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Abstract: Quinoa is extensively cultivated for its nutritional value, and its exceptional capacity to
endure elevated salt levels presents a promising resolution to the agricultural quandaries posed by
salinity stress. However, limited research has been dedicated to elucidating the correlation between
alterations in the salinity soil microbial community and nitrogen transformations. To scrutinize
the underlying mechanisms behind quinoa’s salt tolerance, we assessed the changes in microbial
community structure and the abundance of nitrogen transformation genes across three distinct
salinity thresholds (1 g·kg−1, 3 g·kg−1, and 6 g·kg−1) at two distinct time points (35 and 70 days).
The results showed the positive effect of quinoa on the soil microbial community structure, includ-
ing changes in key populations and its regulatory role in soil nitrogen cycling under salt stress.
Choroflexi, Acidobacteriota, and Myxococcota were inhibited by increased salinity, while the relative
abundance of Bacteroidota increased. Proteobacteria and Actinobacteria showed relatively stable abun-
dances across time and salinity levels. Quinoa possesses the ability to synthesize or modify the
composition of keystone species or promote the establishment of highly complex microbial networks
(modularity index > 0.4) to cope with fluctuations in external salt stress environments. Furthermore,
quinoa exhibited nitrogen (N) cycling by downregulating denitrification genes (nirS, nosZ), upreg-
ulating nitrification genes (Archaeal amoA (AOA), Bacterial amoA (AOB)), and stabilizing nitrogen
fixation genes (nifH) to absorb nitrate–nitrogen (NO3

−_N). This study paves the way for future
research on regulating quinoa, promoting soil microbial communities, and nitrogen transformation in
saline environments.

Keywords: Chenopodium quinoa; saline soils; microbial community; nitrogen transformations;
salt tolerance

1. Introduction

Soil salinization is a widespread environmental stressor that adversely affects plant
growth and soil health [1]. It is estimated that salt-affected soil covers approximately
8.7% of Earth’s land area [2]. The low permeability of saline soils directly inhibits the
structure and metabolic activity of the soil microbial community [3,4]. It greatly impacts
microbial-mediated soil ecological functions and a range of processes related to soil fer-
tility [5]. Additionally, salinization slows down or inhibits various nitrification processes
in the soil, leading to the accumulation of nitrite or accelerated loss of ammonia–nitrogen
(NH4

+) through volatilization [6]. This disruption disrupts the normal nitrogen (N) trans-
formation in the soil and affects plant uptake and the utilization of N, as well as soil
microbial activity [7].

Quinoa (Chenopodium quinoa), renowned for its ability to grow in extreme environments
and high nutritional value [8], serves as an ideal crop model for studying salt stress tolerance
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through interactions among microorganisms, plants, and soil [9–11]. Studies reveal that
quinoa can enhance soil microbial diversity and functionality in saline ecosystems [11–13].
Therefore, quinoa can be utilized to rebuild the composition and functionality of microbial
communities in saline soils, aiming to enhance and safeguard the essential physicochemical
and biological properties of salt-affected soils [14].

Keystones have been demonstrated to have the potential to promote nutrient trans-
formation and plant growth [15]. Furthermore, the biodiversity of keystones largely
determines the functional capability of soil microbial communities [16]. Hence, focusing
on keystones offers the potential to organize information regarding microbial interactions
more effectively, simplify microbiome analysis, and identify the critical components of
individual genera within microbial communities [17,18]. Microbial communities function
as keystones that regulate the interactions and functional aspects of microbial community
dynamics [19,20]. For instance, the nutrient cycling of nitrogen relies heavily on various
nitrogen transformation reactions performed by diverse and versatile microorganisms [21].
This includes functional genes involved in nitrogen transformations such as nitrogen fixa-
tion (nifH), nitrification (Archaeal amoA (AOA), Bacterial amoA (AOB)), and denitrification
(nirK, nirS, nosZ). These nitrogen transformations are strongly inhibited in saline environ-
ments due to the detrimental effects of salt on functional microorganisms [22]. However,
there have been limited studies examining the mechanisms of salt tolerance in quinoa from
the perspective of soil microbial communities and nitrogen transformations.

So, to investigate how quinoa enhances microbial resistance to salt stress and influences
the expression of nitrogen transformation genes in various saline environments, this study
primarily focuses on observing the seedling stage of quinoa (the critical adaptation of
quinoa to adverse environmental conditions). Accordingly, this study aims to address
the following questions: (1) How does quinoa influence the structure of soil microbial
communities under different salinity levels? (2) What are the characteristics of key microbial
taxa associated with quinoa in the soil exposed to varying salt stress conditions? (3) What
are the effects of quinoa, under salt stress, on microbial nitrogen transformation processes?
Overall, this study aims to explore the impact of quinoa on soil microbial communities,
keystones, and microbial N transformations under salt stress across three salinity levels.
Understanding the succession of soil microbial communities in quinoa is crucial for scientific
cultivation and salinization management.

2. Material and Methods
2.1. Experimental Design and Soil Processing

This study was conducted at the Water-Saving Experimental Station of Hohai Univer-
sity in the Jiangning district (31◦91′ N, 118◦79′ E), Nanjing, Jiangsu Province, China from
October to December 2022. The region is characterized by its subtropical humid monsoon
climate. Figure 1 illustrates the average monthly temperature values and fluctuations
observed in the greenhouse.

The quinoa seeds utilized in this study were obtained from the Seed Base in Suqian,
Jiangsu Province, China. The saline soil used in the experiment was sourced from the
demonstration field of Jianfeng Agricultural Industry Co., Ltd., located in the coastal
mudflats of Yancheng, Jiangsu Province, China. The original physicochemical properties of
the soil are shown in Table 1. A two-factor randomized complete block design with three
replications was established, examining six different treatments that varied in the number
of cultivation days and salt levels (Figure 2). To alleviate the “pulse effect”, a two-week
dark treatment was conducted after accurately introducing sodium chloride (NaCl) to
establish controlled salinity levels of 1 g·kg−1, 3 g·kg−1, and 6 g·kg−1, respectively. On
24 October, two quinoa seedlings were planted in each pot. Destructive sampling was
conducted at 35 and 70 days of cultivation, respectively. During the cultivation period, the
plants were irrigated moderately based on the greenhouse’s humidity and soil conditions.
They were nourished with Hogland nutrition solution twice a week, with a dilution ratio
of 1/2×.
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Table 1. The initial rationalization properties of the tested soil samples.

pH EC (ms·cm−1) Salinity (g·kg−1) TOC (%) TN (g·kg−1) AP (mg·g−1) SWC (%)

7.35 ± 0.03 0.28 ± 0.01 0.72 ± 0.10 1.47 ± 0.03 0.94 ± 0.03 23.89 ± 0.20 27.87
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After the harvest, all samples were divided into two parts: one part was stored at
4 ◦C for a physicochemical analysis, and the other part was stored at−80 ◦C for subsequent
DNA extraction. The measured soil physicochemical properties include pH, EC (electrical
conductivity), the amounts of water-soluble salts in the soil, ammonia–nitrogen (NH4

+_N),
and nitrate–nitrogen (NO3

−_N).
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2.2. DNA Extraction and Quantitative PCR (qPCR)

Soil DNA was extracted using an MP Soil DNA Kit (MP Biomedicals, Santa Ana, CA,
USA). The quality of the extracted DNA was assessed using a 2% agarose gel electrophoresis,
while the concentration and purity of the DNA were determined using the NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). For DNA sequencing,
the 16S rRNA (V3–V4) region and ITS sequences were targeted. The primer sequences
used for amplicon sequencing can be found in Table 2. After purifying the PCR products,
they were sent to Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) for high-
throughput sequencing using the Illumina MiSeq PE300 platform of BIOZERON Co., Ltd.
(Shanghai, China).

Table 2. Primer of amplicon sequencing.

Amplicon Sequencing Primer IDs Forward Primer Sequence (5′–3′) Reference

16S rRNA
515F GTGNCAGCMGCCGCGGTAA Quince et al. (2011) [23]
907R CCGYCAATTYMTTTRAGTTT Lane et al. (1991) [24]

ITS
ITS1F CTTGGTCATTTAGAGGAAGTAA Gurr et al. (1991) [25]
ITS2R GCTGCGTTCTTCATCGATGC Edgar et al. (2013) [26]

For DNA extraction from each soil sample, the MoBio PowerSoil DNA Isolation
Kit (MoBio Laboratories Inc., Carlsbad, CA, USA) was used. A quantitative analysis
was conducted to assess the genetic abundance of different nitrogen cycle components,
including nitrogen fixation (nifH), nitrification (AOA, AOB), and denitrification (nirK, nirS,
nosZ). The primer sequences used for the amplicon sequencing of nitrogen transformation
genes can be found in Table 3.

Table 3. Genes quantified using qPCR.

Gene Primer IDs Primer Sequence (5′–3′) Reference

Archaeal amoA
Arch-amoAF STAATGGTCTGGCTTAGACG Tourna et al. (2008) [27]
Arch-amoAR GCGGCCATCCATCTGTATGT Francis et al. (2005) [28]

Bacterial amoA
amoA-1F GGGGTTTCTACTGGTGGT

Rotthauwe et al. (1997) [29]amoA-2R CCCCTCKGSAAAGCCTTCTTC

nifH nifH-F AAAGGYGGWATCGGYAARTCCACCAC
Rösch and Bothe (2005) [30]nifH-Rb TTGTTSGCSGCRTACATSGCCATCAT

nirS
cd3AF GTSAACGTSAAGGASACSGG Michotey et al. (2000) [31]
R3cd GASTTCGGRTGSGTCTTGA Kandeler et al. (2006) [32]

nirK
nirK 1F GGMATGGTKCCSTGGCA

Braker et al. (1998) [33]nirK 5R GCCTCGATCAGRTTRTGGTT

nosZ
nosZ2F CGCRACGGCAASAAGGTSMSSGT Henry et al. (2006) [34]
nosZ2R CAKRTGCAKSGCRTGGCAGAA

2.3. Statistical Analysis

The α-diversity and β-diversity analyses were performed using the Majorbio Cloud
Platform. The significance of inter-β diversity changes was evaluated using the PER-
MANOVA test with Bray–Curtis dissimilarity as the differential treatment. STAMP (version
2.1.3) was used to assess the differences in microbial abundance among different opera-
tions. The OTU-level co-occurrence network analysis was conducted using R software
(version 4.3.1), and the interaction between network nodes was visualized using Gephi
software (version 0.10.1). A redundancy analysis (RDA) of soil properties and microbial
communities was performed using CANOCO 5 software (Microcomputer Power, Ithaca,
NY, USA). In GraphPad Prism 9.5.0.730, the Welch test and Wilcoxon test were used for
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data with non-normal distributions or no equal variances, as previously described. The
related graphics were drawn in R.

3. Result and Discussion
3.1. Dynamic of Soil Microbial Communities

Changes in microorganisms demonstrate the sensitivity and adaptability of bacteria
and fungi in response to variations in the salinity environment. Salt stress resulted in a
significant (p < 0.05) reduction in the diversity of the soil bacterial communities, as indicated
by the Shannon index. Specifically, both the Shannon indexes of CQM1 (7.16) and CQH1
(7.10) were lower than the Shannon index of CQL1 (7.21). However, no significant differ-
ences were observed in the Shannon index among the fungal communities in the various
treatments, suggesting that bacteria are more susceptible to the adverse effects of salt stress
than fungi (Figure 3a). It was discovered that the Shannon index of the bacteria in CQL2,
CQM2, and CQH2 increased by 0.58%, 1.33%, and 1.82%, respectively. In CQL2, CQM2, and
CQH2, there was a slight decrease in the soil electrical conductivity (EC) and water-soluble
salt concentration, but it was not significant (Figure 4). This could be attributed to quinoa’s
ability to absorb or accumulate inorganic ions from external sources [35]. Therefore, to
adapt to high-salt environments, quinoa establishes a balanced osmotic pressure and indi-
rectly mitigates the detrimental effects of salt on bacterial communities by reducing the salt
content in the soil.
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based on Bray–Curtis distance for microbial communities, stress < 0.2 (bacteria) and stress < 0.1
(fungi). (c) Venn diagrams display the shared and system-specific OTUs of bacteria and fungi.
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The NMDS ordination showed the differences between the bacterial and fungal com-
munities in terms of diversity. Soil salt concentration and cultivation period are two main
factors that significantly distinguish bacteria and fungi (Figure 3b). A permutational multi-
variate analysis of variance (PREMANOVA) further corroborated that the variations in the
bacterial communities were mainly driven by soil water-soluble salt conversion (Table 4).
However, both the cultivation period and the salinity gradient did not exhibit a significant
influence on the alterations in fungal communities. This indicates that fungi are more stable
than bacteria under salt stress, and Rath et al. [36] have also observed the same conclusion.
It can be explained that variations in bacterial communities under salt stress can affect
the penetration of quinoa. Additionally, Otlewska et al. [37] have reported that microbial
communities directly/indirectly participate in the osmotic adjustment of plants.
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Table 4. The effects of soil salinity and incubation time on the differentiation of soil microbial
communities based on permutational multivariate analysis of variance (PERMANOVA).

Microbial Community Phylum Salinity Day

Bacteria
R2 0.236 0.129
P 0.002 0.031

Sig. ** *

Fungi
R2 0.195 0.086
P 0.085 0.243

Sig. - -
Note: ‘*’ for p < 0.05, ‘**’ for p < 0.01.

Quinoa benefits from being associated with different microbiological communities,
and saline soil is a crucial environmental filter that can promote quinoa to choose soil
microbial communities with highly specific traits (Qin et al., 2016 [38]). Figure 3c repre-
sents the reduction in bacterial-specific and fungal-specific OUTs in different treatment
groups. This means that the functions of quinoa may be altered due to changes in microbial
diversity [39]. Numerous studies have highlighted the significance of microbiome diversity
in aiding plant adaptation to saline environments [11,40,41]. Toubali and Meddich [11]
found that microbial communities promoted the growth of quinoa plants in saline envi-
ronments and improved soil chemical quality by enhancing enzyme-driven antioxidant
and osmotic regulation systems. Different bacterial communities exhibit varying responses
to high salt concentrations. Salt stress exerts inhibitory effects on microorganisms such as
Choroflexi, Acidobacteriota, and Myxococcota. However, as salt concentrations increase, there
is an increasing trend in the abundance of Bacteroidota, indicating their ability to thrive in
high-salt environments (Figure 5). This discovery aligns with the findings conducted by
Rath et al. [42]. These microorganisms exhibiting distinct thresholds in response to salt
stress may be selectively favored or recruited by quinoa, leading to the maintenance of a
relatively stable population. Similar findings have been observed in studies on rice [43] and
Arabidopsis thaliana [44]. Proteobacteria, Chloroflexi, and Actinobacteria are the predominant
components of soil bacterial communities, and their relative proportions remain relatively
constant over time intervals (Figure 6). Additionally, the abundance of Proteobacteria and
Actinobacteria is considered a reliable indicator of soil health [45]. In the treatments of
CQL1, CQH1, and CQH2, the average relative abundance of Acidobacteriota, Bacteroidota,
and Gemmatimonadota was significantly higher, indicating their enrichment in the soil mi-
crobial communities (Figure 5). Quinoa and microorganisms engage in mutual interactions
that lead to the establishment of specific associations between the plant and certain bacteria
at different stages of growth in a salty environment [46]. Importantly, halophytes possess
a natural reservoir of salt-resistant microorganisms, which facilitates their growth and
development under unfavorable conditions [47]. Moreover, prolonged fluctuations in
salinity can contribute to the adaptation of microbial communities [47]. The finding that the
average relative abundance of Planctomycetota and Gemmatimonadota increases with rising
salt concentrations and longer growth periods also supports this perspective (Figure 5).
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3.2. Soil Microbial Co-Occurrence and Keystone Taxa

Co-occurrence networks are frequently used to explore potential connections be-
tween microbial populations [22,48,49]. At the genus level, co-occurrence networks were
constructed for the bacterial and fungal communities, and keystones were identified to
thoroughly investigate the impacts of soil salinity and cultivation days on the soil microbial
communities. All genus occurred in the network of the six treatments. Keystones are se-
lected as benchmarks based on the 1% betweenness centrality distribution, considering the
top five abundance ratings among these genera [20]. The bacteria keystone taxa in CQL1,
CQM1, and CQH1 are seven, nine, and six, respectively, and the bacteria keystone taxa for
CQL2, CQM2, and CQH2 are five (Figure 7a). The fungi keystone taxa for CQL1, CQM1,
and CQH1 are 10, 12, and 10, respectively, and the fungi Keystone taxa for CQL2, CQM2,
and CQH2 are all 10 (Figure 7b). The results demonstrate the consistent response of mi-
crobial communities to diverse environmental factors. These genera, through their shared
environmental preferences and dispersal capabilities, indicate important classification units
that are interconnected and hold significant value [50].
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including the number of nodes, number of edges, mean degree, density, and the ratio of posi-
tive to negative interactions (P/N) of the whole network. (a) Networks of bacterial communities,
(b) Networks of fungal communities.

The modularity index of each treatment exceeds 0.4, indicating a characteristic modular
structure in the microbial networks of each process (Figure 8). In our study, as the degree
of salt stress increased, there were no significant changes observed in the nodes, edges,
and network topological indices of both the bacterial and fungal networks (Figure 7). This
indicates that salt stress appears to have no negative impact on the interactions among
microbial communities. This finding contradicts the conclusion proposed by Xu et al. [51]
that salt stress weakens the co-occurrence network of rhizosphere microorganisms. So,
we analyzed the sampling abundance of these keystones and found that the bacterial
communities are grouped into CQM1 and CQH1 and CQM2 and CQH2, separately from
CQL1 and CQL2. Although the layer clustering of fungal communities at the phylum level
did not follow a consistent pattern, there was a noticeable fluctuation in sample abundance
(Figure 9). This suggests that quinoa may, under salt stress, either promote the emergence
of new keystone taxa or alter the abundance of existing keystones to maintain a stable
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microbial structure [52]. It is also possible that quinoa facilitates the establishment of highly
connected and complex networks among soil microorganisms during the early stages to
cope with fluctuations in external salt stress conditions [53].
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In addition, keystones have been demonstrated to have the proficiency to enhance
nutrient conversion and promote plant growth [54]. Keystones, at the phylum level, such
as Proteobacteria and Acidobacteria, are often regarded as copiotrophic microorganisms [19].
The abundant bacterial clusters of Bacteroidetes and Firmicutes can be regarded as highly
salt-resistant species. When the soil is treated with appropriate salinity levels, its relative
abundance increases compared to that of untreated soil conditions. Our study yielded
similar conclusions to [49] (Figure 9). Changes in community composition at the phylum
level may significantly impact the functional characteristics of these communities. Previous
studies have found that phylogenetic groups belonging to Firmicutes can withstand envi-
ronmental stress through the formation of their Gram-positive cell walls and spores [55].
Pérez Castro et al. [16] discovered a correlation between Chloroflexi and genes related to
the metabolism of amino sugars, sugar alcohols, and simple carbohydrates. Therefore, we
propose that quinoa enhances its stress resilience by directly influencing microbial abun-
dance and the synthesis of keystones or indirectly participating in microbially mediated
nutrient transformations.
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3.3. Correlations among the Environmental Variables, Bacterial Community, and Nitrogen
Functional Genes

A redundancy analysis (RDA) is employed to assess the relationship between the
bacterial communities in the different treatment groups and environmental factors, examine
the impact of soil properties on community composition at the phylum level, and determine
the significance of the association between soil traits and bacterial abundance. The first
two axes of the RDA represent 36.96% and 12.92%, respectively, of the total data variation
(Figure 10). In bacterial communities, the highest total salinity variation is followed by
NH4

+_N (Table 5). In CQL1, Chloroflexi predominate, followed by Acidobacteriota at CQL2,
Bacteroidota at CQM1 and CQH1, and Proteobacteria at CQM2 and CQH2. In contrast
to Acidobacteriota and Proteobacteria, which are significantly positively correlated with
NH4

+_N (p < 0.05), Bacteroidota and Chloroflexi have a positive association with NO3
−_N.

Thus, Bacteroidota and Chloroflexi may have contributed to the conversion and release of
NO3

−_N in the quinoa culture for up to 35 days, while Acidobacteriota and Proteobacteria
may have played a more important role in the transformation and discharge of NH4

+_N at
70 days, as confirmed by our measurement of the concentrations of NO3

−_N and NH4
+_N

in the soil (Figure 4). Generally, quinoa has the potential to influence the abundance of
bacteria during different stages of cultivation, consequently impacting the conversion of
nitrogen by different salt sub-processing groups.
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Figure 10. Redundancy analysis based on the relationships between environmental variables,
top 5 phyla (a), and nitrogen functional genes (b) during the overall experimental process. The
red arrow represents environmental factors, while the blue arrows respectively represent phyla and
nitrogen functional genes.

Table 5. Significant physicochemical parameters and explanations of RDA of (a) top 5 phyla and (b)
nitrogen functional genes.

Variable Explains (%) F P

Salinity 24.8 5.3 0.006 **

NH4+_N 22.4 6.4 0.014 *

(a)

NH4+_N 41.6 12.8 0.002 **

EC 13.8 6.6 0.018 *

(b)
Note: ‘*’ for p < 0.05, ‘**’ for p < 0.01.

The salinity level plays a crucial role in determining the response of nitrogen metabolism
to saline stress [1]. We performed the RDA to examine the relationship between the nitro-
gen transformation genes of the different processing groups and environmental variables
(Figure 10b). The results showed that environmental factors accounted for 75.3% of the total
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variation in nitrogen conversion genes. The interpretation of NH4
+_N and EC changes in

the composition of nitrogen-transforming genes were identified as the two primary envi-
ronmental factors, accounting for 41.6% and 13.8%, respectively, of the variation in the six
nitrogen transformer genes (Table 5). The limitations imposed by salinity stress on nitrogen
transformation in soil biological systems can be understood by considering the prevalence of
nitrogen-transforming genes. On the 35th day of cultivation, the abundance of denitrification
genes (nirS and nosZ) decreased with increasing salt content, while the abundance of nitrifi-
cation genes (AOA and AOB) showed minimal changes (Figure 11). These factors may be
the primary reasons for the increase in NO3

−_N content in the soil (Figure 4). On the 70th
day of cultivation, the abundance of denitrification genes (nirS, nosZ, and nirK) showed a
positive correlation with salt concentration, while the abundance of nitrification genes (AOA
and AOB) exhibited a similar trend (Figure 11). However, there was no significant difference
in the NO3

−_N content of the soil, and it exhibited a sharp decline compared to the content
at 35 days (Figure 4). We suggest that this could be explained by quinoa actively absorbing
Cl− to cope with the prolonged salt stress. Simultaneously, the membrane transport proteins
that mediate the transport of Cl− and NO3

− simultaneously could indirectly facilitate the
uptake of NO3

− from the soil by quinoa [9]. Another possibility is that soil microorganisms
are converting NO3

− into NH4
+ [50]. Due to the relatively low and stable abundance of

the nitrogen fixation gene (nifH), microorganisms maintain stable ammonium assimilation
throughout different cultivation periods (Figure 11). This makes quinoa more inclined to
utilize nitrate–nitrogen as a nitrogen source. Miranda-Apodaca et al. [1] have revealed that
quinoa employs precise regulation of NO3

−_N and Cl− under salt stress to maintain an
optimal root N concentration, enabling effective osmotic regulation. Huang et al. [56] and
Zhang et al. [22] also observed similar patterns.
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4. Conclusions

In conclusion, this study explored the effects of quinoa on soil microbial community
structure, changes in key populations, and the regulation of soil nitrogen cycling. The
results indicate that soil bacterial communities are more susceptible to salt stress than
fungal communities. Quinoa mitigates the adverse effects of salt on bacterial communities
by absorbing or accumulating inorganic ions, thereby slightly reducing the soil salinity.
Microbial diversity plays an essential role in facilitating quinoa’s adaptation to saline
environments. Certain microbial groups, such as Bacteroidota, show increased relative
abundance under high salt conditions.

It was observed that different environmental factors consistently influence soil micro-
bial community composition, and salt stress does not seem to have a negative impact on
microbial interactions. Quinoa may maintain a stable microbial structure by promoting
the emergence of new keystones or altering the abundance of existing keystones. Changes
at the different phylum levels of these keystones can significantly affect the functional
characteristics of microbial communities. Quinoa may enhance its stress tolerance by di-
rectly influencing the microbial abundance and the synthesis of keystones or indirectly
participating in microbe-mediated nutrient transformations.

There is a correlation between soil bacterial communities and environmental factors in
different treatment groups during the period of cultivation. Soil properties significantly
influence bacterial community composition at the phylum level. During quinoa cultivation,
different salt treatment groups have varying effects on the conversion of NH4

+_N and
NO3

−_N. Salt content also influences the abundance of nitrogen transformation genes in the
soil. The long-term salt stress adaptation of quinoa may involve the passive absorption of
Cl− and the conversion of NO3

− by soil microorganisms. These results suggest that quinoa
adapts and maintains normal growth under salt stress by regulating nitrogen metabolism
and ion absorption.
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