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Plants harbour various microbial communities, including bacteria, fungi, actino-
mycetes, and nematodes, inside or outside their tissues. These microbial communities play
a significant role in growth promotion and provide protection from pathogen invasion and
different biotic and abiotic stresses [1]. The microbes that reside in the plant tissues without
apparent signs of infections are termed endophytes [2,3]. Technological advancements have
allowed us to determine that each plant has at least some endophytes in its life cycle [4,5].
The endophytes within the tissue share complex interactions and regulate the metabolic
activities of the host plants, which are required for optimum growth, development and
protection from stresses [5]. In general, the microbial endophytes commonly interact with
the host via mutualism, commensalism and opportunism. In the mutualistic relation, the
endophytes and the host plant benefit each other. Microbes fulfil the nutritional require-
ments and modulate phytohormones; in return, the plant provides the microbes with a
home and food [4].

The better colonization efficacy and acclimatizing potential against abiotic stress such
as salinity and drought make the endophyte the most promising microbial entity compared
to other microorganisms [6]. In the recent past, endophytic microbes, especially bacteria
and fungi, have frequently been utilized as microbial inoculants to enhance agricultural
productivity via various mechanisms such as phytohormone modulation, phosphate solu-
bilization, and nutrient acquisition [5,7]. In addition, the secretion of bioactive compounds,
antibiotics and siderophore products makes them suitable biocontrol agents [8]. However,
very few percentages of endophytic strains have been characterized and commercialized
in the wake of such technological advancements. Therefore, the functional biology and
hidden potential of endophytic microorganisms must be explored.

The Special Issue “Microbial Endophytes: Functional Biology and Applications” aims
to compile the latest research on endophytes, their significant contribution to sustainable
agriculture as biofertilizers and biocontrol agents and their role in abiotic stress manage-
ment and pharmaceutical industries, as well as in the synthesis of bioactive compounds.
This Special Issue contains six research papers and two review papers. The article led
by Semenzato et al. [9] analyses how the endophytic bacteria modulate the synthesis of
bioactive compounds and their antagonistic behaviour against opportunistic pathogens.
The authors briefly studied the genome sequence of endophytic strains Metabacillus dongyin-
gensis Priestia megaterium Paenibacillus xylanexedens Priestia megaterium isolated from the
Origanum vulgare L. Further in silico analysis identified the gene cluster responsible for
antimicrobial activity. In another study, Singh et al. [10] isolated eight endophytic bacterial
strains from the Momordica charantia L. root. All the strains showed plant growth promotion
ability and variably utilized carbon and nitrogen resources as substrates. In addition, some
strains, such as R1 and RS6, showed salinity tolerance of up to 10%, and most of the strains
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were resistant to different antibiotics. The isolated strains can be used as biofertilizers and
for abiotic stress management.

Ntana et al. [11] detailed the ways in which the secreted metabolites modulate the spe-
cific interaction between the endophytic strain Serendipita indicia and Solanum lycopersicum
and other microbes present in the niche. In brief, the sample plant Solanum lycopersicum
was inoculated with the spores of S. indica. Further, their inoculation effect was observed
by analysing the gene expression pattern of leaves and roots of endophyte-inoculated
plants through RNAseq analysis. The endophyte inoculation strongly induces the gene
responsible for synthesizing polyacetylenes and some specific terpenes. Further, another
study by Roodi et al. [12] reported two endophytic fungi Beauveria bassiana and Pseudogym-
noascus pannorum, which were inoculated into three different species of Brassica, namely
Brassica napus, Br. rapa and Br. Oleracea. The inoculation of the endophytic fungal strains
showed mutualistic behaviour with the host plant. It significantly inhibited the growth of
the pathogen Leptosphaeria maculans causal agent of phoma stem canker in Brassica.

In another published article, Chen et al. [13] evaluated the inoculation effect of Epichloë
endophyte in breaking dormancy of Achnatherum inebrians seeds. In the study, the authors
revealed that inoculation of endophytes significantly breaks the dormancy of A. inebrians
seeds and enhances their rate of germination. In addition, it also enhanced the total soluble
sugar and phytohormones such as indole-3-acetic acid and gibberellin in the treated seeds.
In another published article, Tufail et al. [14] reported a global meta-analysis of the effects
of endophyte inoculation on the morphological and physiological parameters of plants.
The analysis revealed that inoculation of bacterial endophytes significantly enhanced the
morphology, such as root and shoot length, number of leaves, antioxidative enzymes
and chlorophyll contents of the plants. It also maintained the ionic balance under saline
conditions. Furthermore, authors also observed that endophytes inoculation significantly
enhanced the growth and development of plants and mitigated the challenges of salinity
stress in salt-sensitive and salt-tolerant plants. However, the higher efficacy of endophyte
inoculation has been observed in the plants growing under salinity stress conditions.

Fernando et al. [15] briefly explored the interaction of the endophytic strain Epichloë
with the Pooidae grasses. They analysed the metabolic potential of host–endophyte in-
teractions and the crucial role of Epichloë in biotic stress management. This study shows
that Epichloë can be used as a natural biocontrol agent against different phytopathogens.
Finally, Verma et al. [16] reviewed the impact of salinity or drought stress on crop plants
and their mitigation strategies using endophytic microbial strains. The authors briefly
reported how abiotic stress, including draught or salinity, elevates the plant’s immune
response and releases reactive oxygen species. The generation of reactive oxygen severally
affects the morphological and biochemical aspect of plants, which ultimately leads to death.
The inoculation of endophytic strains modulates the phytohormones, quenches reactive
oxygen, protects the plants from abiotic stress and modulates the growth and development
of plants.

In conclusion, this Special Issue compiles works related to fundamental aspects of
microbial endophytes and their beneficial interactions with their plant hosts, providing
various services. There is no doubt that future inoculants will contain microbial endophytic
agents that will benefit the growth and production of various crops, contributing to world
food security and preserving a healthy agro-environment.
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