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Abstract: Leptospirosis has been identified as a zoonotic disease caused by pathogenic spirochetes of
the bacterial genus Leptospira. Rodents are considered the primary hosts of these bacteria, whereas
many recent studies suggest that bats may serve as potential natural reservoirs. However, studies
on pathogenic spirochetes hosted by bat populations still need to be completed in China. In this
study, a total of 276 bats belonging to five genera collected in Yunnan Province (Southwest China)
from 2017 to 2021 were included in the screening. Pathogenic spirochetes were detected by PCR
amplification and sequencing targeting four genes (rrs, secY, flaB, and LipL32), resulting in 17 positive
samples. Phylogenetic analysis based on multi-loci concatenated sequences, inferred by MLST
approach, identified the strains as two novel Leptospira species within the pathogenic group. Of note,
only Rousettus leschenaultii was found to harbor these spirochetes, suggesting it may be one of the
potential natural reservoirs in circulating leptospires in this region. Nevertheless, the pathogenesis
and transmission dynamics still need to be fully understood, requiring in-depth studies on other
animals and the surrounding population.
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1. Introduction

Leptospirosis, a re-emerging disease caused by infection with pathogenic spirochetes
of the genus Leptospira, is estimated to annually affect more than 1 million people resulting
in approximately 60,000 deaths [1–4]. The disease is a worldwide infection with a much
greater incidence in tropical and subtropical countries, and China is one of the major
endemic areas [5–7]. The incidence of leptospirosis varies among different provinces in
China, with an overall incidence of 2.5018/100,000 in Yunnan Province between 2007
and 2018 [8]. Currently, at least 64 species and 250 serovars of Leptospira have been
recognized [5,9,10]. Based on pathogenicity and genetic clustering, the genus can be divided
into three lineages—pathogenic, intermediate, and saprophytic groups [1,6,11]. Among
these, L. interrogans, L. borgpetersenii, and L. kirschneri, which cluster into the pathogenic
group, are the main causative agents of leptospirosis for zoonotic infection [12,13]. Besides,
new species within the pathogenic group have been discovered in soil and water; however,
their pathogenicity remains unclear [9,14,15].

The role of small mammals as the most critical reservoir hosts and vectors for transmit-
ting leptospirosis cannot be ignored [2,6,7]. To date, more than 200 species of animals have
been identified as hosts of leptospires worldwide, including mammals such as rats, dogs,
cattle, pigs, horses, and sheep [1,16]. Of these, rats are considered the primary reservoirs of
pathogenic Leptospira [2,6]. However, Leptospira spp. has been detected in over 50 species
of the order Chiroptera in tropical and subtropical regions and parts of Europe, suggesting
that bats can be the natural reservoirs of these zoonotic microorganisms [17–26]. In China,
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several studies have corroborated that bats harbored these bacteria [27,28]. However, little
is known about the maintenance and transmission of pathogenic leptospires among bats,
and their correlation with human leptospirosis.

Leptospires can enter through mucous membranes or open skin wounds and then
migrate rapidly to tissues and organs within their hosts, including livers, lungs, and
kidneys [2,29,30]. The pathogens are usually colonized in the kidneys of infected mammals,
which may cause them to excrete with host urine for days or even months [29–32]. Humans
and animals are mostly infected through direct contact with the excretion of infected
animals or the leptospires-contaminated environment [5,6]. The clinical manifestations of
leptospirosis vary in severity and complexity, with symptoms such as diffuse pulmonary
hemorrhage, jaundice, and renal failure occurring with prolonged infection [4,6,33,34].

Leptospira spp. can be identified at the species level by phylogenetic analysis of the
initial region of the 16S ribosomal gene (rrs); however, it is impossible to distinguish some
species by this gene [35]. Indeed, Multilocus sequence typing (MLST) is the choice for
genotyping many bacterial pathogens (including Leptospira) because of its well-inferred
evolutionary history that can be more accurate than single-locus analyses [36–38]. Previ-
ously, house-keeping genes such as preprotein convertase gene (secY), outer membrane
lipoprotein gene 32 (LipL32), and outer membrane lipoprotein gene 41 (LipL41), were se-
lected to compose the MLST schemes for inferring the genetic clustering of pathogenic
Leptospira species, especially L. interrogans, L. noguchii, and L. kirschneri [36,39,40]. The
multiple advantages of generating sequences from different genes at a high throughput
scale allow for defining the novel species effectively; besides, they are suitable for studies
regarding both intra-species and inter-species relationships of the genus [36].

Yunnan province in southwestern China is characterized by high levels of bat biodi-
versity [41]. Recently, a large number of pathogens, including some zoonotic viruses and
bacteria with public health threats, have been identified in bats in Yunnan [42,43]. To date,
however, studies on pathogenic spirochetes in bat populations are limited. Accordingly,
we investigated the pathogenic Leptospira carried by bats collected in Yunnan, aiming to
provide a more solid understanding of leptospirosis in bats and public health issues.

2. Materials and Methods
2.1. Ethics Statement

The protocols for sampling and handling used in this study were reviewed and ap-
proved by the Medical Ethics Committee of the Yunnan Institute of Endemic Disease
Control (File No. 20160002). The Yunnan Institute of Endemic Disease Control and Pre-
vention Biosafety Committee approved all experiments. All experimental operations were
performed in biosafety cabinets in compliance with biosafety regulations.

2.2. Bat Sample Collection

Five sites in Yunnan Province were selected for sampling, labeled WD, ML, CX, NJ,
and JP (Figure 1A). Between 2017 and 2021, sticky nets were set up around the orchards
and caves, and the bats were promptly removed after being stuck. The captured bats were
initially identified based on morphological traits, and the location and date information was
recorded. The bats were anesthetized with ether and dissected in a biosafety cabinet. Kidney
tissues were collected and placed in liquid nitrogen, transported back to the laboratory, and
stored at −80 ◦C until further experiment.
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species contribution of five sampling sites. Each color represents a different bat species, and the bar 

chart shows the species composition and abundance of bats; (C) Phylogenetic tree of bats. The tree 

was reconstructed based on the partial nucleotide sequences (658 bp) of the bat COI gene using the 

Maximum-likelihood (ML) method. Different colors indicate bats collected from five sampling sites 

and the same as (A). 
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Figure 1. Overview of geographic distribution and species identification of bats in this study.
(A) Geographic distribution of bats in Yunnan Province. Different colors indicate bats collected
from five sampling sites, including CX (red), JP (blue), ML (purple), WD (yellow), and NJ (green);
(B) Bat species contribution of five sampling sites. Each color represents a different bat species, and
the bar chart shows the species composition and abundance of bats; (C) Phylogenetic tree of bats. The
tree was reconstructed based on the partial nucleotide sequences (658 bp) of the bat COI gene using
the Maximum-likelihood (ML) method. Different colors indicate bats collected from five sampling
sites and the same as (A).

2.3. Deoxyribonucleic Acid Extraction and Bats Species Confirmation

Total deoxyribonucleic acid (DNA) was extracted from individual kidney tissues
using TIANamp Genomic DNA Kit (Tiangen Biotech, Beijing, China) and was processed
following the instruction provided by the manufacturer. Species identification of bats
was confirmed by analyzing the cytochrome c oxidase I (COI) gene. DNA extracted from
the kidneys was used as a template, and the COI gene was amplified using the forward
primer VF1d_t1 and reverse primer VR1d_t1 (Table S1) [44]. PCR reactions were under the
following conditions: an initial cycle of 10 min at 94 ◦C, followed by 30 cycles of 94 ◦C for
30 s, 47 ◦C for 30 s, and 72 ◦C for 1 min, and the final extension at 72 ◦C for 10 min. PCR
amplification was confirmed by electrophoresis on a 1.2% agarose gel. All PCR products
were performed to Sanger sequencing, and species were identified based on obtained
sequences compared with the BOLD and NCBI nucleotide database.
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2.4. Detection of Pathogenic Leptospires

Total DNA extracted from bat kidney tissues was used as a template for screening for
pathogenic Leptospira by nested PCR. In order to well characterize the detected pathogenic
spirochetes, this study first amplified the gene rrs [45]. The initial screening was then
confirmed by amplifying three other genes (all 276 samples were included in detection),
including the genes secY, LipL32, and flagellin B gene (flaB) [46–49]. These genes are suitable
for phylogenetic analysis of pathogenic Leptospira [47,48]. The sequences of each primer
and related parameters are shown in Table S1.

The first round of nested PCR reactions was performed in a 25 µL mixture containing
12.5 µL 2 × DreamTaq Green PCR Master Mix (Thermo Scientific, Vilnius, Lithuania), 1 µL
of 10 µM each forward and reverse primer (Sangon Biotech Co., Ltd., Shanghai, China),
8.5 µL nuclease-free water, and 2 µL sample DNA. PCR was performed with one denatura-
tion cycle at 94 ◦C for 5 min; 40 amplification cycles at 94 ◦C for 30 s, 50 ◦C for 45 s, and
72 ◦C for 60 s; and an additional final extension at 72 ◦C for 10 min. The second round
of PCR reactions were performed in a 50 µL mixture containing 25 µL of 2 × DreamTaq
Green PCR Master Mix (Thermo Scientific, Vilnius, Lithuania), 1 µL of 10 µM each forward
and reverse primers (Sangon Biotech Co. Ltd., Shanghai, China), 13 µL of nuclease-free
water, and 4 µL of first-round reaction products per sample. After the PCR reaction, the
second-round product was separated on 1.2% agarose gel electrophoresis and visualized
with an E-Gel Imager (Tanon 2500B). The observed bands of the expected size were purified
and sequenced by Sangon Biotech. The SeqMan program in the DNASTAR package (Laser-
gene) was used to confirm and assemble the sequences. The assembled sequences were
compared with known sequences in GenBank using nucleotide BLAST (BLAST + 2.13.0)
and identified based on homology.

2.5. Sequence Analysis

The representative sequences of all the genes mentioned above for known species
of the genus Leptospira were searched and downloaded from GenBank (http://www.
ncbi.nlm.nih.gov/genbank/, accessed on 17 December 2022). In order to identify the
newly detected bacteria strains, the phylogenetic tree involving three major clusters of the
genus—pathogenic group (n = 30), intermediate group (n = 12), and saprophytic group
(n = 10)—was constructed based on rrs gene sequences (Table S2). LipL32 is the major
outer membrane protein usually found only in pathogenic Leptospira [50–53]. Therefore, the
homology of nucleotide and amino acid sequences for this gene was selected for comparison
with sequences of different species (n = 13) that were previously detected from humans
by using the MegAlign program, which was implemented in the DNASTAR 7.1 software
package (Lasergene). Subsequently, different parameters analyzed, including the number
of alleles, the number of polymorphisms, and the discriminatory power (DP) of each locus
(LipL32, secY, and flaB), were evaluated based on the complete sequences of 49 strains
belonging to 16 pathogenic species by MLSTest, as well as concatenated loci. Sequence
types (STs) of the concatenated sequences of novel strains were also assigned by MLSTest 1.0
software. The phylogenetic analysis with the 49 pathogenic strains was performed (2 strains
of the intermediate group were included as outgroup) (Table S3). Briefly, MAFFT was used
to align the nucleotide sequences [54], the terminal sequences were removed manually, and
ambiguously aligned sequences were removed using trimAl [55]. Phylogenetic trees were
reconstructed using the maximum likelihood method implemented in PhyML program,
with GTR+G substitution model and SPR tree topology optimization algorithm [56].

3. Results
3.1. Collection and Species Identification of Bat

From 2017 to 2021, 276 bats were captured from five trapping sites at the border and
central regions of Yunnan Province (Figure 1A). Initial identification of bats was based on
morphological traits and further confirmed by phylogenetic analysis of the cytochrome c
oxidase (COI) gene. As a result, the collected bats were identified as ten species residing

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
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in five genera (Figure 1C), including three frugivorous species (106 Rousettus leschenaultii,
6 Eonycteris spelaea, and 5 Cynopterus sphinx) and seven insectivorous species (65 Hipposideros
pomona, 36 Hipposideros armiger, 25 Rhinolophus pearsonii, 18 Rhinolophus thomasi, 9 Rhinolo-
phus pusillus, 4 Rhinolophus marshalli, and 2 Rhinolophus stheno) (Table S4). The number of bat
species varied by disparate sampling sites, with two, four, three, four, and two species in
sites WD, CX, NJ, ML, and JP, respectively (Figure 1B). Among these, Rousettus leschenaultii
mainly collected in WD (27.17%) and JP (11.23%), while the others such as Rhinolophus
stheno (0.72%), Rhinolophus marshalli (1.45%), and Rhinolophus pusillus (3.26%) were only
captured in CX.

3.2. Detection and Identification of Leptospira

All bat kidney tissues (n = 276) were first screened individually for pathogenic spiro-
chetes with rrs gene fragment, resulting in 17 (6.16%) positive samples (Table S4). All
spirochetes-positive samples were contributed by Rousettus leschenaultii. The subsequent
confirmation by three additional genes fragment (LipL32, secY, and flaB) revealed the same
result. Overall, four gene fragment sequences for 17 pathogenic Leptospira strains were
successfully amplified and sequenced.

According to the nucleotide BLAST analysis of approximately 1100 bp of rrs frag-
ment sequences in the GenBank, those we obtained exhibited the highest homology with
L. kirschneri (99.07–99.25%) and L. noguchii (98.69%) (Table 1). The phylogenetic analy-
sis comparing with representative strains of the genus Leptospira based on the rrs gene
showed the same close relationship, which was grouped into two large branches with other
validated species within the pathogenic clade (Figure 2A).
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Figure 2. Phylogeny of Leptospira based on 16s RNA (rrs) gene and homology analysis based on the
LipL32 gene. (A) The phylogeny of Leptospira. The ML tree was reconstructed based on the rrs gene
of pathogenic, intermediate, and saprophytic groups of the genus. The three major groups were
indicated by different colors: pathogenic group (yellow), intermediates (green), saprophytic group
(purple), Turneriella parva and Leptonema illini were included as the outgroup and indicated with pink.
(B) Homology analysis of the representative novel strains and human-origin strains. The heatmap
shows the percentage of nucleotide (right upper) and amino acid (bottom left) identity between the
strains sequenced in this study and those of human origin based on the LipL32 gene.
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Table 1. Result of rrs sequence BLAST in GenBank.

NO. Bats Samples Bats Species Leptospira Species Sequence Reference Identity (%)

1 WDBS1719 Rousettus leschenaultii Leptospira borgpetersenii HM776722 98.6

2 WDBS1754 Rousettus leschenaultii Leptospira borgpetersenii NZ_CP047520 98.51

3 JPBS1806 Rousettus leschenaultii Leptospira borgpetersenii NZ_CP047520 98.51

4 JPBS1838 Rousettus leschenaultii Leptospira borgpetersenii NZ_CP047520 98.51

5 WDBS1732 Rousettus leschenaultii Leptospira interrogans NZ_CP048830 98.41

6 WDBS1745 Rousettus leschenaultii Leptospira interrogans NZ_CP048830 98.51

7 WDBS1764 Rousettus leschenaultii Leptospira interrogans NZ_CP048830 98.51

8 WDBS1722 Rousettus leschenaultii Leptospira kirschneri FJ154560 99.07

9 WDBS1731 Rousettus leschenaultii Leptospira kirschneri KX013391 99.25

10 WDBS1733 Rousettus leschenaultii Leptospira kirschneri KX013391 99.07

11 WDBS1746 Rousettus leschenaultii Leptospira kirschneri KX013391 99.07

12 JPBS1809 Rousettus leschenaultii Leptospira kirschneri FJ154560 99.07

13 JPBS1834 Rousettus leschenaultii Leptospira kirschneri KX013391 99.07

14 JPBS1836 Rousettus leschenaultii Leptospira kirschneri KX013391 99.07

15 WDBS1747 Rousettus leschenaultii Leptospira noguchii NZ_CP091967 98.69

16 WDBS1762 Rousettus leschenaultii Leptospira noguchii NZ_CP091967 98.69

17 WDBS1769 Rousettus leschenaultii Leptospira noguchii NZ_CP091967 98.69

The LipL32 gene was selected for a homology analysis because of its unique and
essential role in pathogenic Leptospira. Comparison of both nucleotide (683 nt) and amino
acid (227 aa) between the novel strain and those originated from humans revealed high
similarity with Leptospira kirschneri (FMAS_PN5, 88.1–94.0%) and Leptospira interrogans
(56639, 87.9–94.0%), especially strain WDBS1732 (Figure 2B). Therefore, the pathogenicity
of the novel bat-originated strains discovered in this study remains unclear.

Multilocus Sequence Analysis

The genes LipL32, flaB, and secY were considered for the analysis because of the
abundance of the available published sequences in GenBank. Different parameters analyzed
of the three loci for 49 pathogenic strains show that the discriminatory power (DP) ranges
from 0.983 (flaB) to 0.994 (secY), with the concatenated loci having the highest DP of
0.996. The number of alleles and polymorphisms reveal similar results (Table 2). Besides,
considering the evolutionary ratio could interfere in the subsequent phylogenetic analysis,
the ratios of non-synonymous (dN) to synonymous (dS) substitutions per nucleotide site
for the tree genes were evaluated. As expected, the dN/dS was, in all cases, less than 1
(0.05986, 0.01117, and 0.01419 for LipL32, flaB, and secY, respectively). Therefore, we decided
to perform an MLST analysis based on the three loci mentioned above to characterize the
newly obtained spirochetes sequences in this study at a higher level of discrimination.

Table 2. Parameters which were analyzed in a subset of 49 isolates of the pathogenic cluster.

Parameters/Loci secY LipL32 flaB Concatenated Loci

Number of alleles 42 36 33 44

Number of polymorphisms 448 193 362 1003

Typing efficiency 0.094 0.187 0.091 0.111

DP(95% confidence interval) 0.994(0.989–1) 0.986(0.974–0.997) 0.983(0.973–0.993) 0.996(0.991–1)

dN/dS 0.01419 0.05986 0.01117 0.03877
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The size of the fragments analyzed in this study was 720 bp, 730 bp, and 1100 bp for
LipL32, flaB, and secY, respectively, and resulted in a total length of 2904 bp concatenated
sequences. The maximum likelihood (ML) phylogenetic tree was reconstructed from
concatenated sequences of the 51 isolates and 17 newly detected strains in this study. ML
tree showed 16 known clusters that matched all pathogenic species assignments, and all
new sequences detected in this study rendered 11 different sequence types (STs). All new
strains belong to the pathogenic group and cluster into two branches (Figure 3). In addition,
the two branches obtained from bat kidneys in this study are genetically distinct from
known pathogenic Leptospira spp., implying the discovery of two new species with potential
pathogenicity. Furthermore, the strains of clade A were obtained from two locations, while
clade B was found only in WD, suggesting that the species of Leptospira seems not clustered
by geographic regions (Figure 3).
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Figure 3. Maximum likelihood tree of the pathogenic group of genus Leptospira based on three loci
(secY, LipL32, and flaB) using the MLSA method. Different colors indicate different Leptospira species.
The number of strains in each species clade is shown in brackets. Sequence types (STs) were assigned
by MLSTest and signed within the tree after the names of novel strains. The asterisks indicate STs
with more than one strains (ST1: JP1809, WD1722, WD1754; ST4: WD1731, WD1769; ST7: JP1706,
JP1838; ST8: WD1732, WD1747, WD1746). L. inadai and L. licerasiae of the intermediate group are
used for the outgroup.
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4. Discussion

Leptospirosis has been identified as a zoonotic disease that causes serious public health
problems and severe economic losses worldwide [1–4]. It is one of the most common but
neglected tropical diseases in China, as well as Yunnan Province [5–8]. Many studies have
suggested that bats can be the natural reservoirs of pathogenic leptospires, and the bacteria
even spill over from bats to humans and other animals [17–28]. Notably, to the best of our
best knowledge, this is the first report on the molecular detection and characterization of
pathogenic Leptospira species in bats in this region.

Although a total of 276 bats (117 frugivorous bats and 159 insectivorous bats) be-
longing to ten species were included in the screening, only one fruit-feeding species
(Rousettus leschenaultii) was found to harbor pathogenic spirochetes. This finding suggests
that R. leschenaultii was infected with pathogenic spirochetes with a frequency of 16.04%
(Table S4), emphasizing the previous view that bats serve as potential natural reservoirs
in circulating leptospires [57,58]. Notably, a similar prevalence of leptospires among bat
populations has been reported in Papua New Guinea, Grenada, and Australia [22,32,59].
Accordingly, we suspected the high degree of habitat overlap between rodents and bats,
and, thus, the shared resources between species bring individuals closer together, exacer-
bating the potential for spirochetes transmission [23,60]. Therefore, insectivorous bats are
at a lower exposure risk than frugivorous bats who share food with rodents [61]. Never-
theless, no insectivorous bats were collected from the same sites with spirochetes-positive
frugivorous bats; moreover, the habitats of the bats could not be clearly assessed, making it
difficult to determine the cross-species transmission among bats.

These detection-positive bats were captured from orchards (WD) and caves (JP), closely
associated with anthropogenic activities. Pathogenic spirochetes harbored by frugivorous
bats may fall on fruits and/or the surrounding environment with their hosts’ activities
in orchards; hence, the pathogens thereby would be exposed to humans, increasing the
chance of bat-borne spirochetes spillover [61]. Besides, with the expansion of human
activities and exploitation of natural resources, the opportunities for contact between bats
and humans in the wild have significantly increased, which increases the risk of humans
to direct or indirect contact with contaminated excreta and secretions of bats and other
animals. Therefore, further investigation of the prevalence of leptospires in bats and
other animals and epidemiological studies of local populations are needed. All newly
detected spirochetes from bats clustered into two clades within the pathogenic group
and distinct from the previously reported strains (Figure 3); therefore, we propose that
these strains may represent two novel Leptospira species. Strains of clade A were found
harbored by bats in WD and JP, while those of clade B were only circulating in the former,
suggesting that the species of genus Leptospira in this study seems not strongly associated
with geographic regions or may be associated with bats’ vagility. Previously, variants of
zoonotic species have been reported in various hosts in Yunnan, including L. interrogans in
rodents, L. borgpetersenii in shrew/pig, and L. alexanderi in cattle [62]. However, species of
captured bats in spirochetes-positive sites (WD and JP) were limited, resulting in a lack of
knowledge relative to other bat species. Above all, we speculate that the diversity of the
genus Leptospira in bats is still underexplored.

The gene LipL32 (also known as Hap1) encodes the major outer membrane protein with
high immunogenicity [51]. The restriction of this protein to pathogenic serovars strongly
suggests its critical role in the infection and pathogenicity of pathogenic spirochetes [50–53].
Based on the limited-length sequences, we performed homology analyses for nucleotide
and amino acid sequences of the novel bat-borne and previously human-associated strains.
Accordingly, the findings revealed that the novel strains were closely related to L. kirschneri
(FMAS_PN5) and L. interrogans (56639) based on nucleotide analysis; however, the amino
acid identity of the two (<90%) was lower than those between the validated zoonotic
Leptospira species (>94%), except strain WDBS1732 (Figure 2B). Therefore, the pathogenicity
of the novel bat-borne strains remains unclear, and further analysis is also required to
elucidate protein in biology fully.
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In summary, the findings from this study demonstrate diverse Leptospira species har-
bored by bats in Yunnan. However, there are some limitations revealed in this preliminary
investigation. Firstly, limited bat species in the same collected site hindered a comprehen-
sive understanding of the prevalence of leptospires in the whole bat population. Secondly,
the other animals, especially rodents, were not included in the study, making us unable
to explore the potential transmission route between common reservoirs of leptospires.
Lastly, the prevalence of leptospirosis in the surrounding populations was not clear, and the
pathogenesis of the novel bat-borne strains was not fully understood. In any case, infected
bats inhabiting locations closely associated with humans always pose zoonotic threats to
public health.
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