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Abstract: Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas,
methane, as a source of energy-rich carbon. Over the years, significant progress has been made
in understanding of mechanisms for methane utilization, mostly in bacterial systems, including
the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium,
lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics
approaches provided vast amount of heterogeneous data that require the adaptation or development
of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-
scale mathematical modeling of its metabolism has been envisioned as one of the most productive
strategies for the integration of muti-scale data to better understand methane metabolism and enable
its biotechnological implementation. Herein, we provide an overview of various computational
strategies implemented for methanotrophic systems. We highlight functional capabilities as well as
limitations of the most popular web resources for the reconstruction, modification and optimization
of the genome-scale metabolic models for methane-utilizing bacteria.

Keywords: genome-scale metabolic modeling; constraint-based modeling; context-specific modeling;
pipeline; tool; transcriptomics; methanotrophy

1. Introduction

Biosystems engineering, or synthetic biology, is one of the rapidly developing fields
in modern biology which include an array of different approaches to design novel and
complex biological systems with specified properties often on the basis of in-depth genome
reorganization or even its de novo synthesis. However, its development requires fundamen-
tal knowledge of the structural and functional organization of genomes, transcriptomes,
proteomes, and metabolomes. Thus, it is not surprising that synthetic biology is deeply
rooted in systems biology approaches, which provide a holistic and quantitative under-
standing of existing biological systems and validated for a narrow set of model microbial
systems, such as E.coli or Bacillus [1–8]. The implementation of the systems biology potential
toward non-model systems often starts with the genome-scale metabolic (GSM) model-
ing following by its validation using omics data or detailed analyses of gene interactions
via reconstruction of regulatory networks [9]. Here we summarize the systems biology
approaches that have been applied toward understanding methane metabolism, known
as methanotrophy.

Methanotrophy, as a metabolic capability to convert methane, has drawn the attention
of systems biologists as a potential platform for capturing methane and conversion of
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it into novel fuels or chemicals to solve the challenge associated with greenhouse gases
driven climate change or pollution [10–12]. The accumulation of high-throughput data
as transcriptomics and proteomics for methanotrophs provides an opportunity to specify
bacterial metabolism by adjusting the fluxes bounds for each metabolic reaction via ob-
served expression levels and gene-protein reaction (GPR) rules on which the majority of
algorithms for the reconstruction of context-specific GSM models are relied on [13,14]. This
review compiles the current GSM models of methanotrophic bacteria and describes how
they have been applied to investigate the methane metabolism in a holistic fashion. We also
highlight gaps in the development and analysis of context-specific metabolic models for
methanotrophs and summarize computational tools and web-resources that can streamline
the constraint-based modeling of microbial metabolism from the reconstruction of GSM
models to the development of context-specific metabolic models considering transcriptomic
datasets to fine-tune the flux bounds of an original model to a specific experimental context.

2. Reconstruction and Analysis of Genome-Scale Metabolic Models
2.1. The Stages of Metabolic Model Reconstruction

The development of a GSM model of any metabolic process involves several funda-
mental steps (Figure 1). One of the first steps is the reconstruction of the metabolic network,
which is performed based on the annotation data of the sequenced genome of an organism
of interest and includes information about the genes and proteins/enzymes encoded by
them, biochemical reactions of the analyzed metabolic pathway and metabolites [15,16].
The sources of this information are databases and web-portals which will be discussed below.

The functionality of this network is confirmed at the next stage of model reconstruction
by additional information from published data and experiments conducted for model
organisms and/or closely related species [17,18].

The third step adds species-specific physiological, biochemical, physical and pheno-
typic characteristics of the network components including the thermodynamic and kinetic
parameters of reactions and the metabolites available in publications or databases.

The resulting metabolic map allows one to mathematically link enzymatic reactions
and the metabolites participating in them as substrates or products in a certain stoichiometry
using a stoichiometric S matrix.

Generally, for GSM models validation it is assumed that the biological system is in a
quasi-equilibrium state, i.e., the concentrations of metabolites do not change in the system,
and therefore the right-hand sides of the system of differential equations describing the
change in the concentration of metabolites can be equated to zero. Thus, a system of linear
algebraic equations is obtained. In other words, the assumption that the metabolic system
has reached a quasi-equilibrium implies that the sum of all reaction fluxes in which a
certain metabolite is synthesized is equal to the sum of enzymatic reaction fluxes in which
this metabolite is consumed.

These constraints on flux balances are mathematically formulated as S ∗ V = 0, where
S is the stoichiometric matrix and V is the vector of reaction rates (fluxes) of the studied
metabolic system. As a result, this mathematical expression was performed under quasi-
equilibrium conditions and additionally introduced constraints on the rates of intracellular
reversible and irreversible reactions (on the lower (LB) and upper boundaries (UB), re-
spectively), as well as on the reactions of transport exchange between the compartments
of the model, which enables one to conduct a flux balance analysis (FBA) using linear
programming methods at the last stage of model development. FBA addresses one of
the optimization problems [15,16,19]. For example, optimizing the production of cellular
biomass or one of the targeted, biotechnologically important products under wild-type
phenotype conditions and/or under various genetic modifications (knockouts, increased
expression of a gene encoding a particular enzyme) [20–22].

A GSM model constructed in this way requires further refinement based on available
experimental data for a more adequate description of the metabolism of the object under
study. It will ultimately provide more relevant and accurate predictions of phenotypic
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changes in the growth of the bacterium under certain conditions of the culturing or as a
result of genetic modifications employing in silico experiments [20,23–26].
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Figure 1. Development stages of a genome-scale metabolic model of any metabolic process (created
with BioRender.com). A key step in constraint-based modeling is the construction of the GSM model
which is represented at the pyramid’s base. This part of the pyramid briefly illustrates the main
approaches (bottom-up: from in vitro data via enzymatic reactions to a metabolic map. Top-down:
from omics data to a metabolic map) for GSM models reconstruction. The next block demonstrates an
equally important stage—the modification and expansion/reduction of the original GSM model. The
block preceding the vertex reflects the model simulation and further visualization of the obtained in
silico results using metabolic maps. At the top of the pyramid is a relatively new stage that provides
a significant refinement of the model’s predictions through the integration of omics data into the
original GSM model for the reconstruction of context-specific models (CS models). Tools developed
using the Python programming language are highlighted in pink, while software packages written in
MATLAB are highlighted in blue.

2.2. Databases of the Microorganisms’ Genomes

Numerous databases and web-portals resources have been developed and are avail-
able for the initial metabolic pathway reconstruction, including BioCyc [27], KEGG [28],
GenBank [29], Ensembl Bacteria [30], PATRIC [31], MicroScope [32] and IMG/M [33]. Below
we briefly summarize each resource.

BioCyc (https://biocyc.org/) is a web-portal of prokaryote genomes that integrates
sequenced genomes with expert-processed an information from published data as well as
an information imported from other biological databases. The BioCyc collection consists

https://biocyc.org/
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of over 20,040 pathway/genome databases (PGDBs) [27], each containing the complete
genome and putative metabolic network of a single organism, which is predicted by the
Pathway Tools software and comprises metabolites, enzymatic reactions and metabolic
pathways [34]. BioCyc provides extensive search and visualization tools, as well as toolkits
for omics data analysis, comparative genomic analysis, metabolic pathways search, and
metabolic model generation. BioCyc expert analytical information includes experimental
data on gene functions, kinetic parameters of enzymatic reactions, enzyme activators and
inhibitors. The database also contains textual mini-reviews authored by expert curators that
summarize information on enzymes and pathways with corresponding references [27,35].
The main drawbacks of this resource now are its limited use without a paid subscription.

KEGG (Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/)
is manually curated resource represented by a set of databases and associated bioinformatics
software for analyzing and modeling the functional behavior of a cell or higher-order
organism based on information about its genome. KEGG includes both data relevant for
biomedical research (e.g., KEGG DISEASE and KEGG DRUG) and tools for the analysis
of bulk molecular data [28,36,37]. Of particular note are the KEGG PATHWAY metabolic
maps, which is a powerful tool in the reconstruction of GSM models enabling the analysis
of metabolic pathways for a selected organism.

UniProt (https://www.uniprot.org/, [38]), Brenda (https://www.brenda-enzymes.
info/index.php, [39]) and Sabio-RK (http://sabio.h-its.org/, [40]) are also very useful and
widely cited resources for biochemical data and enzymes annotation that are essential for
proper metabolic pathway reconstruction.

Whereas Genbank (https://www.ncbi.nlm.nih.gov/genbank/) is an annotated col-
lection of publicly available nucleotide sequences for more than 500 000 formally described
species [41], Ensembl Bacteria (https://bacteria.ensembl.org/index.html)—a portal con-
taining specifically bacterial and archaea genomes as well as a collection of data on genes
and the proteins they encode [42]. Ensembl has BLAST and an algorithm based on hidden
Markov models as a tool to seek protein motifs. Pan-taxonomic comparison tools are avail-
able for key microbial species. The current version of the portal also presents genome anno-
tation capabilities, includes transcriptome data, and supports comparative analysis [30].
However, this resource lacks tools for reconstructing and analyzing metabolic pathways.

PATRIC (http://www.patricbrc.org) is designed to support biomedical research aimed
at studying bacterial infectious diseases through the integration of pathogen information
using available data and tools for analysis. Integrated data covers genomics, transcrip-
tomics, protein-protein interactions, 3D protein structures and metadata from various
organisms. PATRIC provides genome assembly and annotation as well as RNA-seq data
analysis [31,43,44].

MicroScope (https://mage.genoscope.cns.fr/microscope/home/index.php/) is a
web resource of prokaryotic genomic sequences, similar to IMG/M, with a large set of
tools for genome annotation, comparative analysis and visualization, which is especially
important for the validation of the functional annotation quality. Expert verification of
annotations and genomes by microbiologists is in progress. The latest version of the
database expands the set of tools for functional gene annotation by identifying orthologous
genes and viral regions (virulomes) and for predicting regions associated with antibiotic
resistance too [32].

Integrated Microbial Genomes & Microbiomes (IMG/M, https://img.jgi.doe.gov/) —
a web-based resource for the annotation and analysis of genomic sequences integrated with
different types of metadata, encompassing microbiome composition and environmental
factors. The resource contains information on sequenced genomes of various species of
organisms (bacteria, archaea, eukaryotes, plasmids and viruses) and provides toolkits to an-
alyze them. In addition, IMG comprises datasets that are imported from publicly available
sources such as NCBI Genbank, SRA and DOE National Microbiome Data Collaborative
(NMDC) or submitted by external users [33,45]. Furthermore, several efforts are underway

https://www.genome.jp/kegg/
https://www.uniprot.org/
https://www.brenda-enzymes.info/index.php
https://www.brenda-enzymes.info/index.php
http://sabio.h-its.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://bacteria.ensembl.org/index.html
http://www.patricbrc.org
https://mage.genoscope.cns.fr/microscope/home/index.php/
https://img.jgi.doe.gov/
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to streamline the integration of the IMG/M tools with other resources for mathematical
modeling, e.g., Kbase [33].

2.3. GSM Models for C1-Utilizing Bacteria

The databases described above serve as the basis for construction of GSM models for
prokaryotes, including models for unique groups of microorganisms such as methanotrophs
and methylotrophs. These are bacteria and archaea that utilize C1-containing hydrocarbons
as their sole carbon sources for growth. The developed models are employed to study
the metabolic capabilities of diverse strains of C1-utilizing bacteria, including growth on
methane and/or methanol using various metabolic pathways. These models also can be
used to predict more efficient ways for the production of target value-added compounds
and to study the peculiarities of their metabolism under different cultivation conditions
(see reviews: [10,11,46,47]).

Table 1 summarizes the currently available information on the strains of methan-
otrophic bacteria for which GSM models have been developed as well as model parameters
like the number of considered genes, metabolic reactions and intracellular metabolites
produced. It is worth noting that several detailed reviews on built GSM models describing
the metabolism of C1-utilizing bacteria and their application of biotechnological problems
have been presented previously [11,46,47].

Table 1. GSM models constructed to investigate metabolism of C1-utilizing bacteria. Models in the
table are given in chronological order.

Organism ID * Genes Reactions Metabolites Tools &
Databases ** References Memote

Score ***

Cobrapy
Model

Consistency #

Methylobacterium
extorquens AM1

– 67 65 [48]

iRP911 911 1139 977

CellNet Analyser
MicroScope

MetaCyc
KEGG

[49] - -

Methylotuvimicrobium
buryatense 5G

iMb5G (B1) – 841 – Pathway-Tools
MicroScope [50]

iMb5GB1
update 314 402 403 COBRA Toolbox [51] 42% 98%

Methylotuvimicrobium
alcaliphilum 20ZR iIA409 409 436 423

COBRA toolbox
KEGG, BiGG,

BioCyc
[24,52] 25% 94.5%

Methylococcus capsulatus

iMcBath 730 898 877
Cobrapy

KEGG, BiGG
MetaCyc

[53] 54% 66.3%

iMC535 535 899 865
ModelSEED

COBRA Toolbox
KEGG, MetaCyc

[26] 21% 60.1%

Methylocystis hirsuta
CSC1 2478 1399 1460

ModelSEED
Cobrapy
KEGG

[54] 19% 50.75%

Methylocystis sp. SC2 2251 1449 1434
ModelSEED

Cobrapy
KEGG

[54] 19% 49.82%

Methylocystis sp. SB2 2281 1380 1453
ModelSEED

Cobrapy
KEGG

[54] 19% 50.86%

Methylocystis parvus
OBBP 2795 1326 1399 ModelSEED

Cobrapy [55] 19% 53.1%

Methylosinus
trichosporium OB3b iMsOB3b 683 1043 1020 Cobrapy

KEGG [56] 23% 67.24%

Methylocella silvestris
BL2 681 1436 1474 ModelSEED

Cobrapy [57] 19% 48%
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Table 1. Cont.

Organism ID * Genes Reactions Metabolites Tools &
Databases ** References Memote

Score ***

Cobrapy
Model

Consistency #

Methylomicrobium album
BG8 iJV806 803 1358 1367

KBase
COBRA Toolbox

Cobrapy
KEGG

CycleFreeFlux [58]

[59] 27% 53.52%

* Column ID contains the standard identifier of the reconstructed GSM model if it has one. ** Column Tools &
Databases comprises a list of software and sources used for the model reconstruction and analysis. *** Column
Memote score represents the total score which is calculated by the Memote tool and describes a model quality
assessment based on the number of independent tests. The metrics of the individual tests are added up to a
weighted sum of all test results normalized by the maximally achievable score equal to 100%. # Column Cobrapy
model consistency reflects the percentage of unblocked reaction in the model, where 100% means it is a completely
consistent model.

We briefly describe the issues for which these models were developed. For example,
models for a well-studied organism such as M. extorquens AM1, which is a facultative
methylotroph, were applied to study central cell metabolism and key steps in C1 assimi-
lation. The unique topology of the core metabolic network and its metabolic fragility in
M. extorquens were identified on the basis of the combination of genome-scale metabolic
modeling and experimental approaches [48,49]. The ability to grow and switch to different
multi-carbon sources was also shown for M. extorquens AM1 [49].

The iMb5G model for M. buryatense 5G, the first published GSM model of methan-
otrophic bacteria, was used to interrogate the feasibility of three possible modes of methane
oxidation (redox-arm, the direct coupling mode and uphill electron transfer) and to test
the efficiency of carbon conversion via different C1 utilization pathways including vari-
ants of ribulose monophosphate pathway and the serine cycle. The extended version,
iMb5GB1 was applied to explore the ability of the methanotrophic strain to be a fatty acid
producer [50,51].

The iIA407 model for a closely-related strain, M. alcaliphilum 20ZR, was constructed
based on genomic, enzymatic and transcriptomic data and refined using published 13C-
carbon-labeling [60] and original continuous cell culture parameters, which enabled the
uncovering of the reversibility of the phosphoketolase reaction leading to the carbon flux
from acetyl-CoA to xulylose-5-phosphate and highly branched TCA cycle [24]. Furthermore,
a slightly extended version of the model, iIA409, was also applied to investigate the
mechanisms of improved growth vs. carbon conversion for the strain growth in different
media contents [52].

The iMcBath and iMC535 models for Methylococcus capsulatus (Bath), which is an
obligate methanotroph, were also built to study the pathways and mechanisms of the
methane utilization in order to estimate methanotroph’s biotechnological potential and
pave the way for rational strain design [26,53].

A series of GSM models was developed for several representatives of type II (alpha-
proteobacteria) methanotrophs that use the serine cycle for carbon assimilation [54,55,57].
The built GSM models enabled the exploration of distinct features of the metabolism in
Methylocystis species and Methylocella silvestris (redox-arm mechanisms as a general feature
of type II methanotrophs, growth on C1 and C2 compounds, influence of the nitrogen
source and mechanisms of the poly-3-hydroxybutyrate (PHB) accumulation). The metabolic
models provide an effective in silico basis for the development of metabolic engineering
platforms for these particular strains.

The iJV806 model describing the metabolism of Methylomicrobium album BG8, another
representative of obligate aerobic gammaproteobacterial methanotrophs was recently recon-
structed to study the metabolic states of the strain under growth on methane or methanol
promoting biomass production and excretion of carbon dioxide and organic acids. The last
ones can be considered valuable compounds for proposing the biotechnological potential
of M. album BG8 [59].
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To assess the quality of the GSM models developed for methanotrophs, we have collected
all published SBML model versions (https://gitlab.sirius-web.org/RSF/Methanotrophs_
models, accessed on 3 November 2023) for the first time as far as we know and applied
state-of-the-art tool, MEMOTE [61] for the study. As can be seen from Table 1, the top
five metabolic models according to Memote score are the ones built for Methylococcus
capsulatus (iMcBath), Methylotuvimicrobium buryatense 5G (iMb5GB1), Methylomicrobium
album BG8 (Methylomicrobium album BG8), Methylotuvimicrobium alcaliphilum 20ZR (iIA409)
and Methylosinus trichosporium OB3b (iMsOB3b). Memote reports that all models are also
available via the gitlab project. Additionally, we estimated the model consistency using
Cobrapy to detect blocked reactions based on the flux variability analysis (FVA), including a
priori inconsistent reactions like exchange, sink, demand and pseudo-reactions. As a result,
the top five metabolic models according to quality score were the same as the previous
analysis with the exception of Methylomicrobium album BG8. Moreover, we analyzed all
models using FROG analysis (https://www.ebi.ac.uk/biomodels/curation/fbc), which
also reports the effects of gene and reaction deletions in the provided medium. This
recent community standard provides an estimation of the model quality by assessing the
reproducibility of the model simulations presented in the original study. All results are
available on above-mentioned gitlab project.

Anaerobic methanotrophic (ANME) archaea, which are significant contributors to the
diminishment of the methane flux to the atmosphere, use alternative electron acceptors,
such as nitrate or sulfate, to oxidize methane. As for the application of GSM models to
investigate the metabolism of ANME, the first detailed metabolic model for a representa-
tive of these anaerobic methanotrophs, Methanoperedens nitroreducens, has been published
relatively recently. Moreover, the authors provided a comparative analysis of the proposed
model with previously constructed models for other archaea-methanogens [62].

2.4. Web Resources and Tools for Automatic Reconstruction of GSM Models

Currently, there is a fairly large number of web resources and programs for the
automatic reconstruction of GSM models (see review: [63]). Table 2 lists the most popular
and advanced programs in terms of their abilities in model reconstruction, which we
have divided into three groups for ease of comparison: web services, GUI programs and
Packages/Command line programs. Below is their consideration in more detail.

2.4.1. Web Resources

One of the most popular web-based resources for reconstructing and analyzing GSM
models is Kbase [18], which not only offers automatic model reconstruction, but also pro-
vides modules for sequencing data processing. Kbase contains more than 160 applications,
including the analysis of user data from raw short reads to fully assembled and annotated
genomes, followed by the ability to analyze transcriptome data and develop metabolic
models. The set of tools implemented in Kbase makes it possible to build a complete
pipeline for the reconstruction and analysis of a GSM model. Moreover, Kbase gives an
opportunity for model visualization as with the Kbase tools, which presents the model as a
connected graph of reactions and metabolites. In addition, the distribution of fluxes can
be visualized via Escher metabolic maps [64]. Kbase also enables users to integrate their
original code into data analysis and also allows the addition of external applications.

ModelSEED is a web resource linked to Kbase that supports the creation of GSM
models not only for microorganisms, but also for plants. It allows the use of a linked
RAST profile (http://rast.nmpdr.org) [65] with user-annotated genomes or using existed
annotations from the PATRIC database (http://www.patricbrc.org). Users can also choose
their own FASTA annotation file. This version of the resource provides synonyms for
reactions and metabolites in other databases, and supports the gap-filling algorithm, with
the option to use a reaction file from the user [66]. A visualization of models via the Escher
web tool has recently become available in ModelSEED according to the official website:

https://gitlab.sirius-web.org/RSF/Methanotrophs_models
https://gitlab.sirius-web.org/RSF/Methanotrophs_models
https://www.ebi.ac.uk/biomodels/curation/fbc
http://rast.nmpdr.org
http://www.patricbrc.org
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https://modelseed.org/. The updated version of the reconstruction pipeline, ModelSEED
v2 (MS2), has been released with improved representation of energy metabolism [67].

FAME (flux analysis and modeling environment) is also a web-based tool for the
development of GSM models. It can be employed for generation, editing, running and anal-
ysis/visualization tasks in a single program [68]. The main distinguishing FAME feature is
that analysis results can be visualized on the generally accepted KEGG metabolic map. But
this is also its essential limitation, since models cannot be created for microorganisms that
are not in KEGG. It should be noted that the web service is not available at this moment
(verified on 27 July 2023).

MicrobesFlux is another web resource for GSM models reconstruction, which enables
model building based on information about reactions and metabolites from the KEGG
database, similar to FAME [69]. The source code is currently in the public domain, but the
resource itself is not available.

Table 2. Tools for GSM models generation.

Program Tool Type Type of
Reconstruction

Databases for
Reaction

Information

Programs
Availability Reference

Kbase
http://kbase.us Web-service automatic ModelSEED Available [18]

ModelSEED
http://www.theseed.org/models/ Web-service automatic ModelSEED Available [66,67]

FAME
http://f-a-m-e.org Web-service automatic KEGG Not available [68]

Pathway tools
ttp://pathwaytools.com

GUI based
program

MetaCyc
Template models

Available, but
works with

BioCyc license
[34]

GEMSiRV
http://sb.nhri.org.tw/GEMSiRV

GUI based
program semi-automatic Template models Not available [70]

AuReMe
http://aureme.genouest.org

Command line
program automatic MetaCyc, BiGG,

ModelSEED Available [71]

Merlin v.4
https://www.merlin-sysbio.org/

GUI based
program semi-automatic KEGG, BiGG Available [72]

Gapseq
https://github.com/jotech/gapseq

Command line
program,

R package
automatic

MNXref, KEGG,
BiGG, MetaCyc,

ModelSEED
Available [73]

AutoKEGGRec
https://www.ntnu.edu/almaaslab and

https://github.com/emikar/AutoKEGGRec

Matlab
package automatic KEGG

Available but
needed Matlab.

Last update more
than 5 years ago

[74]

RAVEN v2
https://github.com/SysBioChalmers/RAVEN

Matlab
package semi-automatic KEGG, MetaCyc

Template models
Available, but
needed Matlab [75]

MicrobesFlux
http://tanglab.engineering.wustl.edu/static/

MicrobesFlux.html
Web-service automatic KEGG Not available [69]

ScrumPy
https://mudshark.brookes.ac.uk/ScrumPy

Python
package semi-automatic BioCyc Available [76]

CarveMe
github.com/cdanielmachado/carveme

Command line
program,
Python
package

automatic BiGG

Available, but
needed

commercial
solvers (IBM

CPLEX or
Gurobi)

[77]

https://modelseed.org/
https://www.ntnu.edu/almaaslab
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Table 2. Cont.

Program Tool Type Type of
Reconstruction

Databases for
Reaction

Information

Programs
Availability Reference

PADMet (AuReMe)
https://pypi.python.org/pypi/padmet and

https://gitlab.inria.fr/maite/padmet

Python
package MetaCyc, BiGG Available [71]

MetaDraft
https://systemsbioinformatics.github.io/cbmpy-

metadraft/

GUI based
program semi-automatic Template models Available [78]

moped
https://gitlab.com/marvin.vanaalst/moped-

publication-2021

Python
package semi-automatic MetaCyc, BioCyc Available [79]

Reconstructor
http://github.com/emmamglass/reconstructor

Command line
program,
Python
package

automatic KEGG
ModelSEED Available [80]

Bactabolize
github.com/kelwyres/Bactabolize

Command line
program,
Python
package

automatic BiGG Available [81]

AuCoMe
https://github.com/AuReMe/aucome

Command line
program,
Python
package

automatic MetaCyc
Free access, but

needed Pathway
tools

[82]

2.4.2. GUI-Based Desktop Programs

One of the most popular programs for reconstructing GSM models is Pathway Tools
(Ptools), which supports the construction and maintenance of databases specific to the
organism under study (PGDB), and also has the ability to work in a web application,
although its functionality is partially limited there [34]. Its features interactively explore,
visualize and edit various components of the reconstructed model, such as genes, operons,
enzymes (including transporter proteins), metabolites, reactions and metabolic pathways;
analyze omics data taking into account the reconstructed metabolic map; and even develop
microbial community models.

Other existing programs are also in this area of interest. For example, the Merlin
program (https://www.merlin-sysbio.org/) has a user-friendly GUI and allows semi-
automatic model reconstruction and its editing based on the KEGG database data [72].
Furthermore, the BiGG database was recently added to the tool as a source for model
reconstruction [83]. Additionally, Merlin provides the opportunity to visualize the model
using the Escher program, unlike other GUI-based tools. The last, but very essential
advantage of the Merlin is a high-quality tutorial for working with the program.

MetaDraft 0.9.2 is a full-featured platform with a graphical interface for genome-scale
metabolic model reconstruction. It utilizes a constantly updated, user-expandable database
of template models [78]. GEMSiRV is a GUI platform [70] that also uses templates from
already existing mathematical models for model reconstruction. This program provides
model editing and visualization using built-in tools.

2.4.3. Packages and Command Line Programs

This group of resources includes a number of programs, which are presented below.
ScrumPy (https://mudshark.brookes.ac.uk/ScrumPy) is one of the first Python-based

flexible packages for the reconstruction and analysis of metabolic models. A GSM model is
directly constructed from the BioCyc Pathway Genome Database. Moreover, the tool has a
modular model definition language that enables the tracking of changes during the model
development process and the definition of metabolic subsystems separately [76].

https://pypi.python.org/pypi/padmet
https://www.merlin-sysbio.org/
https://mudshark.brookes.ac.uk/ScrumPy
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The AuReMe (http://aureme.genouest.org/) program enables the reconstruction of
genome-scale models based on information from the MetaCyc, BiGG and KEGG databases [71].
Its key feature is distribution through the Docker container, which eliminates compatibility
issues between different program components.

gapseq (https://github.com/jotech/gapseq) is a tool for metabolic pathways predic-
tion and automatical reconstruction of bacterial metabolic models using a curated reaction
database and a novel gap-filling algorithm [73]. The program is written in the R language
and distributed through the R package repository, Cran.

A number of programs allow the automatic reconstruction of models using MATLAB.
Examples of such tools are AutoKEGGRec [74] and RAVEN 2.0 [75]. The advantage of
these programs is the compatibility with COBRA Toolbox 3, which gives the possibility to
perform reconstruction and further analyze the model within the same project. AutoKEG-
GRec is a simple program for the automatic reconstruction of organisms based on KEGG
data, which supports the reconstruction of models for several organisms represented in
the KEGG database at once. It should be noted that this program has not been updated
for more than 5 years. RAVEN v2, unlike AutoKEGGRec, allows the reconstruction of
models not only on the basis of the KEGG database, but also using MetaCyc database and
templates of existing models.

There are also programs written in Python such as CarveMe [77], moped [79], Reconstructor [80],
Bactabolize [81] and AuCoMe [82] that provide the possibility of reconstructing the model
using their own resources.

CarveMe (https://github.com/cdanielmachado/carveme) uses expert-curated GSM
models from the BiGG database [83] to reconstruct models as initial templates. To improve
the quality of reconstructed models, the program also has its own gapfilling algorithm
based on the bottom-up approach. A limitation in working with CarveMe is the need to
use commercial solvers such as MBI CPLEX and Gurobi.

moped (https://gitlab.com/qtb-hhu/moped) is a Python-based package which pro-
vides an opportunity for GSM model reconstruction from a genome sequence or by im-
porting data from SBML [84] file or the MetaCyc or BioCyC databases as a PGDB flat
file using the BLAST algorithm. Unlike most other tools, it uses a topological gap-filling
algorithm [85], which is a crucial step at the process of GSM models reconstruction. More-
over, it includes a list of methods for FBA, topological model analysis and also moped model
objects that are easily converted into Cobrapy model objects that simplify the integration
with a large number of python-based tools for model simulation and analysis [79].

Bactabolize (https://github.com/kelwyres/Bactabolize) is a new command line pro-
gram that also employs the BiGG database to reconstruct GSM models [81]. This tool was
validated in the modeling a pathogenic strain of Klebsiella pneumoniae and demonstrated
better model reconstruction compared to CarveMe. Bactabolize is distributed through the
conda environment, which allows, as in the case of the Docker container, the elimination of
the potential problems of program version incompatibility. By using the Cobrapy Toolkit,
the reconstructed models are compatible with this package. Bactabolize also provides
the ability to simulate the model in order to analyze the effect of single mutations on cell
growth and to predict the substrates required for cell growth.

Reconstructor (https://github.com/emmamglass/reconstructoris a new Python pack-
age, that, unlike CarveMe and Bactabolize, uses KEGG and ModelSEED databases for
model reconstruction [80]. This tool has the ability to gapfill existing models harnessing
its own pFBA-based algorithm. In addition, Reconstructor has direct compatibility with
Cobrapy Toolbox. A limitation of this package is that it cannot be used on Linux machines,
since only Windows and MacOSX systems are currently supported.

AuCoMe (https://github.com/AuReMe/aucome) is not independent tool, but it is
a workflow for the reconstruction of several models, making it possible to compare them
with each other. It is based on the Pathway Tools reconstruction discussed above. This
workflow is distributed by using both Docker and Singularity containers, and directly

http://aureme.genouest.org/
https://github.com/jotech/gapseq
https://github.com/cdanielmachado/carveme
https://gitlab.com/qtb-hhu/moped
https://github.com/kelwyres/Bactabolize
https://github.com/emmamglass/reconstructoris
https://github.com/AuReMe/aucome
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through the PyPi repository. It has a large set of tools for analyzing reconstructed models. It
should be noted that this workflow is under development and is not a finished version [82].

2.5. Web-Resources and Tools for Analysis of GSM Models

The most demanded resources for the analysis of GSM models are presented in Table 3.
These tools are essential for calculation and visualization of fluxes distribution on metabolic
networks predicted by different constraint-based methods. They also enable to conduct
in silico experiments that can simplify the procedure to explore potential targets of gene
manipulation at the systems level. This, in turn, may further scale the ability to synthesize
a product in the microbial host-chassis methanotrophs compared to in vivo experiments’
labor- and time-consumes.

Table 3. Tools for GSM model modification and optimization.

Program Tool Type Algorithms for Optimization Programs Availability Reference

COBRA Toolbox 3.0
https://github.com/opencobra/cobratoolbox Matlab package

FBA, pFBA, dFBA, dynamic
rFBA, geometricFBA,
relaxed FBA, FVA, MOMA,
ROOM, FASTCORE, thermo
FBA, looples FBA

Available, but needed
Matlab [86]

OptFlux
http://www.optflux.org GUI based program

FBA, pFBA, FVA, MOMA,
LMOMA, ROOM, MiMBL,
OptRAM, OptGene,
OptKnock.

Available [87]

MOST
http://most.ccib.rutgers.edu/ GUI based program FBA, FVA, E-Flux2, SPOT Available, but last

update 5 years ago [88,89]

In silico discovery
https://www.insilico-biotechnology.com/ GUI based program FBA, FVA Commercial

Fluxer
https://fluxer.umbc.edu/ Web-service FBA Available [90]

CAVE
https://cave.biodesign.ac.cn/ Web-service FBA, FVA Available [91]

Cobrapy
http://opencobra.sourceforge.net/ Python package

FBA, pFBA, dFBA, geometric
FBA,
relaxed FBA, FVA, MOMA,
ROOM, FASTCORE,
thermodynamic FBA, looples
FBA

Available [92]

cameo
http://cameo.bio. http://try.cameo.bio Python package FBA, FVA, OptKnock,

OptGene Available [93]

ReFramed
https://github.com/cdanielmachado/reframed Python package

FBA, FVA, pFBA, FBrAtio,
CAFBA, MOMA, lMOMA,
ROOM, looples FBA,
thermodynamic FBA, TVA,
NET, GIMME, E-Flux,
SteadyCom

Available [94]

Mewpy
https://github.com/BioSystemsUM/mewpy Python package

FBA, pFBA, FVA, MOMA,
LMOMA, ROOM, MiMBL,
OptRAM, OptGene,
OptKnock

Available [95]

PySCeS CBMPy
https://cbmpy.sourceforge.net/ Python package FBA, FVA Available [96]

CellNetAnalyzer (CNA)
https://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html

MATLAB toolbox
MFA, FBA, FVA, EFM, Yield
analysis, Strain optimization
(CASOP)

Available [97,98]

CNApy
https://github.com/cnapy-org/CNApy Python package

FBA, pFBA, FVA, EFM, Yield
optimization, Computational
strain design (OptKnock,
RobustKnock, OptCouple
and advanced Minimal Cut
Sets), OptMDFpathway,
thermodynamic FBA, phase
plane analysis

Available [99]

StrainDesign
https://github.com/klamt-lab/straindesign Python package

FBA, pFBA, FVA, OptKnock,
RobustKnock, OptCouple,
general minimal cut set
(MCS) approach, cRegMCS,
FOCAL, ModCell2

Available [100]

http://cameo.bio
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COBRA Toolbox (COnstraint-Based Reconstruction and Analysis) is one of the most
widely used tools for handling GSM models. It includes methods of reconstruction and
modeling, topological analysis, network visualization, as well as network integration of
metabolic, transcriptomic, proteomic and thermodynamic data [86]. It contains a set of
software available for use in the MATLAB program.

COBRApy is a software package for modeling represented by COBRA methods
and written in the Python programming language. Inheriting the many strengths of the
Python language, COBRApy provides the core capabilities of COBRA modeling and has
a dedicated module for interfacing with the COBRA Toolbox [92]. COBRApy makes it
possible to integrate models with databases and other data sources and does not require
commercial software such as MATLAB.

OptFlux is an open-source software written in the Java programming language.
Opflux is the first tool that to enable optimization problems aimed at identifying tar-
get genes and/or reactions for metabolic engineering using evolutionary algorithms or
the previously proposed OptKnock algorithm [87]. Due to their availability, it has become
possible to use stoichiometric metabolic models for a variety of tasks, including modeling
the organism’s phenotype using methods of flux balance analysis, minimizing metabolic
adjustment and its on/off regulation. One of the advantages of OptFlux is the presence of
a GUI interface, which considerably simplifies the user’s operation with a mathematical
model, unlike COBRA Toolbox and COBRApy, which require programming skills [101].

MEWpy is a software package for exploring the different classes of constraint-based
models, including metabolic, enzymatic and regulatory models. MEWpy is written in
the Python programming language by the developers of Optflux and allows the use of
different toolkits, such as GECKO [102] and OptRAM [103], to predict the phenotype of a
microorganism and optimize its growth. The advantage of MEWpy is the ability to work
with GSM models derived from COBRApy, which simplifies the process of optimization
and modification of the mathematical model [95].

MOST (Metabolic Optimization and Simulation Tool) is a software written in the
Java programming language, which, like Optflux, has a user-friendly GUI interface. Its
distinctive feature is the presence of a proprietary GDBB algorithm for searching for
gene knockouts to optimize the target product yield, as well as the E-Flux2 and SPOT
algorithms [104] to integrate transcriptomic data into a metabolic model with an easy-
to-use interface with functions editing like Excel. MOST has a reaction editor with a
built-in check for changes to prevent syntax errors when editing reaction equations, as
well as the ability to analyze the flux balance, their variability and visualize the resulting
calculations on a custom metabolic map represented as a graph of metabolic reactions [89].
The drawback of MOST is the lack of updates and development of the original version of
the product.

In silico discovery is a commercial software designed for the graphically oriented
reconstruction of constrained-based mathematical models, as well as their modification
and calculation. The program has a user-friendly interface, an extensive set of tools for
model reconstruction by integrating data from different databases and visual control over
all integrated reactions, and tools for model tuning and searching for problems associated
with the reconstruction, including various cycles, unused (dead-end) metabolites and
reactions. There are algorithms for model calculation and optimization, taking into account
its kinetic parameters, which makes it possible to expand the constrained-based model into
a dynamic one. The main disadvantage of the resource is its unavailability for academic
use and, more importantly, its own modeling format, which differs from the widely used
SBML (systems biology markup language) [84], which creates the problem of using existing
models and independent evaluation of modeling results.

CAVE is a web service for integrated calculation, visualization, research and correction
of metabolic pathways [91], which can analyze and visualize them for a large number of
genome-scale metabolic models using its own graph tool, similar to the analogous tool for
visualization in MOST and OptFlux. It has a user-friendly interface that allows editing
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model responses and the environment for growth when optimizing the model and the
cloud server, on which the calculations take place, making it easy to use without the need
to install any software or have your own computational capacity. The alternative web
application for computation and interactive visualization of fluxes distribution predicted by
FBA of GSM models, Fluxer, implemented in Python provides different ways for metabolic
network representations based on spanning trees, k-shortest paths and complete graphs [90].
Developers of the tool are planning to significantly improve the application capabilities to
customize FBA calculations and graph layouts beyond the used methods.

Cameo is a constraint-based modeling software package written in the Python pro-
gramming language [93], based on the previously described COBRApy package, with a
slightly different syntax. The package contains integrated OptKnock and OptGene mod-
ules, described in the MEWpy library and the OptFlux program, that solves problems
of biotechnological engineering, but it lacks evolutionary functions and tasks related to
co-optimization functions. It is possible to visualize the model on metabolic maps by inte-
grating the Escherpy library into Cameo, as well as a large set of tools for model analysis
and visualization.

ReFramed is a constraint-based modeling software package, also written in the Python,
which is the refactored version of the previous Frame package. It is based, as in the case of
Cameo, on COBRApy and the Escherpy visualization package. Initially, only commercial
solvers such as Gurobi and MBI CPLEX (under an academic license) were available for
model optimization, but now an Optlang module is available that allows one to connect
other solvers of his/her choice. There are tools for model analysis and the ability to
extend the model by integrating transcriptomic data with modules for reconstructing
context-specific models, such as GIMME and E-Flux (see description below). There is also
a module to optimize the analysis of SteadyCom community models [94].

PySCeS CBMPy is another constraint-based modeling package written in the Python,
which has modules for the classical analysis with FBA and FVA, as well as a multi-threaded
FVA variant block. It can significantly accelerate the analysis speed. This package is used
as a basis in such programs for reconstructing GSM models as FAME and MetaDraft [96].

CellNetAnalyzer is a toolbox written in MATLAB and provides various methods for
constraint-based metabolic modeling including metabolic flux analysis (MFA), FBA, flux
variability analysis (FVA) and elementary flux modes (EFMs). Moreover, the software
package via command line-based operations, or via interactive network maps, provides
powerful methods for computational strain design and metabolic engineering [97,98]. This
research group also developed several Python-based packages: CNApy, a GUI-featured
toolbox for metabolic modeling and design of metabolic networks [99], and StrainDesign,
a single Python platform with a comprehensive set of advanced methods for computational
strain design and optimization [100].

Thus, advances in computational methods and continuously developing tools for
FBA led to the GSM modeling approach that has become a guiding tool for cell factory
design. The diversity of tools and web sources for the analysis of GSM models provides a
broad feasibility for development of different metabolic engineering strategies depending
on biotechnological requirements and tasks. However, GSM models analyzed in the vast
majority of described software are still far from the real metabolic state of cells because
the stoichiometric dependencies alone cannot comprehensively reflect the relationships
between different metabolic fluxes considering a certain environmental condition that
can stimulate a particular regulatory mechanism on transcription or translation levels.
To overcome the limitation, a number of methods implemented in computational tools
have been proposed that take into account the specificity or context of the cellular state
on the different hierarchical levels via the integration of datasets generated by multiomics
measurement techniques.
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2.6. Tools for the Integration of Omics-Data into GSM Models

To date, a large number of programs and algorithms have been developed for the recon-
struction of context-specific GSM models. One of the first was the Akesson algorithm [105]
developed about 20 years ago. It was based on the deactivation of some reactions in the
model according to the level of gene expression. Subsequently, algorithms were developed
that employed other methods for reconstructing context-specific models and integrat-
ing transcriptomic data into GSM models. Among them are GIMME [13], iMAT [106],
MADE [107], INIT [108] and a number of others that have begun to be actively applied
for the reconstruction of context-specific GSM models. However, their efficiency was low,
comparable to the conventional pFBA optimization algorithm [109]. Thereafter, these
algorithms were modified, and more efficient variants of them have emerged, such as
GIM3E [110], tINIT [111], ftINIT [112] and TIGER [113], new algorithms have evolved the
emerging variety of algorithms, such as CADRE [114], CORDA [115], FASTCORE group
algorithms [116], deltaFBA [117] and a number of others.

A recent review [14] provides a detailed extended classification of algorithms for
reconstructing context-specific metabolic models. According to said review, contemporary
algorithms can be divided into four main groups:

• The GIMME-like group, where most of the methods of this group conduct reconstruc-
tion of metabolic models in two steps: the first step is the maximization of a required
metabolic functionality (RMF) based on the FBA (or similar) algorithm. The second
step is to minimize the penalty function describing the discrepancy between the ob-
tained reaction fluxes and the experimental data while maintaining the flux through
the RMF above the given flux fraction. As a rule, the pseudo-reaction of the biomass
equation is chosen as the RMF [14]. GIMME-like algorithms include GIMME [13],
GIMMEp [118], GIM3E [110] and RIPTiDe [119];

• The iMAT-like family of methods, in contrast to the group above, does not require
a precise definition of RMF. This group of algorithms is based on the classification
of reactions in the reference model as active or inactive in accordance with the cor-
responding states in the experimental data, on the basis of which the GSM model
is reconstructed. As a consequence, this approach requires that the experimental
data be categorized into two or more groups describing different states of the data
(e.g., low-expressed and high-expressed in the context of transcriptomics data) [14].
The algorithms of the iMAT-like group include: iMAT [106], INIT [108], ftINIT [112],
Lee [120] and RegrEx [121];

• The MADE-like methods rely on differential expression data in the process of GSM
models reconstruction. The last ones describe differences in metabolic fluxes be-
tween two contexts/conditions. Similar to the GIMME-like group, the preserva-
tion of the minimum flux value required for RMF is also taken into account in
these algorithms [14]. Algorithms of the MADE-like group include MADE [107],
RMetD2 [122] and deltaFBA [117];

• The MBA-like algorithms are based on the identification of key reactions and the
subsequent removal of reactions that are not part of the core set. Similar to the iMAT-
like group, MBA-like algorithms do not have the choice of selecting an RMF, nor do
they have the choice of maintaining the flux through it [14]. The MBA-like algorithms
include MBA [123] and mCADRE [114], as well as pymCADRE [124], the FASTCORE
algorithm group [116] and CORDA [115].

In addition to the algorithms described above, there are a number of others comprising
IgemRNA [125], TRFBA [126], E-Flux2 and SPOT [104], PROM [127] and the recently
published OVERLAY algorithm [128].

IgemRNA is a library for MATLAB that has a convenient GUI interface and allows
to use four methods for reconstructing context-specific models [125]. According to the
above classification, IgemRNA is difficult to assign to any group, due to the fact that
it uses the approaches of many of the described algorithms. TRFBA and PROM are
two similar algorithms that do not require a large amount of data and use transcriptomic
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data to update reaction boundaries, as well as to enable the identification of regulatory and
metabolic networks. These algorithms are based on the method for integrating regulatory
and metabolic networks, which are given gene expression data measured under different
cultivation conditions. At first, it generates a probabilistic model for constructing a gene
regulatory network, which is then integrated into the GSM model by setting flux boundaries
proportional to the associated probabilities. One of the shortcomings of these algorithms
is that they do not reconstruct the context-specific model, but only give the growth rate
after the introduction of constraints and new reaction boundaries [126,127]. According to
the classification described above, these algorithms can be classified as GIMME-like. The
E-Flux2 and SPOT methods are based on the fact that although the activity of enzymes
is not directly determined from the corresponding levels of expression, the latter can be
used as an upper bound of the reaction rate. Then, the expression level of each gene is
normalizing in the E-Flux2 algorithm by the maximum expression level of the same gene
in several experiments. The second algorithm, SPOT maximizes the correlation between a
flux vector and its corresponding gene expression data using the Pearson correlation. The
authors note that the SPOT algorithm is suitable for cases where the biomass equation is
unknown, while the RMF formulation is necessary for the E-Flux2 algorithm [104]. Thus,
the E-Flux2 algorithm can also be attributed to the GIMME-like group, and the SPOT
algorithm is more similar to the algorithms of the iMAT group. OVERLAY is also a new
algorithm based on the use of transcriptomic data for enzyme-constrained models. The
authors note the presence of shortcomings of modern algorithms associated with the need
to introduce a threshold from the user for expressed genes, as well as the division of
genes into highly expressed, medium and low expressed genes. This approach is not
suitable for all studied purposes, due to the fact that genes related to the biosynthesis of any
target product, e.g., may have a constantly low level of expression. OVERLAY proposes
approach that allows one to solve the described problems. Due to the peculiarities of using
the enzyme-constrained model, this algorithm should be considered separately from the
proposed classification [128].

Thus, the field of algorithms development for the reconstruction of context-specific
models is actively evolving. There are different groups of algorithms that have their own
advantages and disadvantages when dealing with certain types of data. So, according
to [14], GIMME-like algorithms cope better than others in the context of noise robustness for
integrating data, and MADE-like algorithms provide the ability to work with differentially
expressed genes, which is practically not available in other groups of algorithms. Most of
the algorithms for model reconstruction are designed to work with transcriptomic data,
but the use of proteomic data is also evolving. Examples of such algorithms are the above-
described GIMMEp, iMAT, MAD and tINIT, as well as GECKO3, GECKOpy [129] and
OVERLAY [128]. Moreover, not only are algorithms being developed, but also ways of
handling them and preparing data for integration. For example, the recently published
framework ssGSEAGEM [130] the authors hope to adapt to all existing algorithms for
reconstructing context-specific models and thereby unify and simplify the process of
reconstruction of such models.

Such an abundance of algorithms for the reconstruction of context-specific models
makes it possible to carefully select it for specific tasks. However, it should be noted that
most of the algorithms are implemented in the MATLAB language or made to work within
its environment, which requires a paid license subscription. In turn, when operating in
the Python programming language, which is open source and does not require, in most
cases, licensed products, the choice of algorithms is relatively small. They are presented in
Table 4.
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Table 4. Tools for the reconstruction of context-specific GSM models implemented in the Python.

Program Data Type Requirements Examples of Use

RIPTiDe
https://github.com/mjenior/riptide Transcriptomic GSM model, transcriptomics data file [119,131]

pymCADRE
https://github.com/draeger-
lab/pymCADRE/

Transcriptomic Metabolomic

GSM model, list of precursor
metabolites, confidence scores, list of
gene IDs for all genes in model, list of
ubiquity scores calculated for all genes
in model

[124,132]

Troppo
https://github.com/BioSystemsUM/troppo Transcriptomic GSM or enzyme-constrained model,

multi-omics datasets [133,134]

Geckopy3.0
https://doi.org/10.1101/2023.03.20.533446 Proteomic Enzyme-constrained model, kinetics

and omics data [129]

A new GIMME–Based method Transcriptomic GSM model, transcriptomics data file [135]

All the Python algorithms presented above have shown their effectiveness in recon-
structing particular context-specific models using omics data, but there is still no algorithm
that could use differential gene expression data to reconstruct such models. It should also
be noted that the possibility of refining model predictions is limited, despite the avail-
ability of programs for automatic reconstruction of GSM models in the Python, libraries
for their further modification and optimization, including co-optimization for complex
objective functions, which is an important step in tackling biotechnological problems. Fur-
thermore, there are not any context-specific GSM models constructed for methanotrophs
to the best of our knowledge. However, a large number of transcriptomic datasets has
been accumulated for diverse methanotrophs that are suitable for further integration into
previously developed GSM models (see review in [10,52,136–147]). Consequently, the
application of this advanced approach in constraint-based modeling of methanotrophic
metabolism could pave additional ways to novel and potentially transformative solutions
for C1-biotechnology in order to improve the competitiveness of methane-consuming
bacteria as microbial producers.

The use of Jupyter Notebook [148,149] or its analogues enables to build a full-value
pipeline, starting with the processing of transcriptomic data and annotation of the genome,
followed by the reconstruction of the constrain-based model at the genome scale level
and with the possibility of its extension to a context-specific model. Such unification
substantially simplifies the process of handling GSM models. Whereas the presence of
Jupyter widgets, for example, makes it possible to implement a simple but convenient
user interface, due to which it becomes feasible to check the reproducibility of modeling
results. Additionally, it provides the ability to analyze the model for users who do not have
programming skills to the proper degree.
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