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Abstract: Multidrug resistance (Mdr) proteins are critical proteins for maintenance of drug resistance
in fungi. Mdr1 has been extensively studied in Candida albicans; its role in other fungi is largely
unknown. In this study, we identified a homologous protein of Mdr (AoMdr1) in the nematode-
trapping (NT) fungus Arthrobotrys oligospora. It was found that the deletion of Aomdr1 resulted in
a significant reduction in the number of hyphal septa and nuclei as well as increased sensitivity
to fluconazole and resistance to hyperosmotic stress and SDS. The deletion of Aomdr1 also led to
a remarkable increase in the numbers of traps and mycelial loops in the traps. Notably, AoMdr1
was able to regulate mycelial fusion under low-nutrient conditions, but not under nutrient-rich
conditions. AoMdr1 was also involved in secondary metabolism, and its deletion caused an increase
in arthrobotrisins (specific compounds produced by NT fungi). These results suggest that AoMdr1
plays a crucial role in the fluconazole resistance, mycelial fusion, conidiation, trap formation, and
secondary metabolism of A. oligospora. Our study contributes to the understanding of the critical role
of Mdr proteins in mycelial growth and the development of NT fungi.

Keywords: Arthrobotrys oligospora; multidrug resistance protein; fluconazole resistance; conidiation;
trap formation

1. Introduction

Currently, antibiotic resistance is a global problem in modern medicine. The cor-
nerstone of bacterial defense against antibiotics is the multidrug resistance pump, which
involves antibiotic resistance, toxin export, biofilms, and persistent cell formation [1]. Mul-
tidrug resistance (Mdr) proteins are ATP-binding cassette (ABC) transporters that play
key roles in mediating fungal resistance to pathogenesis-associated stress [2]. Mdr1 is
a membrane protein (efflux pump) responsible for the efflux of toxic substances that
resist the external environment [3]. The transcriptional activation of the drug-efflux-
encoding gene mdr1 is a common pathway for the acquisition of fluconazole resistance in
Candida albicans [4]. Overexpression of the mdr1 gene has been shown to be responsible
for fluconazole and panozole resistance in Candida tropicalis clinical isolates [5]. Similarly,
mdr1 expression was involved in the acquisition of azole resistance by Aspergillus flavus
and Aspergillus fumigatus [6,7]. In contrast, the absence of mdr1 in Cryptococcus gattii did not
affect fluconazole resistance or virulence [8]. However, little is known about the roles of
Mdr proteins in other fungi.

A predatory lifestyle is usually associated with animals such as eagles and wolves.
However, researchers have found that predatory behavior also occurs in microorganisms [9].
Among them, nematode-trapping (NT) fungi are a group of fungi that are widely dis-
tributed in multiple environments and play essential roles in regulating nematode pop-
ulations in soil [10]. NT fungi are capable of forming various trapping devices (traps)
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for nematode predation, including constricting rings and adhesive traps (adhesive nets,
adhesive columns, and non-constricting rings) [11]. Trap formation for nematode preda-
tion allows a parasitic lifestyle; therefore, it also signifies a lifestyle transition [9–12]. The
interactions between NT fungi and nematodes reflect a highly complex co-evolutionary re-
lationship that has been in existence for hundreds of millions of years [13]. For example, the
capacity of specific urea-releasing bacteria to induce the NT fungus Arthrobotrys oligospora
to produce traps for nematode predation has been shown to lead to a change in lifestyle [14].
A. oligospora is a typical species used to investigate nematode–fungal interactions. Under
nematodes and other stimulations, A. oligospora is able to form adhesive networks to feed
on nematodes [15]. In recent years, studies of the growth, development, and differentia-
tion of A. oligospora have gradually increased, demonstrating multiple signaling proteins
and cellular processes involved in the vegetative growth, conidiation, and trap forma-
tion of NT fungi, such as autophagy [16–18], peroxisomes [19,20], G-protein and related
signaling [21,22], and the AMPK [23] and MAPK pathways [24–26]. However, the function
of Mdr proteins in NT fungi remains largely unknown.

In this study, we identified an orthologous Mdr protein (AoMdr1) in A. oligospora. Its
gene was disrupted using a homologous recombination technique, and its functions in
fluconazole resistance, stress response, conidiation, and trap formation were characterized
using phenotypic analysis and non-targeted metabolomics.

2. Materials and Methods
2.1. Strains, Plasmids, and Growth Conditions

A wild-type (WT) strain of A. oligospora (ATCC24927) and mutant strains were main-
tained in a potato dextrose agar (PDA) medium at 28 ◦C. The pCSN44 plasmid was used
for the amplification of the hygromycin resistance gene (hph) preserved in Escherichia coli
strain DH5a (Takara, Dalian, China); the pRS426 plasmid was used for the construction of
the knockout vector [27]. The FY834 strain of Saccharomyces cerevisiae was used to construct
the homologous recombinant vector for the knockout of the Aomdr1 gene, which was
cultured in yeast extract–potato dextrose (YPD) (10 g/L yeast extract, 20 g/L peptone,
and 20 g/L dextrose) [28]. The FY834 strain with the correct vector was selected using an
SC-Ura medium (2 g/L synthetic drop-out mix minus uracil without a yeast nitrogen base,
26.7 g/L drop-out base with glucose, and 20 g/L agar). In the regeneration of protoplasts,
a PDAS medium (PDA supplement with 0.6 M of sucrose) was used to select the putative
transformants [23]. Caenorhabditis elegans was incubated in an oatmeal–water medium at
room temperature for the bioassay. A. oligospora, S. cerevisiae, and C. elegans were obtained
from the Microbial Library of the Germplasm Bank of Wild Species from Southwest China.

2.2. Sequence and Cluster Analysis of AoMdr1

The A. oligospora Mdr1 protein AoMdr1 (AOL_s00215g705) was identified based
on the orthologs in the model fungi Aspergillus nidulans (Q9Y8G1.1) and A. fumigatus
(KAF4260332.1). The isoelectric point and molecular weight of AoMdr1 were analyzed
using the pI/Mw online tool (http://www.expasy.ch/tools/pi_tool.html) (accessed 20
March 2023). The conserved domains were predicted using the Interproscan website.
We used DNAman software (version 6; Lynnon Biosoft, San Ramon, CA, USA) for a
comparison of the sequence similarities of the Mdr1 orthologs from different fungi [29]. A
phylogenetic tree was constructed using the neighbor-joining (NJ) method using MEGA
software (version 7) [30].

2.3. Deletion and Verification of Aomdr1

In this study, we disrupted Aomdr1 using a homologous recombination technique
and the hph resistance gene. We replaced the Aomdr1 gene, as has been previously de-
scribed [31]. The primer pair of AoMdr1-5F/5R and AoMdr1-3F/3R (Table S1) was used for
the amplification of the upstream and downstream homologous arms; primer Hph5F/3R
was used for the amplification of the hph gene, using pSCN44 as the template. The result-
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ing three PCR fragments and the EcoRI/XhoI linearized vector pRS426 were transformed
into FY834 strains using the PEG/CaCl2-mediated transformation method. These were
inoculated in the SC-Ura medium for the selection of the recombinational strains. Finally,
the recombinant vector was selected to amplify the full-length disruption fragment using
AoMdr1-5F/3R (Table S1). The full-length fragment was transformed into protoplasts of
A. oligospora and selected using a PDAS medium containing 200 µg mL−1 hygromycin B, as
has been previously described [31]. A double validation of the transformants using PCR
amplification and quantitative reverse transcription PCR (RT-qPCR) was performed to ob-
tain positive transformants. Primers AoMdr1-PF and AoMdr1-PR (Table S1) were designed
and used for the PCR amplification. In the RT-qPCR analysis, the total RNAs of the WT
and the positive transformants were extracted using a Trizol reagent (Invitrogen, Carlsbad,
CA, USA), and a PrimeScript RT reagent kit (Takara, Shiga, Japan) was used for the reverse
transcription. The relative level of transcription for each gene was calculated using the
threshold cycling method (2−∆∆CT), with the β-tubulin gene as an internal reference [32,33].

2.4. Comparison of Mycelial Growth and Cell Nuclei

Both the WT and mutant strains were inoculated in three media—PDA, TG, and
TYGA—and the colony diameters were recorded for a comparison of the mycelial growth
rates at 24 h intervals [34]. The mycelia were collected from the PDA culture for 5 days at
28 ◦C; 20 µg/mL calcofluor white (CFW, Sigma-Aldrich, St. Louis, MO, USA) was used
for the staining to observe the mycelial morphology and septa. The mycelia were stained
with 20 µg/mL 4’,6-diamidino-2-phenylindole (DAPI, Sigma, St. Louis, MO, USA) for
15 min and observed using inverted fluorescence microscopy (Carl Zeiss, Oberkochen,
Germany) [35]; 50 photos were randomly taken for cell nucleus counting.

2.5. Observation of Mycelial Fusion and Lipid Droplet (LD) Accumulation

To examine the effect of Aomdr1 on the mycelial fusion phenomenon, the WT and
∆Aomdr1 mutants were inoculated in a nutrient-deficient water agar (WA) medium (20 g/L
agar), a minimal medium (MM) (0.01 g/L FeSO4·7 H2O, 2 g/L NaNO3, 20 g/L glucose,
and 20 g/L agar), a nutrient-rich PDA medium, and WA + N (WA supplemented with
300 nematodes) for 5 days. The mycelia were then stained with 20 µg/mL CFW [33]. The
mycelia were also stained with 10 µg/mL boron dipyrromethene dye (BODIPY, Sigma-
Aldrich); after 5 days of PDA incubation, the mycelial sample was then observed using
inverted fluorescence microscopy.

2.6. Stress Response Assays

The stress responses of the WT and ∆Aomdr1 mutants to chemical stressors were
assessed in a TG medium supplemented with a cell-wall-perturbing agent (sodium dodecyl
sulfate (SDS)) and osmotic agents (NaCl and sorbitol) for 5 days at 28 ◦C [36]. To test
the fungal response to heat shock, the fungal strains were incubated on a TYGA plate
for 2 days, then transferred into 28, 32, 36, and 40 ◦C conditions, respectively, for 6 h
post-incubation, then moved to 28 ◦C conditions to continue incubation for a total of
5 days [37]. To investigate the tolerance of AoMdr1 to fluconazole (Flc), the PDA medium
was used as a control and different concentrations of Flc solution (10, 20, and 30 µg/mL)
were added to the PDA for the growth observations of the WT and mutant strains. The
relative growth inhibition (RGI) values of the fungal strains were calculated, as has been
previously described [38]. The assays for each strain were repeated three times.

2.7. Comparison of Conidial Production, Trap Induction, and Bioassay

To compare the sporulation abilities of the WT and ∆Aomdr1 mutants, all strains were
cultured in a corn meal–yeast extract (CMY) medium at 28 ◦C for 14 days. The spores were
eluted with 20 mL of sterile distilled water, filtered, and counted using a microscope [39].
The spores were stained with 20 µg/mL CFW, and the spore morphology was observed
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using inverted fluorescence microscopy [40]; 30 photos were randomly obtained for the
morphological statistics.

To induce trap production, approximately 2 × 106 conidia of the WT and mutant strains
were added to 6 cm WA plates for germination. After 3 days of growth, approximately 300
of C. elegans were added to each plate to induce trap production [25]. After the addition of
the nematodes, the nematode mortality and the number of traps in the plates were counted
at 12 h intervals. Three replications of each strain were performed. To detect protease
activity, the WT and ∆Aomdr1 mutants were inoculated in potato dextrose (PD) broth. The
fermentation broth was collected after incubation at 28 ◦C and 180 rpm for 7 days; casein
plates were used for the protease activity assay [41].

2.8. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Assays

The WT and mutant strains were inoculated on CMY plates (for mycelial and spore
observation) and grown for 5 days. The mycelia were collected for SEM observation [42].
The LDs in the mycelia were observed using TEM for all strains, which were incubated
on PDA plates for 5 days [15]. To compare the trap morphology, 2 × 106 conidia of WT
and mutant strains were incubated on WA plates for 3 days and 300 nematodes were
added to induce growth over 48 h. The mycelia and traps were then collected for SEM
observation [42].

2.9. Metabolomics Profile Analysis

PD broth fermentation was obtained from the WT and ∆Aomdr1 mutants after incuba-
tion for 7 days. The hyphal dry weight was recorded, and equal volumes of ethyl acetate
were added, mixed, and then ultrasonicated twice (20 min/time). The liquid-phase layer
of the ethyl acetate was spun using a spinner, and chromatographic-grade methanol was
used to dissolve the compounds, which were filtered through a 0.22 µm membrane filter
and then analyzed with LC-MS [43]. Compound Discoverer 3.0 software (Thermo Fisher
Scientific, Miami, FL, USA) was used for the analyses of different compounds in all strains.
Thermo Xcalibur software (version 3.0, Thermo Fisher Scientific) was used for a comparison
of the total metabolic profiles of all strains [44].

2.10. Statistical Analysis

All experimental data were obtained by repeating the measurements three times,
and the data were statistically analyzed (one-way ANOVA) using Prism 8.0 (GraphPad
Software, San Diego, CA, USA). Data were considered to be significantly different if
p < 0.05.

3. Results
3.1. Sequence and Phylogenetic Analyses of AoMdr1

Aomdr1 encoded a polypeptide, containing 1343 amino acid residues, with an isoelec-
tric point of 6.26 and a molecular mass of 143.84 kDa. A phylogenetic tree was constructed
based on the amino acid sequences of Mdr1 homologs from ten fungal species, including
A. oligospora, using the NJ method. These Mdr1 homologs were divided into two clades,
and AoMdr1 and orthologs from five other NT fungi were clustered into a single clade
(Figure S1A). Mdr1 homologs from different filamentous fungi shared two ABC_tran and
two ABC_membrane structural domains. AoMdr1 had a high degree of similarity with
orthologs from the four NT fungi Arthrobotrys flagrans (95.9%), Dactylellina haptotyla (87.9%),
Arthrobotrys entomopaga (84.4%), and Drechslerella brochopaga (84.6%). It had moderate simi-
larity (57.4% to 60.1%) with the orthologs of other filamentous fungi such as A. nidulans
(58%) and A. fumigatus (57.4%) (Figure S1A).

3.2. AoMdr1 Plays a Vital Role in Hyphal Septa and the Number of Cell Nuclei

Two positive transformants were obtained using the homologous recombination
method, as shown in Figure S1B. These were verified with PCR and RT-qPCR methods
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(Figure S1C,D). The colonies of ∆Aomdr1 mutants were slightly larger than those of the WT
in all three media (PDA, TG, and TYGA), especially in the TYGA medium (Figure 1A,B).
The mycelial septa of the mutants were considerably greater than those of the WT strain
(Figure 1C,D). The mycelial cells of the WT strain contained 3–16 nuclei (9.86 on average),
whereas those of the mutant strain contained 1–13 nuclei (5.24 on average) (Figure 1E,F).

Microorganisms 2023, 11, x FOR PEER REVIEW 5 of 14 
 

 

ABC_tran and two ABC_membrane structural domains. AoMdr1 had a high degree of 
similarity with orthologs from the four NT fungi Arthrobotrys flagrans (95.9%), Dactylellina 
haptotyla (87.9%), Arthrobotrys entomopaga (84.4%), and Drechslerella brochopaga (84.6%). It 
had moderate similarity (57.4% to 60.1%) with the orthologs of other filamentous fungi 
such as A. nidulans (58%) and A. fumigatus (57.4%) (Figure S1A). 

3.2. AoMdr1 Plays a Vital role in Hyphal Septa and the Number of Cell Nuclei 
Two positive transformants were obtained using the homologous recombination 

method, as shown in Figure S1B. These were verified with PCR and RT-qPCR methods 
(Figure S1C,D). The colonies of ∆Aomdr1 mutants were slightly larger than those of the 
WT in all three media (PDA, TG, and TYGA), especially in the TYGA medium (Figure 
1A,B). The mycelial septa of the mutants were considerably greater than those of the WT 
strain (Figure 1C,D). The mycelial cells of the WT strain contained 3–16 nuclei (9.86 on 
average), whereas those of the mutant strain contained 1–13 nuclei (5.24 on average) (Fig-
ure 1E,F). 

 
Figure 1. Comparisons of mycelial growth, septa, and nuclei of the WT and ∆Aomdr1 mutants. (A) 
Colony morphologies of fungal strains cultured at 28 °C for 5 days. (B) Comparisons of mycelial 
growth rates. (C) Observations of mycelial septa on PDA plates. White arrows indicate mycelial 
septa; scale bar: 2 μm. (D) Comparison of mycelial cell lengths. (E) Mycelial cell nuclei on PDA 
plates; scale bar: 2 μm. White arrows indicate mycelial septa and red arrows indicate nuclei. (F) 
Comparison of the number of nuclei. Asterisks indicate significant differences between the ∆Aomdr1 
mutant and WT strains (Tukey HSD, * p < 0.05). 

3.3. AoMdr1 Regulates LD Accumulation and Hyphal Fusion under  
Nutrient-Deprived Conditions 

After staining with BODIPY dye, the volume of the LDs in the mutants became 
smaller than in the WT strain (Figure 2A,B). The TEM images also proved that there was 
a greater LD accumulation in the WT strain than in the ∆Aomdr1 mutants (Figure 2A). The 
CFW staining results show that the deletion of the Aomdr1 gene resulted in impaired my-
celial fusion, which was related to the different media. On the nutrient-deficient WA and 
MM media plates, the mycelial fusion of the ∆Aomdr1 mutants was significantly lower 
than that of the WT strain; however, in the nutrient-rich PDA and WA + N plates, the 
mycelial fusion of the ∆Aomdr1 mutants was not obviously different from that of the WT 
strain (Figure 2C,D). 

Figure 1. Comparisons of mycelial growth, septa, and nuclei of the WT and ∆Aomdr1 mutants.
(A) Colony morphologies of fungal strains cultured at 28 ◦C for 5 days. (B) Comparisons of mycelial
growth rates. (C) Observations of mycelial septa on PDA plates. White arrows indicate mycelial
septa; scale bar: 2 µm. (D) Comparison of mycelial cell lengths. (E) Mycelial cell nuclei on PDA
plates; scale bar: 2 µm. White arrows indicate mycelial septa and red arrows indicate nuclei.
(F) Comparison of the number of nuclei. Asterisks indicate significant differences between the
∆Aomdr1 mutant and WT strains (Tukey HSD, * p < 0.05).

3.3. AoMdr1 Regulates LD Accumulation and Hyphal Fusion under
Nutrient-Deprived Conditions

After staining with BODIPY dye, the volume of the LDs in the mutants became smaller
than in the WT strain (Figure 2A,B). The TEM images also proved that there was a greater
LD accumulation in the WT strain than in the ∆Aomdr1 mutants (Figure 2A). The CFW
staining results show that the deletion of the Aomdr1 gene resulted in impaired mycelial
fusion, which was related to the different media. On the nutrient-deficient WA and MM
media plates, the mycelial fusion of the ∆Aomdr1 mutants was significantly lower than
that of the WT strain; however, in the nutrient-rich PDA and WA + N plates, the mycelial
fusion of the ∆Aomdr1 mutants was not obviously different from that of the WT strain
(Figure 2C,D).

3.4. AoMdr1 Afects the Stress Responses of Fluconazole and Chemical Reagents

A comparison of the resistance to fluconazole showed that the ∆Aomdr1 mutants were
more sensitive than the WT strain. Specifically, the RGI values of the ∆Aomdr1 and WT
strains were 59.6% and 42.8%, respectively, under the Flc treatment at a concentration of
10 µg/mL and 69.7% and 49.8%, respectively, under the Flc treatment at a concentration
of 20 µg/mL (Figure 3A,B). Under NaCl and sorbitol treatments, the ∆Aomdr1 mutants
showed reduced RGI values compared to the WT strain. The RGI values of the ∆Aomdr1
and WT strains were 21.4% and 45.2%, respectively, under the 0.2 M NaCl treatment and
23.1% and 75.5%, respectively, under the 0.5 M sorbitol treatment (Figure 3C,D). The mutant
strains showed higher RGI values in the ∆Aomdr1 mutants than in the WT strain under
SDS stress; for example, the RGI values of the ∆Aomdr1 and WT strains were 80.7% and
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54.4%, respectively, under the 0.02% SDS treatment (Figure 3C,D). The TEM picture showed
that the mycelial cells of several mutant strains demonstrated plasma-wall separation
(Figure S2A). The mutant strains became more sensitive under a stress of 40 ◦C, whereas
there was no significant difference at 32 or 36 ◦C (Figure S2B).
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(A) LD accumulation in mycelial cells was observed with BODIPY staining (upper pane) and TEM
images (lower pane). L indicates LDs; scale bar: 5 µm. (B) BODIPY staining of LDs in conidia; scale
bar: 10 µm. (C) Observation of hyphal fusion in WA plates. The red arrows indicate the hyphal
fusion sites; scale bar: 5 µm. (D) Comparison of the number of hyphal fusion sites under different
media. The WT and mutant strains were observed using CFW staining for hyphal fusion after 5 days
of incubation in PDA, WA, MM, and WA + N media, and 30 random photographs were used to count
the number of hyphal fusion sites. The representative images in (A–C) were chosen from ∆Aomdr1-1
and ∆Aomdr1-2 mutants. Asterisks indicate significant differences between the ∆Aomdr1 mutant and
WT strains (Tukey HSD; *** p < 0.001).

3.5. AoMdr1 Impairs Sporulation and Spore Morphology

The deletion of Aomdr1 did not alter the production of conidiophores in the ∆Aomdr1
mutants (Figure 4A), whereas the spore morphology was deformed (Figure 4B,C). Of the
∆Aomdr1 mutant spores, 46.3% were deformed in the ∆Aomdr1 mutants and 13.2% were
deformed in the WT strain (Figure 4D). The conidia yield was considerably reduced to
85,000 spores per mL for the ∆Aomdr1 mutants and 136,000 spores per mL for the WT strain
(Figure 4E).
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Figure 4. Comparisons of sporulation and spore morphology. (A) Observation of conidiophores of
∆Aomdr1 mutant and WT strains; scale bar: 50 µm. (B) CFW staining of spores of the ∆Aomdr1 mutant
and WT strains; scale bar: 10 µm. The black arrows indicate the conidia. (C) SEM observations of
spore morphologies of ∆Aomdr1 mutant and WT strains. The representative images in (B,C) were
chosen from ∆Aomdr1-1 and ∆Aomdr1-2 mutants. (D) Comparison of the spore yield between the
mutant and WT strains. (E) Percentages of normal and abnormal spores. A total of 100 random
spores were used to calculate the ratio of normal and abnormal spores. Asterisks indicate significant
differences between the ∆Aomdr1 mutant and WT strains (Tukey HSD; * p < 0.05).
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3.6. AoMdr1 Regulates the Number of Traps and Trap Morphology

At different times in nematode induction, both the WT and mutant strains were
able to form traps to capture the nematodes. The traps produced by the ∆Aomdr1 mutants
contained greater numbers of mycelial loops (Figure 5A). The numbers of traps produced by
the ∆Aomdr1 mutants were higher than those produced by the WT strain at all time points.
There were 7.5 and 13.4 traps per field of view at 12 h for the WT and ∆Aomdr1 mutants,
respectively, and 14.2 and 19.9 traps, respectively, per field of view at 24 h (Figure 5B),
whereas there was no obvious difference in nematode mortality between the ∆Aomdr1
mutant and WT strains at 12 or 24 h (Figure 5C). The extracellular proteolytic activity of
the ∆Aomdr1 mutants was lower than that of the WT strain (Figure S2C).
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3.7. AoMdr1 Impairs Secondary Metabolites

The compounds of the WT and mutant strains were extracted and analyzed us-
ing LC-MS. The metabolic profiles of the WT and mutant strains showed no obvious
changes (Figure 6A), whereas the volcano plot of the metabolic data analysis revealed that
418 compounds were downregulated and 445 compounds were upregulated in the ∆Aomdr1
mutants compared to in the WT (Figure 6B). A KEGG enrichment analysis of the differen-
tial compounds showed that 259 compounds were mainly enriched in various metabolic
pathways (Figure 6C); these compounds were mainly distributed in the biosynthesis of
secondary metabolites, alkaloids, and antibiotics as well as phenylalanine metabolism and
ubiquinone and other terpenoid quinone. A quantitative analysis of arthrobotrisin was
also performed; its content in the ∆Aomdr1 mutants increased by 32% compared to in the
WT (Figure 6D).
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4. Discussion

Mdr proteins are critical for pathogenic fungi to be capable of drug resistance. They
contain both ABC_tran and two ABC_membrane structural domains in different fungi [2] as
well as high similarities in protein sequences, indicating that they are extremely conserved
in different fungi. Previous studies have shown that Mdr1 is not only involved in drug
resistance but also in regulating the pathogenicity of fungi; it has an important role in
growth, development, and adaptation to stressful environments [45–47]. In this study,
an orthologous Mdr protein, AoMdr1, was identified in the NT fungus A. oligospora, and
its function was investigated. Our results show that AoMdr1 has important regulatory
roles in mycelial growth, fusion, stress tolerance, LD accumulation, sporulation, and
trap formation.

Cell-to-cell communication is essential for the formation of multiple connected fila-
mentous fungi that build colony structures by fusion of hyphae or conidia [48]. Fusion
is a highly dynamic and regulated process, and cellular communication regulates it [49].
The trap formation of A. oligospora initially involves annular structures, of which multiple
are gradually formed and combine to form a three-dimensional adhesive network; the
combination of these annular structures is closely linked to their mycelial fusion with each
other [50]. Recently, we observed that the transcription factor Ste12 is required for mycelial
fusion in A. oligospora, and that Fus3-MAPK and five other proteins (Mdr1, Mae1, Vps18,
Ubx5, and UDP-glycosyltransferase) could interact with Ste12 [51]. In this study, the dele-
tion of Aomdr1 caused a reduction in mycelial fusion under nutrient-deficient conditions.
Our results are similar to those for Aomae1; the deletion of Aomdr1 also reduced mycelial
fusion in nutrient-deficient media, whereas the fusion was unaffected in nutrient-rich
media [33]. These similar results may indicate that AoMdr1 and AoMae1 are consistent
in their regulation of mycelial fusion, both having a regulatory effect on mycelial fusion
under low-nutrient conditions, suggesting that nutrients play a vital role in mycelial fusion
under nutrient-deficient conditions.

In the present study, the disruption of the Aomdr1 gene affected the mycelial growth
and stress response of A. oligospora. The ∆Aomdr1 mutants showed faster growth compared
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to the WT strains in the PDA, TG, and TYGA media. The ∆Aomdr1 mutants also showed
a degree of resistant growth under hyperosmotic stress and were more sensitive after
the Flc and SDS treatments. It had previously been determined that Flc resistance in
C. albicans occurs due to Mdr1 activation by the green fluorescent protein (GFP)-labeling
of the Mdr transporter protein [52]. Overexpression of mdr1 has induced high-level Flc
resistance in C. tropicalis clinical isolates [5]. Upregulation of mdr1 expression has also been
particularly important in the azole resistance of Candida auris [53]. In Cryptococcus gattii
and C. neoformans, the Mdr1 efflux pump was strongly associated with azole resistance [54].
These similar results illustrate the involvement of AoMdr1 in regulating the Flc resistance
and stress response of A. oligospora.

Previous studies have suggested that shortened cell length and increased LD accumu-
lation are closely related to trap formation [33]. In this study, the deletion of Aomdr1 caused
a considerable increase in mycelial septa and shortened the cell length in the mutant strain,
which led to accelerated and increased trap formation in the ∆Aomdr1 mutants. These
results are consistent with those for AoMae1 and indicate that the disruption of Aomdr1
caused a significant shortening in cell length, further affecting the formation of traps. LDs
are central organelles for lipid and energy conversion, and their biogenesis and degradation
are closely related to levels of cellular metabolism [55]. The nucleus is the control center for
all cellular life activities. In this study, we also detected a reduction in LD accumulation and
a decrease in the number of nuclei. These results suggest that AoMdr1 has critical functions
in septum distribution, nuclei formation, and lipid metabolism, resulting in regulation of
the mycelial development and trap formation of A. oligospora.

ABC transporters contribute, in different respects, to antioxidant capacity; several of
them are necessary for the full virulence of Beauveria bassiana [47]. Importantly, the deletion
of the Aomdr1 gene in this study resulted in a significant increase in the number of traps, and
the traps produced by the ∆Aomdr1 mutants contained greater numbers of mycelial loops.
The nematode predation efficiencies of the ∆Aomdr1 mutants showed no obvious changes,
suggesting that trapping nematodes requires the involvement of not only traps but also
sticky substances on the surfaces of the traps, as well as extracellular proteases. Disruption
of Aoste12 has caused a significant increase in numbers of mycelial loops in traps, but has
decreased numbers of traps [51]. The absence of AoMae1, another protein that interacts
with AoSte12, has led to increases in the numbers of traps and the numbers of mycelial
loops [33]. These results indicate that deletion of Aoste12 and interacting genes triggers an
increase in the number of mycelial loops contained in traps, suggesting that these factors
regulate trapped mycelial loops in a similar way. The differences in the numbers of traps
appear to indicate that the three genes have different roles in trap formation.

Conidiation is important for the survival and pathogenicity of NT fungi [37]. The
conidial production of the ∆Aomdr1 mutants decreased by 37.5%; 33.1% of the conidia
were deformed in the ∆Aomdr1 mutants, which is consistent with the variations in spore
production and morphology caused by Aoste12 deletion. This further suggests that Aomdr1
may be a downstream target gene of Aoste12, and that Aomdr1 is closely related to conidia
formation. The metabolomic analysis showed that 863 compounds appeared to be differ-
entially expressed in the ∆Aomdr1 mutants, and the content of arthrobotrisins increased
by 32%. Arthrobotrisins are a special group of metabolites identified from A. oligospora
and other NT fungi and are involved in mycelial development and trap formation [56,57].
Thus, we concluded that AoMdr1 plays a crucial role in the conidiation and secondary
metabolism of A. oligospora.

5. Conclusions

Our results show that AoMdr1 contributes to the fluconazole resistance of A. oligospora
by regulating cell membrane transport, thus enabling it to respond to osmotic stress. It also
impairs LD accumulation, cell septa, nuclei, and mycelial fusion, leading to changes
in conidial production and morphology. It is also involved in the trap formation of
A. oligospora. In summary, our study revealed, for the first time, the roles of AoMdr1
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in mycelial development, fluconazole resistance, conidiation, and the trap formation of
A. oligospora, providing insight into the role of Mdr proteins in filamentous fungi.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11061612/s1, Figure S1. Phylogenetic analysis
and validation of Aomdr1 knockout strain. Figure S2. Comparison of plasma-wall separation, stress
response to heat shock, and extracellular proteolytic activities of WT and mutant strains. Table S1.
List of primers used in this study. Table S2. Information on the plasmids used in this study.
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