Biodegradation of Gossypol by Aspergillus terreus-YJ01
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Materials
2.2. Medium and Culture Conditions
2.3. Isolation and Identification of the Gossypol-Biodegrading Strain
2.4. Preparation of the Intracellular Crude Enzyme and Extracellular Crude Enzyme
2.5. Analysis of Gossypol Using HPLC
2.6. Whole Genome Sequencing of YJ01
3. Results and Discussion
3.1. Isolation and Identification of the Gossypol-Biodegrading Strain
3.2. Biodegradation of Gossypol by YJ01
3.3. Biodegradation of Gossypol by Intracellular Crude Enzymes and Extracellular Crude Enzymes
3.4. Effects of Medium and Culture Conditions on the Growth and Gossypol Biodegradation of YJ01
3.5. Genomic Analysis of the Biodegradation of Gossypol by YJ01
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, G.; Dong, X.; Yang, Q.; Chi, S.; Liu, H.; Zhang, H.; Tan, B.; Zhang, S. Low-gossypol cottonseed protein concentrate used as a replacement of fish meal for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂): Effects on growth performance, immune responses and intestinal microbiota. Aquaculture 2020, 524, 735309. [Google Scholar] [CrossRef]
- Lordelo, M.M.; Davis, A.J.; Calhoun, M.C.; Dowd, M.K.; Dale, N.M. Relative toxicity of gossypol enantiomers in broilers. Poult. Sci. 2005, 84, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.K.; Wang, Y.L.; Li, W.J.; Wu, Q.C.; Yang, K.L.; Li, S.L.; Yang, H.J. In situ rumen degradation characteristics and bacterial colonization of whole cottonseed, cottonseed hull and cottonseed meal with different gossypol content. AMB Express 2021, 11, 91. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, D.; Liu, L.; Chang, Z.; Peng, N. Effective gossypol removal from cottonseed meal through optimized solid-state fermentation by Bacillus coagulans. Microb. Cell Factories 2022, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.K.; Wang, Y.L.; Li, W.J.; Wu, Q.C.; Li, S.L.; Yang, H.J. Gossypol Exhibited Higher Detrimental Effect on Ruminal Fermentation Characteristics of Low-Forage in Comparison with High-Forage Mixed Feeds. Toxics 2021, 9, 51. [Google Scholar] [CrossRef]
- Du, G.; Zhou, Y.; Zhang, J.; Han, S.; Liu, X.; Yuan, C.; Ndayisenga, F.; Shi, J.; Zhang, B. Optimized strategy valorizing unautoclaved cottonseed hull as ruminant alternative feeds via solid-state fermentation: Detoxifying polyphenols, restraining hazardous microflora and antibiotic-resistance gene hosts. Environ. Technol. Innov. 2022, 28, 102937. [Google Scholar] [CrossRef]
- Villasenor, M.; Coscioni, A.C.; Galvao, K.N.; Chebel, R.C.; Santos, J.E. Gossypol disrupts embryo development in heifers. J. Dairy Sci. 2008, 91, 3015–3024. [Google Scholar] [CrossRef]
- Zhao, T.; Xie, Q.; Li, C.; Li, C.; Mei, L.; Yu, J.Z.; Chen, J.; Zhu, S. Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biol. 2020, 20, 88. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.A.; Stipanovic, R.D.; Ziehr, M.S.; Haq, A.U.; Sattar, M.; Kubena, L.F.; Kim, H.L.; Vieira, R.d.M. Cottonseed with a High (+)- to (−)-Gossypol Enantiomer Ratio Favorable to Broiler Production. J. Agric. Food Chem. 2000, 48, 5692–5695. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; MaiTiSaiYiDi, T.; Yang, H.; Yang, K. Effect of dietary gossypol supplement on fermentation characteristics and bacterial diversity in the rumen of sheep. PLoS ONE 2020, 15, e0234378. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Barregard, L.; Bignami, M.; Bruschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Presence of free gossypol in whole cottonseed. EFSA J. Eur. Food Saf. Auth. 2017, 15, e04850. [Google Scholar] [CrossRef]
- Tang, C.-h.; Liu, J.; Zhao, Q.-y.; Zhang, J.-m. Pharmacokinetic comparison of gossypol isomers in cattle: Transfer from diet to plasma and degradation by rumen microbes. J. Zhejiang Univ.-Sci. B 2018, 19, 471–480. [Google Scholar] [CrossRef]
- Tian, X.; Ruan, J.; Huang, J.; Fang, X.; Mao, Y.; Wang, L.; Chen, X.; Yang, C. Gossypol: Phytoalexin of cotton. Sci. China Life Sci. 2016, 59, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Farthing, A.L.; Schwertner, T.W.; Gasper, D.J.; Mathewson, H.A.; Guay, K.A. Acute toxicity of gossypol in northern bobwhites. J. Appl. Anim. Res. 2019, 47, 326–332. [Google Scholar] [CrossRef]
- Porat, O. Effects of gossypol on the motility of mammalian sperm. Mol. Reprod. Dev. 1990, 25, 400–408. [Google Scholar] [CrossRef]
- Brocas, C.R.M.R.; Paula-Lopes, F.F.; McDowell, L.R.; Calhoun, M.C.; Staples, C.R.; Wilkinson, S.N.; Boning, A.J.; Chenoweth, P.J.; Hansen, P.J. Deleterious Actions of Gossypol on Bovine Spermatozoa, Oocytes, and Embryos. Biol. Reprod. 1997, 57, 901–907. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, Y.; Li, C.; Yan, W.; Pan, J.; Wang, S.; Zhao, S. Prenatal Exposure to Gossypol Impairs Corticogenesis of Mouse. Front. Neurosci. 2020, 14, 318. [Google Scholar] [CrossRef] [PubMed]
- Soares Neto, C.B.; Conceição, A.A.; Gomes, T.G.; de Aquino Ribeiro, J.A.; Campanha, R.B.; Barroso, P.A.V.; Machado, A.E.V.; Mendonça, S.; De Siqueira, F.G.; Miller, R.N.G. A Comparison of Physical, Chemical, Biological and Combined Treatments for Detoxification of Free Gossypol in Crushed Whole Cottonseed. Waste Biomass Valorization 2020, 12, 3965–3975. [Google Scholar] [CrossRef]
- Wang, W.-K.; Yang, H.-J.; Wang, Y.-L.; Yang, K.-L.; Jiang, L.-S.; Li, S.-L. Gossypol detoxification in the rumen and Helicoverpa armigera larvae: A review. Anim. Nutr. 2021, 7, 967–972. [Google Scholar] [CrossRef]
- Weng, X.-Y.; Sun, J.-Y. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation. Biochem. Eng. J. 2006, 32, 226–232. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Dai, L.; Liu, Y.; Cheng, M.; Chen, L. Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis. Asian-Australas. J. Anim. Sci. 2018, 31, 63–70. [Google Scholar] [CrossRef]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal. Anim. Biosci. 2022, 35, 556–566. [Google Scholar] [CrossRef]
- Hou, M.; Bao, H.F.; Wang, N.; Zhan, F.Q.; Yang, R.; Long, X.Q.; Cui, W.D. Screening of efficient gossypol degrading strains and study on their detoxification conditions. Xinjiang Agric. Sci. 2016, 53, 1114–1121. [Google Scholar]
- Rajarathnam, S.; Bano, M.N.S.Z. Biodegradation of gossypol by the white oyster mushroom, Pleurotus florida, during culturing on rice straw growth substrate, supplemented with cottonseed powder. World J. Microbiol. Biotechnol. 2001, 17, 221–227. [Google Scholar] [CrossRef]
- Boyle, C.D.; Kropp, B.R.; Reid, I.D. Solubilization and Mineralization of Lignin by White Rot Fungi. Appl. Environ. Microbiol. 1992, 58, 3217–3224. [Google Scholar] [CrossRef]
- Pedraza-Zapata, D.C.; Sanchez-Garibello, A.M.; Quevedo-Hidalgo, B.; Moreno-Sarmiento, N.; Gutierrez-Rojas, I. Promising cellulolytic fungi isolates for rice straw degradation. J. Microbiol. 2017, 55, 711–719. [Google Scholar] [CrossRef]
- Gennadios, H.A.; Gonzalez, V.; Di Costanzo, L.; Li, A.; Yu, F.; Miller, D.J.; Allemann, R.K.; Christianson, D.W. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 2009, 48, 6175–6183. [Google Scholar] [CrossRef]
- Krempl, C.; Sporer, T.; Reichelt, M.; Ahn, S.J.; Heidel-Fischer, H.; Vogel, H.; Heckel, D.G.; Joussen, N. Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochem. Mol. Biol. 2016, 71, 49–57. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.Y.; Guo, J.L.; Weng, X.Y. Identification and proteomic analysis of a novel gossypol-degrading fungal strain. J. Sci. Food Agric. 2012, 92, 943–951. [Google Scholar] [CrossRef]
- Mageshwaran, V.; Sharma, V.; Chinnkar, M.; Parvez, N.; Krishnan, V. Biodegradation of Gossypol by Mixed Fungal Cultures in Minimal Medium. Appl. Biochem. Microbiol. 2018, 54, 301–308. [Google Scholar] [CrossRef]
- Yang, H.; Feng, S.; Ma, Q.; Ming, Z.; Bai, Y.; Chen, L.; Yang, S.T. Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium. RSC Adv. 2018, 8, 5026–5033. [Google Scholar] [CrossRef]
- Conceição, A.A.; Soares Neto, C.B.; Ribeiro JA, A.; Siqueira, F.G.; Miller RN, G.; Mendonça, S. Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLoS ONE 2018, 13, e0196164. [Google Scholar] [CrossRef]
- de Cássia Romero, A.; Abdalla, A.L.; dos Santos Dias, C.T.; Soltan, Y.A. Assessment of uncertainty sources of free gossypol measurement in cottonseed by high-performance liquid chromatography. SN Appl. Sci. 2020, 2, 1766. [Google Scholar] [CrossRef]
- Mirzaakhmedov, S.Y.; Ziyavitdinov, Z.F.; Akhmedova, Z.R.; Saliev, A.B.; Ruzmetova, D.T.; Ashurov, K.B.; Fessas, D. Isolation, purification, and enzymatic activity of cellulase components of the fungus Aspergillus terreus. Chem. Nat. Compd. 2007, 43, 594–597. [Google Scholar] [CrossRef]
- Wang, J.; Wu, P.; Chen, J.; Yan, H. Biodegradation of Microcystin-RR by a New Isolated Sphingopyxis sp. Biotechnol. Bioeng. 2010, 18, 108–112. [Google Scholar] [CrossRef]
- Cheng, C.; Cun-Xi, N.; Jing, L.; Yong-Qiang, W.; Yan-Feng, L.; Wen-Xia, G.; Wen-Ju, Z. Validated method to determine (±)-gossypol inCandida tropicalisculture by high-performance liquid chromatography. Acta Chromatogr. 2018, 30, 269–273. [Google Scholar] [CrossRef]
- Revin, V.V.; Liyas’kina, E.V.; Sapunova, N.B.; Bogatyreva, A.O. Isolation and Characterization of the Strains Producing Bacterial Cellulose. Microbiology 2020, 89, 86–95. [Google Scholar] [CrossRef]
- Wu, H.Y.; Mortensen, U.H.; Chang, F.R.; Tsai, H. Whole genome sequence characterization of Aspergillus terreus ATCC 20541 and genome comparison of the fungi A. terreus. Sci. Rep. 2023, 13, 194. [Google Scholar] [CrossRef]
- Palanivel, M.; Mac Aogain, M.; Purbojati, R.W.; Uchida, A.; Aung, N.W.; Lim, S.B.Y.; Putra, A.; Drautz-Moses, D.I.; Seaton, S.; Rogers, T.R.; et al. Whole-Genome Sequencing of Aspergillus terreus Species Complex. Mycopathologia 2020, 185, 405–408. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Z.; Xu, Q.; Zhang, H.; Liu, X.; Yin, C.; Yan, H.; Liu, Y. Comparative Genomic Analysis of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05 for Producing Macular Pigment. Microorganisms 2023, 11, 266. [Google Scholar] [CrossRef]
- Wang, W.K.; Li, W.J.; Wu, Q.C.; Wang, Y.L.; Li, S.L.; Yang, H.J. Isolation and Identification of a Rumen Lactobacillus Bacteria and Its Degradation Potential of Gossypol in Cottonseed Meal during Solid-State Fermentation. Microorganisms 2021, 9, 2200. [Google Scholar] [CrossRef]
- Han, X.; Chakrabortti, A.; Zhu, J.; Liang, Z.X.; Li, J. Sequencing and functional annotation of the whole genome of the filamentous fungus Aspergillus westerdijkiae. BMC Genom. 2016, 17, 633. [Google Scholar] [CrossRef]
- Tian, X.; Fang, X.; Huang, J.-Q.; Wang, L.-J.; Mao, Y.-B.; Chen, X.-Y. A gossypol biosynthetic intermediate disturbs plant defence response. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180319. [Google Scholar] [CrossRef]
- Weng, X.-Y.; Sun, J.-Y. Biodegradation of free gossypol by a new strain of Candida tropicalis under solid state fermentation: Effects of fermentation parameters. Process Biochem. 2006, 41, 1663–1668. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhao, J.; Li, B.H.; Cao, X.N.; Liu, L.T.; Wu, S.S. Isolation, Identification, and Optimization of Fermentation Conditions of Highly Efficient Cotton Phenol Degradation Strains. Feed Res. 2016, 09, 37–42. [Google Scholar]
- Yin, W.B.; Grundmann, A.; Cheng, J.; Li, S.M. Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J. Biol. Chem. 2009, 284, 100–109. [Google Scholar] [CrossRef]
- Tian, X.; Ruan, J.X.; Huang, J.-Q.; Yang, C.-Q.; Fang, X.; Chen, Z.-W.; Hong, H.; Wang, L.-J.; Mao, Y.-B.; Lu, S.; et al. Characterization of gossypol biosynthetic pathway. Proc. Natl. Acad. Sci. USA 2018, 115, E5410–E5418. [Google Scholar] [CrossRef]
- Yu, L.; Zhan, X.; Liu, Q.; Sun, Y.; Li, M.; Zhao, Y.; An, X.; Tian, Y.; He, L.; Zhao, J. Identifying the Naphthalene-Based Compound 3,5-Dihydroxy 2-Napthoic Acid as a Novel Lead Compound for Designing Lactate Dehydrogenase-Specific Antibabesial Drug. Front. Pharmacol. 2019, 10, 1663. [Google Scholar] [CrossRef]
Attribute | Value |
---|---|
Sample Name | YJ01 |
Total Scaffolds No. | 275 |
Total Bases in Scaffolds (bp) | 31,566,870 |
Large Scaffolds No. (>1000 bp) | 275 |
Largest Scaffold Bases (bp) | 31,566,870 |
G+C (%) | 52.27 |
Scaf N50 (bp) | 980,104 |
Scaf N90 (bp) | 127,246 |
Attribute | Value |
---|---|
Sample Name | YJ01 |
Insert Size (bp) | 500 |
Read Len (bp) | 150 |
Raw Pair Reads | 18,480,614*2 |
Raw Bases (bp) | 5,581,145,428 |
Raw Q20 (%) | 97.45 |
Raw Q30 (%) | 93.35 |
Clean Pair Reads | 18,238,868*2 |
Gene ID | Database | Gene Name |
---|---|---|
gene5756, gene8925 | KEGG | xynA |
gene0733 | KEGG | pgk |
gene2649, gene7420 | KEGG | - |
gene4148 | KEGG | ppa |
gene2257 | KEGG | - |
gene1802 | KEGG | pgi |
gene8994 | KEGG | gapA |
gene3004, gene7660, gene7979 | KEGG | gltA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Du, X.; Xu, Q.; Yin, C.; Zhang, H.; Liu, Y.; Liu, X.; Yan, H. Biodegradation of Gossypol by Aspergillus terreus-YJ01. Microorganisms 2023, 11, 2148. https://doi.org/10.3390/microorganisms11092148
Jiang Y, Du X, Xu Q, Yin C, Zhang H, Liu Y, Liu X, Yan H. Biodegradation of Gossypol by Aspergillus terreus-YJ01. Microorganisms. 2023; 11(9):2148. https://doi.org/10.3390/microorganisms11092148
Chicago/Turabian StyleJiang, Yao, Xinyue Du, Qianqian Xu, Chunhua Yin, Haiyang Zhang, Yang Liu, Xiaolu Liu, and Hai Yan. 2023. "Biodegradation of Gossypol by Aspergillus terreus-YJ01" Microorganisms 11, no. 9: 2148. https://doi.org/10.3390/microorganisms11092148
APA StyleJiang, Y., Du, X., Xu, Q., Yin, C., Zhang, H., Liu, Y., Liu, X., & Yan, H. (2023). Biodegradation of Gossypol by Aspergillus terreus-YJ01. Microorganisms, 11(9), 2148. https://doi.org/10.3390/microorganisms11092148