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Abstract: Antimicrobial use (AMU) in the livestock industry has been associated with increased
levels of antimicrobial resistance. Recently, there has been an increase in the number of “natural”
feedlots in the beef cattle sector that raise cattle without antibiotics. Shotgun metagenomics was
employed to characterize the impact of AMU in feedlot cattle on the microbiome, resistome, and
mobilome. Sequenced fecal samples identified a decline (q < 0.01) in the genera Methanobrevibacter and
Treponema in the microbiome of naturally vs. conventionally raised feedlot cattle, but this difference
was not (q > 0.05) observed in catch basin samples. No differences (q > 0.05) were found in the class-
level resistome between feedlot practices. In fecal samples, decreases from conventional to natural
(q < 0.05) were noted in reads for the antimicrobial-resistant genes (ARGs) mef A, tet40, tetO, tetQ, and
tetW. Plasmid-associated ARGs were more common in feces from conventional than natural feedlot
cattle. Interestingly, more chromosomal- than plasmid-associated macrolide resistance genes were
observed in both natural and conventional feedlots, suggesting that they were more stably conserved
than the predominately plasmid-associated tetracycline resistance genes. This study suggests that
generationally selected resistomes through decades of AMU persist even after AMU ceases in natural
production systems.

Keywords: antimicrobial resistance; livestock production; microbiota; resistome; mobilome; metage-
nomic sequencing; raised without antibiotics

1. Introduction

Antimicrobial resistance (AMR) is a global health crisis that impacts clinical and
animal health, food security, and the environment. By the year 2050, it is expected that
antimicrobial-resistant infections will result in 10 million deaths per year, overtaking
cardiovascular disease and cancer as the leading cause of death [1]. Antimicrobial resistance
surveillance programs and risk assessments have been launched in a number of countries,
including Canada [2], the United States [3], the European Union [4], and at a global
scale [5–7].

Identification of antimicrobial resistance genes (ARGs) using metagenomics is one
approach to characterizing the nature of AMR across the One Health Continuum. Metage-
nomics can be used to compare information on phylogeny, ARGs, mobile genetic elements
(MGE), and virulence factors across environments. If sequencing depth and read length are
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sufficient, the context of ARGs can also be established, providing information on horizontal
gene transfer. Of these, ARGs are most frequently transferred via conjugation through the
action of a number of MGEs, including plasmids, integrative conjugative elements (ICE),
transposons, integrons, and insertion sequences [8].

There is a concern with regard to the contribution of AMU in livestock to overall
AMR [9]. In beef cattle, the majority of AMU takes place in feedlots as opposed to the more
extensive cow–calf sector [10,11]. While feedlots can house over 40,000 head of cattle, which
allows for higher meat production per head [12], these high densities subject individuals
to stressors that can encourage bacterial pathogens to proliferate and rapidly transfer
within a herd [13]. The resulting increased incidence of morbidity requires much higher
AMU to combat infections through therapeutic, prophylactic, and metaphylactic practices
as compared to the more extensively managed cow–calf sector [14]. As the majority of
antimicrobials in beef cattle production are administered to feedlot cattle, it is a logical point
to investigate AMR within this portion of the beef production cycle [15]. However, given
the current knowledge about how AMU increases the prevalence of ARGs, some feedlots
have opted to employ natural management practices that prohibit the use of antimicrobials.
However, the effectiveness of this practice in limiting the prevalence of ARGs in feedlots is
inconclusive [16–18].

Shotgun metagenomics is one of the most comprehensive methods to study micro-
biomes, resistomes, and associated mobilomes [19]. Sampling all of the DNA from a specific
environment considers the contribution of the genomes of uncultured bacteria to the re-
sistome, generating a perspective of all known ARGs within a sample or environment.
In addition, the degree of AMU may also impact the colocalization of ARGs and MGEs.
Some studies have aimed to compare the effect of no AMU in livestock production to the
conventional use of antimicrobials on the resistome but found no impact on meat trimmings
or fecal resistomes [17,20].

The goals of this study were to investigate the effect that beef cattle raised without
antimicrobials have on the microbiome, resistomes, and associated mobilome of beef feedlot-
associated environments. We accomplished this by directly comparing fecal composite
and catch basin water samples from conventional (raised with antimicrobials) and natural
(raised without antimicrobials) beef cattle feedlots in Alberta, Canada. We predicted that
AMU in conventional beef feedlots would result in increased prevalence and abundance of
ARGs and ARGs colocalized with MGEs as compared to natural feedlots.

2. Materials and Methods
2.1. Natural and Conventional Feedlots

Conventional (CONV; n = 2) and natural (NAT; n = 2) feedlots in Alberta were included
in this study. Cattle in one NAT feedlot were fed a typical North American backgrounding
diet consisting of 62% corn silage, 27% barley grain, 7% vitamin mix, and 4% canola meal
and received no antimicrobials, ionophores, or hormonal implants. Steers or heifers that
required antimicrobials due to clinical illness were removed from the general population
and quarantined in a hospital pen until harvest. Both CONV and one NAT feedlot cattle
were fed a finishing diet containing 85% barley grain, 10% barley silage, and 5% supplement.
The CONV diet also contained the ionophore monensin at 48 ppm and the macrolide tylosin
at 11 ppm (Elanco Animal Health, Greenfield, IN, USA). For heifers, the supplement also
contained 0.045 ppm melengestrol acetate (MGA). For the last 40 days of the feeding period,
ractopamine hydrochloride was included in the diet at 30 ppm. Cattle also received an
implant containing 200 mg of trenbolone acetate and 20 mg of estradiol (REVALOR®-200,
Merck & Co., Inc., Rahway, NJ, USA). An average of 180 head of cattle were housed in
open pens and all cattle had free access to water and feed. Pen-level metadata (sex and age
average) for cattle used to collect fecal composites can be found in Table S1.
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2.2. Fecal Collection for Conventional and Natural Feedlots

Composite fecal samples (20 g) were collected from pens (n = 10) in both CONV
(n = 2) and NAT (n = 2) feedlots over two years (August 2016–July 2018; CONV n = 30
and NAT n = 30). Each 20 g composite was generated by thoroughly mixing 1 g samples
from 20 randomly selected fresh fecal pats within each pen. Composite fecal samples were
placed in sterilized Whirl-Pak® bags (Sigma-Aldrich, St. Louis, MO, USA) (532 mL) and
transported on ice to the laboratory within 4 h of collection. Upon arrival, feces were
homogenized, flash frozen in liquid nitrogen, and stored at −80 ◦C in flat sheets.

2.3. Metagenomic DNA Extraction and Sequencing

To isolate metagenomic DNA from homogenized and frozen composite fecal samples,
325 mg of sample was transferred into a 2.0 mL sterilized safe-lock snap-cap with 0.4 g
of sterilized zirconia beads (0.3 g of 0.1 mm and 0.1 of 0.5 mm sizes). Metagenomic DNA
extraction and PCR inhibitor removal were performed following a previously described
procedure [21]. The quantity of the extracted DNA was determined by fluorescence at
480 nm using Quant-iT PicoGreen fluorometer (Thermo Fisher Scientific, Mississauga, ON,
Canada), and the quality/purity was determined, using a NanoDrop spectrophotometer
(Thermo Fisher Scientific), by measuring the ratios of absorbance at 260/280 nm and
260/230 nm wavelengths. Extracted DNA samples with absorbance ratios at 260/280 nm
and 260/230 nm of 1.7–2.0 and 2.0–2.2, respectively, were considered acceptable. To evaluate
the presence of PCR inhibitors undiluted and various dilutions of the extracted DNA were
used as PCR templates to amplify 16S rRNA genes with the universal bacterial primers 27F
and 1492R [22].

Genome Québec Innovation Centre (Montréal, QC, Canada) performed all library
preparations, sequencing, and quality control steps. Metagenomic sequencing libraries
were prepared using a PCR-free shotgun DNA library preparation kit (Lucigen, LGC
Biosearch Technologies; distributors: VWR International, Radnor, PA, USA). Prepared
libraries were sequenced on an Illumina NovaSeq 6000 platform, with 45 samples mul-
tiplexed per sequencing lane to generate 2 × 150 base paired-end (PE) sequence reads.
Each sequencing lane was spiked with the PhiX174 sensu lato viral genomic DNA library
at ~1% concentration of the total DNA loaded per lane for the quality control of cluster
generation and sequencing. Sequencing read data are available in the National Center
for Biotechnology Information (NCBI) Short Read Archive (SRA) under the BioProject ID
PRJNA420682.

2.4. Bioinformatics Resources

Metagenomic sequence information was stored in the Integrated Rapid Infectious
Disease Analysis (IRIDA) Platform [23] at the National Microbiology Laboratory’s (NML;
Public Health Agency of Canada) high-throughput computing cluster. Microbiome taxo-
nomic and resistome profiling was carried out using the workflow outlined below.

Trimmomatic v0.36 [24] was used to trim adapters from PE reads and filter out low-
quality reads using the following parameters: leading and trailing adapters with “N” bases
or a quality score < 3 were trimmed from sequence reads; a sliding window quality score
filtered every 4 bases with a minimum Phred score of 15; sequences with <36 nucleotides
were discarded; adapters supplied in the TruSeq3 adapter sequence file with a maximum
of 2 mismatches in the initial seed were removed; and if a match score of 30 was reached,
the adapter was clipped. Singletons, whereby a read’s matching pair failed quality control,
were also included in downstream analysis.

In order to remove the Illumina PhiX spike-in control, reads were filtered against the
Escherichia phage PhiX174 genome (GenBank accession NC_001422.1) using the minimum
exact match (MEM) algorithm of the Burrows-Wheeler aligner (BWA) v0.7.17.1 [25]. The
sorted alignments were then processed with SAMtools v2.0.2 [26] to retain only those reads
that did not map to the PhiX174 genome. This was carried out using a flag value of 4 to
extract the unmapped reads in binary alignment map (BAM) format. The PE reads that
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did not map to PhiX174 were then extracted from the alignment using the bamToFastq
tool within BEDTools v2.27.0.0 [27]. The PhiX-filtered reads were then classified with
Kraken v2.0.8-beta [28] using the custom Kraken database bvfpa [21]. Kraken2 results
were then filtered using a confidence threshold of 0.05 to select for taxonomic assignments
http://ccb.jhu.edu/software/kraken/MANUAL.html (accessed on 19 August 2021) [21].
All Chordata reads were filtered out in downstream analyses.

Resistome analysis was conducted in parallel with the taxonomic classification as
follows: trimmed PE reads were mapped to ARG sequences in the MEGARes database
v2.00 [29] using BWA-MEM v0.7.17.1 [25]. The alignments in BAM format were converted
to a sequence alignment map (SAM) v2.0.2 format and post processed with the Coverage
Sampler tool (https://github.com/cdeanj/coveragesampler; accessed on 19 August 2021)
using a 75% gene fraction threshold [30]. These output matrices of the resistome and
taxonomic composition were then analyzed on a local installation of R (v4.3.1; http://www.
r-project.org/; accessed on 19 October 2023).

2.5. Assembly of Contigs

For metagenomic assemblies, adapters were trimmed from PE reads using fastp v0.20.1
with the following parameters: leading and trailing adapters were trimmed when “N”
bases or quality scores were <15; a sliding window quality score was filtered for every
four bases with a minimum Phred score of 15; and sequences with <100 nucleotides were
discarded. Host and PhiX174 reads were filtered out using the Bos taurus (NC_037328.1) and
PhiX (NC_001422.1) genomes concatenated with Bowtie2 v2.3.4.3 [31], when minimum and
maximum fragment lengths for valid PE alignments were 0 and 500, respectively. SAMtools
flags ‘-f 12 -F 256’ were used to convert SAM files into BAM (binary alignment map) files and
only unmapped reads were included for downstream analyses. SAMtools was then used
to sort the sequences in the BAM files to enable BEDTools to output PE FASTQ-formatted
sequence files. Contigs were assembled with the MEGAHIT v1.2.9 assembler [32] with a
minimum kmer length of 3 bp and minimum contig length of 1000 bp.

2.6. Microbiome and Resistome Analysis

Taxon abundances were normalized using the trimmed mean of M-value (TMM)
method [33] as per Pereira et al. [34]. For visualizations, phyla present at <1% relative
abundance were aggregated together into an ‘Other’ group. Species-level classifications
were included in the diversity analyses. Alpha diversity was measured with the Shannon
diversity index and beta diversity was measured using the Bray–Curtis dissimilarities
calculated in R v4.3.1 with vegan in the phyloseq package v1.44.0. Log2 fold change was
computed by the ANCOMBC v2.2.2 R package treating CONV feedlots as the reference.
Fold change was calculated and reported in tables. For decreases in NAT feedlots (i.e., fold
change < 1) the inverse was taken to ease in text readability.

From the AMR++ v0.1 workflow, the tool MEGARes v2.0 [29] was aligned against a
database containing ARGs to antibiotics, biocides, metals, and multi-compound resistance
(an ARG conferring resistance to a combination of antibiotics, biocides, and metals). This
database contained the following descending ARG classifications: type, class, mechanism,
and group. Any ARGs based on single nucleotide polymorphisms (SNPs) were removed.
Additionally, any ARGs that contained the word “regulator” were removed from the dataset
due to the fact that in isolation a regulator gene would not directly result in phenotypic
resistance. The final analyses were performed using the R statistical language with the
ggplot2 package v3.4.4 [35]. Abundant resistance classes were defined as those with
>25,000 TMM-normalized counts.

2.7. Resistome and Mobilome Colocalization on Contigs

A subset of fecal samples was selected to achieve an even representation from differing
ARG total abundances. Antimicrobial resistance gene TMM-normalized abundance was
deemed as high (>30,000), medium (>10,000), or low (<10,000) at the ARG group level. Two

http://ccb.jhu.edu/software/kraken/MANUAL.html
https://github.com/cdeanj/coveragesampler
http://www.r-project.org/
http://www.r-project.org/
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of each abundance category were selected from each feedlot, resulting in a total of 24 fecal
samples. Plasmids were constructed from assembled contigs using the MOB-recon tool
from the MOB-suite package v3.0.0 [36] using default parameters. Using plasmid contigs
as input, Staramr v0.7.1 [37] was used with default parameters to detect ARGs on plasmids.
The output of both tools was subject to an in-house R script to correlate ARGs with their
associated plasmids. Multi-drug resistance (MDR) plasmids were defined as those having
≥3 ARGs from different classes of antimicrobials. Chromosomal ARGs were assumed to
be any contig that was not identified on a plasmid. Associations were constructed with
SankeyMATIC (https://sankeymatic.com; accessed on 20 October 2023) and the circlize R
package v0.4.15 [38].

2.8. Statistical Analysis

Comparisons between NAT and CONV beef production systems and normalized
microbial taxa counts of interest were made using the Analysis of Compositions of Mi-
crobiomes with Bias Correction (ANCOM-BC) [39]. False discovery rates were mitigated
through p-value corrections (q-value) using the Benjamini–Hochberg method [40] with the
R package ANCOMBC v2.2.2. This same test was also applied to the normalized abundant
(>25,000 TMM-normalized counts) ARG classes, mechanisms, and groups. For comparisons
that were significant (q < 0.05), the fold change from CONV to NAT feedlots was calculated.
Differences in Shannon diversity indices were determined with the Wilcoxon signed rank
test (p < 0.05). Differences in Bray–Curtis distances were determined with PERMANOVA
(p < 0.05).

3. Results
3.1. Microbiota Composition Differences between Conventional and Natural Systems

The phylum-level microbiota composition of the fecal samples was explored through
normalized total abundance (Figure 1A). For fecal samples, CONV feedlots had higher
(q < 0.05) abundances of Bacteroidetes, Euryarchaeota, Proteobacteria, and Spirochaetes.
Fecal samples from CONV feedlots also had lower (q < 0.01) abundances of Actinobacteria
and Tenericutes, while there was no difference in Cyanobacteria or Firmicutes. In catch
basin water, no phyla differed in abundance (q > 0.05) between CONV and NAT feedlots
(Figure 1B). Only fecal samples had increased alpha diversity from CONV to NAT feedlots
(p < 0.0001; Figure S1) and a difference in beta diversity between feedlots (p < 0.001;
Figure S2).

To quantify some of the differences in the microbiota between NAT and CONV feedlots,
mean normalized abundances of taxa at classifications lower than phylum level were
compared (Table S2). Of the 17 most relatively abundant (>1%) archaeal and bacteria
classes in fecal samples, 7 were significantly lower in CONV vs. NAT feedlots. The
abundance of the classes Methanobacteria and Spirochaetia was lower by 1.7 and 1.5 fold,
respectively, in NAT compared to CONV feedlots. For the catch basin water samples,
classes did not differ between NAT and CONV feedlots.

The 20 most abundant genera in fecal and catch basin water samples are reported in
Table 1. Two genera of note, Methanobrevibacter and Treponema, exhibited a 1.8- and 1.6-fold
decrease (q < 0.01) in NAT vs. CONV production systems. A total of five genera (Bacteroides,
Chryseobacterium, Methanobrevibacter, Prevotella, and Treponema; Figures 2 and 3) were lower
(q < 0.05) when NAT vs. CONV feedlot feces were compared, whereas seven genera
(Bacillus, Blautia, Clostridium, Eubacterium, Lactobacillus, Pseudomonas, and Streptococcus;
Figure 3) were higher in relative abundance (q < 0.01). Genera in catch basin water samples
collected from CONV and NAT feedlots did not differ (q > 0.05). Five genera that were
found to be abundant in both catch basin water and feces in both feedlot types were
Bacteroides, Clostridium, Flavobacterium, Prevotella, and Pseudomonas (Table 1).

https://sankeymatic.com
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Table 1. Trimmed mean of m-value normalized mean relative abundance of the 20 most relatively
abundant genera identified in fecal and catch basin water samples from conventional (CONV) and
natural (NAT) feedlots of mean normalized abundance, interpreted significance of adjusted p-value
(q > 0.05 = ns; q < 0.05 = *; q < 0.01 = **; q < 0.001 = ***; q < 0.0001 = ****), and fold change for
significant differences.

Sample Type Genus

CONV Mean
Normalized

Relative
Abundance

NAT Mean
Normalized

Relative
Abundance

Interpreted
Significance Fold Change

Fecal Composite

Alistipes 0.015 0.016 ns -
Bacillus 0.017 0.020 *** 1.07

Bacteroides 0.092 0.075 **** 0.82
Blautia 0.012 0.015 * 1.13

Butyrivibrio 0.011 0.011 ns -
Chryseobacterium 0.014 0.011 **** 0.80

Clostridium 0.038 0.045 ns -
Eubacterium 0.013 0.016 ns -

Faecalibacterium 0.029 0.033 ns -
Flavonifractor 0.011 0.013 ns -

Lachnoclostridium 0.017 0.019 ns -
Lactobacillus 0.009 0.011 *** 1.06

Methanobrevibacter 0.015 0.006 **** 0.55
Oscillibacter 0.025 0.028 ns -
Paenibacillus 0.013 0.014 * 1.03

Prevotella 0.071 0.051 * 0.77
Pseudomonas 0.015 0.015 ns -
Ruminococcus 0.013 0.015 ns -
Streptococcus 0.009 0.011 ** 1.04

Treponema 0.028 0.012 ** 0.63

Catch Basin Water

Acidovorax 0.014 0.017 ns -
Aeromonas 0.004 0.013 ns -

Allochromatium 0.018 0.003 ns -
Arcobacter 0.014 0.011 ns -
Bacteroides 0.004 0.013 ns -
Bordetella 0.012 0.009 ns -

Brevundimonas 0.011 0.005 ns -
Burkholderia 0.014 0.011 ns -
Clostridium 0.004 0.011 ns -

Desulfomicrobium 0.084 0.061 ns -
Flavobacterium 0.008 0.009 ns -

Hydrogenophaga 0.019 0.007 ns -
Marichromatium 0.014 0.002 ns -

Methylomicrobium 0.017 0.001 ns -
Polynucleobacter 0.010 0.067 ns -

Prevotella 0.001 0.012 ns -
Pseudomonas 0.058 0.053 ns
Streptomyces 0.023 0.026 ns

Thauera 0.026 0.012 ns
Thiocystis 0.020 0.003 ns
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Figure 3. Boxplots of normalized TMM (trimmed mean m-value) abundance of prevalent (>1%) fecal
genera within order Spirochaetales (analysis of compositions of microbiomes with bias correction
with adjusted p-value significance via Benjamini–Hochberg method; q > 0.05 = ns; q < 0.01 = **;
q < 0.001 = ***; q < 0.0001 = ****).

When determining the effect that diet may have had on the NAT microbiomes, only
Spirochaetes increased (q < 0.0001) from backgrounding to finishing NAT cattle (Figure S3).
When comparing the CONV vs. NAT cattle on finishing diets, many of the same differences
were observed as in the overall CONV vs. NAT feedlots with the exception that there
were no differences (q > 0.05) observed for Proteobacteria, Spirochaetes, and Tenericutes
(Figure S3).

3.2. Resistome Differences between Conventional and Natural Systems

When all antimicrobial resistance classes (inclusive of biocides and metals) in fecal sam-
ples were analyzed, only class resistance types with >25,000 TMM-normalized counts were
considered abundant, with the overall abundance of ARG classes’ presented in Figure S4.
All samples showed similar resistance profiles, with genes conferring resistance to tetracy-
clines, MLS (macrolides, lincosamides, streptogramins), β-lactams, and aminoglycosides
being most frequently identified (Figure 4A). Tetracyclines were the most abundant ARGs
with TMM-normalized counts exceeding 60,000. The MLS ARGs were the next most abun-
dant with over 25,000 TMM-normalized counts. Aminoglycosides and β-lactams did not
differ, with <10,000 TMM-normalized counts. There were no significant differences among
antimicrobial classes in fecal samples from CONV vs. NAT feedlots.

Catch basin water samples revealed many more prevalent ARG classes than feces with
abundance > 25,000 TMM-normalized counts, including the presence of genes encoding
for biocide and metal resistance (Figure 4B,C). Five drug resistance classes in catch basin
samples were the same as those in fecal samples with the exception of the multi-drug
resistance class in catch basin water (Figure 4B). There were also nine biocide and metal
resistance classes in catch basin water, including arsenic, multi-biocide and metal, copper,
multi-drug and biocide, iron, multi-biocide, multi-metal, peroxide, and tellurium resistance
(Figure 4C). Again, similar to fecal samples, no differences (q > 0.05) were observed in
most of the resistance classes associated with catch basin water, with tellurium resistance
(q < 0.0001) being the exception.
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Figure 4. Boxplots of trimmed mean of m-value (TMM)-normalized gene abundance of resistance
for abundant resistance classes (>25,000 normalized counts) in fecal samples (A); antimicrobial drug
resistance classes in catch basin water samples (B); and biocide and metal resistance classes in catch
basin water samples (C) (MLS = macrolide, lincosamide, streptogramin; analysis of the composition
of microbiomes with bias correction and adjusted p-value significance used the Benjamini–Hochberg
method; q > 0.05 = ns).

The resistance groups from the most abundant classes were visualized as heatmaps
with groupings according to the resistance mechanism for feces (Figure 5) and catch basin
water (Figure 6). For both the CONV and NAT fecal samples, ARGs conferring resistance to
tetracyclines were most abundant, with tetW, tetQ, tetO, tet44, tet40, and tet32 predominating.
Aminoglycoside O-nucleotidyltransferases were the next most abundant ARGs, with ant(9)
and ant(5) being the most common. There were a number of ARGs that were lower in
NAT than in CONV feedlots that had an abundance of >10,000 TMM-normalized counts,
including mef A (q < 0.001), tet40 (q < 0.001), tetO (q < 0.05), tetQ (q < 0.0001), and tetW
(q < 0.05).

For catch basin water, the main variation in the resistance group was associated with
individual samples as opposed to feedlot management type. One outlier of note was a catch
basin water sample from NAT Feedlot B that had the same resistance profile pattern as a
fecal sample. Most CONV and NAT catch basin samples also possessed genes encoding for
biocide and metal resistance proteins (ruvB), copper resistance proteins (actPC), lincosamide
nucleotidyltransferases (lnuC), and multi-metal resistance proteins (zipB, recGM).

When determining the effect that diet may have had on the resistome of NAT cattle,
backgrounding vs. finishing NAT samples did not differ in ARG class abundance (q > 0.05;
Figure S5). Likewise, for finishing diets, CONV and NAT cattle did not differ in ARG class
abundance (q > 0.05; Figure S5).



Microorganisms 2023, 11, 2982 10 of 21

Microorganisms 2023, 11, x FOR PEER REVIEW  10  of  21 
 

 

to tetracyclines were most abundant, with tetW, tetQ, tetO, tet44, tet40, and tet32 predom-

inating. Aminoglycoside O-nucleotidyltransferases were the next most abundant ARGs, 

with ant(9) and ant(5) being the most common. There were a number of ARGs that were 

lower in NAT than in CONV feedlots that had an abundance of >10,000 TMM-normalized 

counts, including mefA (q < 0.001), tet40 (q < 0.001), tetO (q < 0.05), tetQ (q < 0.0001), and 

tetW (q < 0.05). 

 

Figure 5. Heatmap of antimicrobial resistance groups from fecal samples stratified into resistance 

mechanism comparing conventional and natural feedlots. 
Figure 5. Heatmap of antimicrobial resistance groups from fecal samples stratified into resistance
mechanism comparing conventional and natural feedlots.



Microorganisms 2023, 11, 2982 11 of 21Microorganisms 2023, 11, x FOR PEER REVIEW  11  of  21 
 

 

 

Figure 6. Heatmap of antimicrobial resistance groups in catch basin water samples stratified into 

resistance mechanism comparing conventional and natural feedlots. 
Figure 6. Heatmap of antimicrobial resistance groups in catch basin water samples stratified into
resistance mechanism comparing conventional and natural feedlots.



Microorganisms 2023, 11, 2982 12 of 21

3.3. Mobilome and Resistome Colocalization on Fecal Metagenomic Assemblies

Out of 24 fecal samples, 22 had at least one plasmid (Table 2). The two samples that
lacked plasmids were from the high-level resistance category (>15,000 normalized counts).
There were two instances of MDR, both occurring in CONV samples (Table 2). There were
three cases of multiple aminoglycoside resistance genes within a single sample including at
least two of ant(6)-Ia, ant(6)-Ia, or aph(3’)-IIIa.

Table 2. Summary of colocalized antimicrobial resistance gene-carrying plasmids from assembled
contigs.

Level of Resistance 1 AMU Sample ID No. of Plasmids with
ARGs

No. of MDR
2-Carrying Plasmids

Low

CONV

Con-Sum-A-05Sep17-MG44 1 -
Con-Sum-A-26Apr17-MG7 3 1
Con-Sum-D-26Jun18-MG19 1 -
Con-Sum-D-26Jun18-MG20 1 -

NAT

Nat-Sum-B-26Apr17-MG6 2 -
Nat-Win-B-13Mar18-MG14 3 -
Nat-Win-C-29Mar17-MG58 1 -

Nat-Win-C-31Jan17-M7 1 -

Medium

CONV

Con-Sum-D-1Aug17-MG28 2 -
Con-Win-A-11Dec17-MG55 1 -
Con-Win-A-13Mar18-MG15 2 -

Con-Win-D-2Feb17-M10 3 -

NAT

Nat-Sum-B-26Apr17-MG5 1 -
Nat-Sum-C-10Apr18-MG9 1 -
Nat-Sum-C-26Jun18-MG17 1 -

Nat-Win-B-25Oct16-M1 2 -

High

CONV

Con-Win-A-1Mar17-MG3 2 -
Con-Sun-A-25Jul18-MG23 0

Con-Win-D-1Feb17-M9 4 1
Con-Win-D-29Mar17-MG59 2 -

NAT

Nat-Sum-B-28Jun17-M18 2 -
Nat-Sum-B-29May18-MG45 0 -
Nat-Sum-C-1Aug17-MG25 1 -
Nat-Win-C-31Jan17-MG50 1 -

1 Levels of resistance as TMM-normalized reads: high (>15,000), medium (>5000), and low (<5000). 2 MDR:
multi-drug resistance defined at resistance to ≥3 antimicrobial classes.

There were four resistance profiles containing a single ARG within a plasmid
(Figure 7A). The most prevalent AMR profile had genes conferring resistance to tetra-
cyclines (36.8%) and aminoglycosides (18.4%). The next most prevalent resistance profile
was a combination of aminoglycosides and tetracycline ARGs (15.8%). One of the instances
of MDR was the presence of aminoglycoside, β-lactam, sulfonamide, and tetracycline
ARGs on a single plasmid. The other instance was a plasmid harboring ARGs encoding
for aminoglycoside, chloramphenicol, sulfonamide, and tetracycline resistance. The first
MDR plasmid was predicted to be novel (i.e., no match in any database) and conjugative
with a host range within the family Enterobacteriaceae. The second MDR plasmid was
coded as AC935 and was predicted to be non-mobilizable with a host range within the
genus Acinetobacter.
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Figure 7. Fecal resistance profiles of ARG-carrying contigs from (A) 102 plasmids
(n = 24 samples) and (B) 342 chromosomes (n = 60 samples). AMG = aminoglycoside;
BLA = β-lactam; CHL = chloramphenicol; MLS = macrolide, lincosamide, and streptogramin;
SUL = sulfonamide; TET = tetracycline; TMP = trimethoprim. With regard to chromosomal ARGs,
the most abundant resistance class was tetracycline (41.5%) followed by MLS (28.7%), β-lactam
(14.3%), chloramphenicol (3.5%), aminoglycoside (1.8%), and trimethoprim (0.3%; (A)). In most cases,
no two ARGs belonging to the same class were associated with a contig, with the exception of two
instances of two aminoglycoside ARGs, ant(6)-Ia and aph(3’)-III, and one instance of two tetracycline
ARGs, tet(40) and tet(O).

For chromosomal ARGs, there was an even distribution between CONV and NAT
feedlots, whereas there were more plasmid-derived ARGs in CONV as compared to NAT
feedlots (Figure 8). A larger proportion of aminoglycoside ARGs were found on plasmids as
compared to tetracycline ARGs. Almost all MLS ARGs were chromosomally encoded. Both
chloramphenicol and β-lactam ARGs were more likely to be found on the chromosome
rather than on a plasmid.

For the ARG classes of interest, tetracyclines and aminoglycosides were more as-
sociated with CONV than NAT feedlots, but MLS did not differ between production
systems (Figure 9). For these same ARG classes, all three were more often chromosome
than plasmid associated. Of all ARG classes, tetracycline and aminoglycosides were most
commonly plasmid associated. Chromosome-associated MLS ARGs were more preva-
lent than plasmid-associated ones in both CONV (20.3 fold) and NAT feedlots (41.0 fold).
Tetracycline ARGs exhibited a similar pattern, but of a lower magnitude, with CONV
being 5.6-fold greater and NAT 9.0-fold greater for chromosome-associated compared to
plasmid-associated ARGs.
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Figure 9. Chord diagram of associations between antimicrobial resistant gene classes in conventional
vs. natural feedlots, and association with chromosomes or plasmids. Associations within the same
antimicrobial resistance gene (ARG) reflect that there are multiple ARGs on the same contig that confer
resistance to a single antimicrobial class. (MDR = multi-drug resistance from a single antimicrobial
resistance gene).

4. Discussion

The aims of this study were to observe the effect of antimicrobial use in beef cattle
feedlots on the microbiome and resistome using metagenomics. Through the use of shotgun
short-read (i.e., Illumina HiSeq2000) sequencing, trends and changes in microbiome and
resistome composition were determined in fecal and catch basin water samples from both
natural and conventional beef cattle feedlots. There is conflicting evidence on whether
AMU impacts the phylum composition of cattle fecal microbiomes [16,41,42]. One study
found an increased relative abundance of Bacteroidetes, Firmicutes, and Spirochaetes in
the feces of cattle treated with antimicrobials [43]. Another found a similar trend, with
the increased relative abundance of Proteobacteria and Firmicutes in CONV cattle fecal
microbiomes, wherein they used a model that was able to account for only 0.6% of variance
due to antimicrobial exposure [16]. This lack of model predictability, in addition to the many
studies that failed to find large-scale differences in the microbiomes of cattle treated with or
without antimicrobials [42,44,45], suggests that antimicrobials may not be responsible for
major shifts in bacterial populations within the gastrointestinal tract of cattle. Instead, the
variation that our study observed between feedlot systems might be influenced by other
factors that differ between feedlot management practices.

Studies have found that grain-based diets are a driver for phylum-level microbiome
instability [46] and that high-concentrate diets tend to decrease the overall relative abun-
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dance of most taxa [47]. These studies reflect the conditions of the CONV diets (80% barley
grain, 15% barley silage, 5% supplement). Our study found that the finishing diets had
higher relative abundances of Bacteroidetes and Euryarchaeota than backgrounding diets,
while Corrêa et al. [47] found increases of only Firmicutes. This discrepancy might be
explained by the high degree of microbiota instability (ability to maintain composition with
perturbations) and variation attributed to high-grain diets [46].

Several classes were enriched in CONV fecal samples, including Bacteroidia, Epsilon-
proteobacteria, Flavobacteriia, Gammaproteobacteria, Methanobacteria, and Spirochaetia.
These classes encompass both Gram-positive and Gram-negative bacteria along with ar-
chaea (Methanobacteria). The notion that macrolides select for certain bacterial taxa in
bovine fecal samples is supported in the literature [48–50]. In particular, macrolide-resistant
enterococci have been isolated from beef cattle feces in increasing proportions depending
on the duration that tylosin is included in the diet [48,50]. Enterococci belong to the class
Bacilli, contradicting our study as Bacilli were more abundant in NAT feedlots. Another
study found that the relative abundance of Bacteroides increased with tylosin and mon-
ensin in feed [49]. There are few studies that have investigated the effect of AMU on the
class taxonomic level, with most being restricted to the phylum level.

Few differences were found in the phyla, classes, orders, and genera between catch
basin water samples obtained from NAT vs. CONV feedlots. This observation may be
due to a dilution effect, as the members of the microbiota in catch basin water are not as
directly influenced by diet as those that reside in feces. Instead, the higher proportions of
Proteobacteria that thrive in catchment basins are likely to reduce differences between NAT
and CONV feedlots.

The relative abundance of two genera, Methanobrevibacter and Treponema, was lower by
>1.5 fold in NAT vs. CONV production systems. Methanobrevibacter spp. are methanogens
that are found primarily in the gastrointestinal tract of animals such as termites, ruminants,
and humans [51–53] and produce methane as a by-product of cellular respiration [54].
Monensin has been shown to target Gram-positive bacteria that produce hydrogen and
formate, which are substrates for methanogenesis [55] It would have been predicted that
the addition of monensin to the diets of cattle in CONV feedlots would result in a lower
abundance of methanogens, such as Methanobrevibacter [56]. Instead, we found the oppo-
site trend, with a 1.8-fold increase in the abundance of Methanobrevibacter in CONV vs.
NAT feedlot types. This discrepancy highlights the impact of highly unstable microbiota
composition in CONV AMU that may obscure any differences that the addition of mon-
ensin might induce. Additionally, Treponema spp. are members of the Spirochaetes that
are typically considered to be commensals but can also be associated with bovine digital
dermatitis [57]. Avoiding practices associated with an increased abundance of Treponema
could theoretically reduce the case rate of bovine digital dermatitis and the attendant AMU.
However, this study cannot conclusively identify the management practice(s) responsible
for this proposed association.

As with the microbiome, in which the fecal and catch basin water samples were
distinct, so were the resistomes. At the resistance class level, there were differences between
the fecal and catch basin water samples. Tetracyclines and MLS ARGs dominated fecal
samples, whereas, in the catch basin, all ARGs were present at similar levels. There were
more ARGs in fecal samples than in catch basin water, as expected, due to the higher
microbial density in fecal samples. A previous study found that fecal composite and catch
basin water samples shared 83% of ARG groups and were separated into distinct clusters
following nonmetric multidimensional scaling analysis [17]. The single catch basin water
resistome profile that resembled a fecal composite resistome profile should be treated as a
source of “fecal contamination”, and likely arose as a result of a significant run-off event.
This is encouraging because it indicates that the resistomes associated with bacteria in fecal
composite samples are likely contained within the catchment basin.

Of the ARGs examined, the mechanisms that had significantly lower abundance in the
NAT as compared to the CONV fecal samples were lincosamide O-nucleotidyltransferases,
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MLS resistance MFS efflux pumps, and tetracycline ribosomal protection proteins. While
significant, the low fold difference of ~1 indicated that there was essentially no difference
between feedlots as a fold difference of 1 has a ratio of 1:1 (i.e., 100% similarity). As
phylum composition in the fecal microbiome may be attributed to diet, so too might the
resistome. This conclusion is supported by evidence that certain ARGs tend to be found
in a limited number of taxa, as even low-diversity communities can have high levels of
ARGs [58]. The transition of weaned calves onto a solid diet has been associated with
increased ARG prevalence, with the exception of tetracycline and MLS ARGs, which were
shown to increase [59]. This suggests that starch digestion is associated with bacteria with
a higher prevalence of MLS and tetracycline ARGs. A recent study that sampled NAT beef
cattle fed a diet similar to ours [60] found that expressed ARGs in the rumen at slaughter
were not associated with AMU, but rather with bacterial metabolic pathways.

Intrinsic ARGs are more likely to be contained within a chromosome than on a plasmid
due to ‘intrinsic’ meaning belonging to all members of a species (i.e., belonging to the core
genome) [61]. In a similar case, but not to the same extent, acquired ARGs will more likely
be found on mobilizable MGEs rather than be associated with the chromosome, such as
ICE [8,62]. Given this trend, it could be inferred that MLS resistance is more conserved than
tetracycline resistance since there were more tetracycline ARGs found on plasmids than
MLS ARGs [63]. As tetracyclines and macrolides have both been highly used historically
in beef cattle, one might predict that they should both be mainly associated with the
chromosome. It is unclear why this trend was not apparent for both ARG classes, but it
may have to do with co-selection. If there was a highly conserved gene (e.g., heavy metal
resistance gene) in proximity to the chromosomal MLS ARG locus, then the MLS ARG
could also be highly conserved [64]. While this may explain some differences, it is difficult
to validate through metagenomics. Nevertheless, these data suggest that tetracycline
ARGs are more mobile than MLS ARGs and that tetracycline ARGs are retained even
in the absence of tetracycline use. This may reflect the generational selective pressures
that tetracyclines have presented to the beef cattle resistome or the use of tetracyclines in
backgrounding feedlots or cow–calf systems.

The main limitation of this study is that the contig coverage of the entire metagenome
will never be as comprehensive as that of the read coverage. This means that the assembly
step that is required to enable short-read data to investigate colocalization and the overall
abundance of elements of interest will always lack precision. The employment of a hybrid
assembly approach using short and long-read sequences would be one approach to improve
the ability to define the colocalization of ARGs with specific MGE.

5. Conclusions

When comparing AMU practices, certain genera (Treponema and Methanobrevibacter)
were enriched in fecal samples from cattle at feedlots that used antimicrobials. Few sig-
nificant differences were observed in the microbiomes of catch basin samples from NAT
vs. CONV feedlots. Contrary to our initial hypothesis, there were also no significant
differences in the fecal resistome of cattle between the two feedlot management systems.
It seems that generationally selected resistomes through decades of AMU persist even
after antimicrobials are not used within the beef production system. The minute differ-
ences observed at the ARG group level may be explained by other differences in AMU
and diet between CONV and NAT feedlots. More comprehensive investigations into the
relationship between livestock diet and AMR should be conducted. Tetracycline selective
pressure on the beef cattle industry is strongly established based on the historical use of
this antimicrobial and the high abundance of tetracycline resistance genes present in the
fecal microbiome. Our study suggests that short-term elimination of AMU is unlikely to
substantially reduce the prevalence of ARGs in feedlot environments.
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q < 0.05 = *; q < 0.01 = **; q < 0.001 = ***; q < 0.0001 = ****), and fold change for significant differences
from natural (NAT) to conventional (CONV). Figure S1. Boxplot of Shannon index comparisons
between conventional and natural feedlots for fecal and catch basin water samples. (Wilcoxon signed
rank test; p > 0.05 = ns; p < 0.0001 = ****). Figure S2. Principle component analyses (PCoA) of beta
diversity differences using Bray–Curtis for fecal (A) and catch basin water (B) samples between
conventional and natural feedlot types. (PERMANOVA test). Figure S3. Stacked bar plots comparing
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