conditions support the coexistence
of multiple species, the community experiences reduced selection pressure, and stochastic
processes primarily govern the assembly [77,78]. Drift can play a significant role in main-
taining diversity in systems with high selection pressures and low dispersal [79]. However,
due to their small size, high abundance, and short generation time, microorganisms have
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not been extensively studied or quantified in terms of dispersal processes. Microbial com-
munities in water exhibit spatial and temporal differences [80,81], which in turn influence
dispersal patterns.

In this study, it was found that the proportion of different assembly processes in the
assembly of planktonic bacteria varies greatly. Mantel tests showed that a suite of envi-
ronmental variables had a positive association with water community assembly (Table 2).
Temperature directly influences assembly; instead, constant warming and heatwaves have
varying indirect effects on the assembly of planktonic bacterial communities (Figure 4B).
Abiotic factors, such as temperature, can indirectly influence the ecological processes under-
lying community assembly in water. Environmental factors can drive changes in microbial
communities, affecting their diversity and composition [82]. In some cases, temperature
can indirectly affect microbial community assembly by altering other environmental factors,
such as nutrient availability or water chemistry [83].

4.3. The Impact of Seasonal Change and Warming

We find that seasonal variations had a more pronounced influence on microbial diver-
sity and community composition in both water and sediment compared to temperature
treatments, indicating the robustness of yearly rhythms in microbial communities. Seasonal-
ity plays a crucial role in shaping the temporal patterns of bacterial community composition
in natural environments [84,85]. In natural aquatic ecosystems, microbial communities
often exhibit seasonal shifts in their composition, activity, and function [68]. Studies have
shown that sporadic meteorological events and irregular nutrient supply in coastal areas
do not significantly affect seasonal patterns [86].

Homogenizing dispersal typically manifests in communities inhabiting relatively
stable and small environments [87]. In our study, we did not observe significant variations
in bacterioplankton diversity and richness among different warming scenarios across all
seasons. The lack of pronounced differences could potentially be ascribed to the high
dispersal rate of bacteria, which may have obscured our ability to detect changes in alpha
diversity. Under prolonged exposure to high temperatures, we observed changes in
community composition and assembly; bacterial communities may shift towards heat-
or heatwave-resistant communities [88–90]. In autumn, the planktonic bacteria within the
constant warming group displayed a comparatively stable community structure when
contrasted with the ambient temperature group, as they exhibited a higher degree of
homogenizing dispersal.

In this experiment, we observed that both warming scenarios enhance sedimentary
microbial network complexity and stability. Molecular ecological networks under warming
became significantly more robust, with network stability strongly correlated with network
complexity, supporting the central ecological belief that complexity begets stability [91].
However, the effects of warming on microbial communities in aquatic environments are not
uniform and may be influenced by various factors, including trophic conditions. Similar to
sedimentary bacterial communities, heatwaves have been observed to augment the com-
plexity and stability of planktonic bacterial networks. However, the impact of heatwave
on the assembly process exhibits season-dependent variability. Change, often perceived
as indicative of vulnerability and instability in a system, can alternatively signify a higher
adaptability level [92]. This dual perspective applies to bacterial planktonic communities,
demonstrating significant adaptability to environmental changes despite potential stress
and disturbance [93]. While the functional response to heatwave disturbances may initially
be compromised, the multivariate composition of the community exhibits a slower recovery,
highlighting challenges to stability [94]. The occurrence of heatwaves poses unforeseen
challenges, necessitating further adaptation for efficient stressor coping. Consequently,
adapting to heatwaves proves to be a complex task for bacterial planktonic communities.
Constant warming throughout the year seems to introduce stochasticity into the assembly
dynamics of planktonic bacterial communities. This stochasticity is characterized by a re-
duction in interconnections within the planktonic bacterial network, diminished clustering,
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and a sparser network structure [95]. Consequently, these alterations result in heightened
intensity and frequency of interactions among bacterial species. These findings underscore
the concept that environmental shifts, such as escalating temperatures, have the potential
to induce substantial structural and functional modifications within planktonic bacterial
communities. This heightened stochasticity within the planktonic bacterial community may
result in increased instability in both community structure and function. Such increased
instability has the potential to negatively impact the overall stability and resilience of
the ecosystem, potentially reducing its capacity to adapt to environmental disturbances.
Furthermore, the intensified interactions among bacterial species can alter the dominant
position of certain taxa within the community, thereby influencing the ecosystem’s overall
functioning and stability [95,96].

Heatwaves were found to stimulate an increase in bacterial abundance, and this effect
was more pronounced in sediment [97]. The richer substrate and higher relative temper-
ature increase (from 7 ◦C to 11 ◦C) in the sediment would facilitate a stronger warming
effect on microbial abundance during colder winters. Given the likely differences in nu-
trient concentrations between sediment and water, it is plausible to hypothesize that the
divergent responses to warming in these habitats may be attributed to contrasting nutrient
availability. Previous studies have indicated that nutrient enrichment can interact with
warming to drive shifts in bacterioplankton communities [40]. Notably, warming has more
pronounced effects in colder regions compared to warmer ones [98,99]. During colder
seasons, heatwaves have a substantial impact on the composition, richness, and diversity
of sediment bacterial communities, while their influence on assembly processes is compara-
tively minor. We find heatwaves significantly impact the relative abundance of Firmicutes
of water in cold seasons. The heatwave significantly impacted Chloroflexi, Aminicenantes,
Bacteroidetes, and Actinobacteria in the sediment. Warming has long been observed to in-
crease the abundance of Gram-positive bacteria, particularly Actinobacteria [100]. Analysis
of contigs and MAGs indicated that Actinobacteria might hold a competitive edge during
extreme summers because of the production of geosmin and 2-methylisoborneol [101].
Higher temperatures may enhance the speed of nitrification and denitrification [102]. In
our study, warming has a significant impact on the levels of TN, NO3

−-N, and NH4
+-N.

Aminicenantes are involved in processes such as ammonia oxidation and denitrification,
leading to notable fluctuations in their abundance during cold seasons.

In contrast, we did not observe differences in sediment bacterial community assembly
patterns between seasons and warming scenarios. This can be attributed to the nature of the
sediment habitat. The more clustered network structure and stronger species connections
in sediments could enhance resource and information transfer efficiency, resulting in high
stability of community function. Sedimentary bacterial communities are known to be
more persistent and have limited effects on planktonic bacteria in the water column of
long-term stable ecosystems, primarily due to the habitat-specific bacterial community
compositions [40,103,104].

5. Conclusions

In this year-long study, we investigated the effects of constant warming and heat-
waves on bacterial communities in water bodies and sediment across all four seasons. Our
findings reveal that warming scenarios significantly contribute to seasonal variations in
community composition, but long-term warming is insufficient to overwhelm the influence
of seasonal variation. Notably, we observed an increase in deterministic processes during
specific seasons in the heatwave group compared to the ambient temperature group, signi-
fying a shift toward more predictable assembly dynamics. This underscores the dynamic
interplay between warming scenarios and seasonal influences on bacterial communities.
However, constant warming led to an increase in the random process of planktonic bacterial
communities across all seasons. Furthermore, we determined that planktonic bacterial
assembly is primarily driven by homogenization, while sedimentary bacterial assembly
is predominantly influenced by drift. This research advances our understanding of how
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climate change affects bacterial communities, providing insights into the intricate dynamics
within aquatic ecosystems.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/microorganisms11112807/s1, Table S1: Physicochemical properties
of water during experiment; Table S2: Physicochemical properties of sediments for this study;
Table S3: Results of PERMANOVA tests (Euclidean dissimilarity) testing the effects of warming and
treatment on physicochemical properties in water throughout the experiment; Table S4: Results
of PERMANOVA tests (Euclidean dissimilarity) testing the effects of warming and treatment on
physicochemical properties in sediments over the study duration; Table S5: Results of PERMANOVA
tests (Euclidean dissimilarity) testing the effects of warming and treatment on the top-10 phylum taxa
of the bacteria communities in water; Table S6: Results of PERMANOVA tests (Euclidean dissimilarity)
testing the effects of warming and treatment on the top-10 phylum taxa of the bacteria communities
in sediments; Table S7: Results of Kruskal–Wallis test testing the effects of different temperature
treatment on the top-10 phylum taxa of the bacteria communities in water; Table S8: Results of
Kruskal–Wallis test testing the effects of different temperature treatment on the top-10 phylum taxa
of the bacteria communities in sediment; Table S9: Dissimilarity tests of microbial communities for
water and sediments. The values of upper rows for MRPP, ANOSIM, and PERMANOVA are delta,
R-value, and F-value, respectively. The values of lower rows are the significance value (p-value);
Table S10: Permutational multivariate analysis of variance (PERMANOVA) based on incidence-based
Bray–Curtis dissimilarity in bacterioplankton and sedimentary bacteria community composition in
experimental mesocosms characterized by different warming and seasons; Table S11: Alpha diversity
of bacteria in water and sediment; Table S12: Results of Wilcoxon tests on the effects of different
scenarios on alpha diversity; Table S13: Results of Wilcoxon tests on the effects of different seasons
on alpha diversity; Table S14: Relationships between within-community NTI and environmental
factors in the water and sediment (based on general linear model); Table S15: Topological properties
of co-occurrence network for bacterioplankton and sedimentary bacteria; Table S16: Topological
properties of the planktonic and sedimentary bacterial networks. Figure S1: Temperature trend for all
the treatments during the experiment. Each point on the curve represents the average temperature
of the day. C, environment temperature; T, constant warming; H, heatwave. Figure S2: Rarefaction
curves of water and sediments constructed based on the number of reads sampled and the number
of OTUS. Figure S3: Co-occurrence network of bacterioplankton and sedimentary bacteria of four
seasons. (The nodes represent OTUs with a total abundance greater than 0.1% in samples. Spearman
correlation ≥ |0.6|; p < 0.05.) Node colors correspond to the phyla of the bacteria community.
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