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Abstract: Cancers of the biliary tract are more common in Asia than in Europe, but are highly lethal
due to delayed diagnosis and aggressive tumor biology. Since the biliary tract is in direct contact with
the gut via the enterohepatic circulation, this suggests a potential role of gut microbiota, but to date,
the role of gut microbiota in biliary tract cancers has not been elucidated. This scoping review compiles
recent data on the associations between the gut microbiota and diagnosis, progression and prognosis
of biliary tract cancer patients. Systematic review of the literature yielded 154 results, of which
12 studies and one systematic review were eligible for evaluation. The analyses of microbiota diversity
indices were inconsistent across the included studies. In-depth analyses revealed differences between
gut microbiota of biliary tract cancer patients and healthy controls, but without a clear tendency
towards particular species in the studies. Additionally, most of the studies showed methodological
flaws, for example non-controlling of factors that affect gut microbiota. At the current stage, there is
a lack of evidence to support a general utility of gut microbiota diagnostics in biliary tract cancers.
Therefore, no recommendation can be made at this time to include gut microbiota analyses in the
management of biliary tract cancer patients.

Keywords: cholangiocarcinoma; gastrointestinal microbiome; liver surgery; Klatskin; biliary tract
cancer; bile duct; diagnosis; treatment; immune checkpoint inhibitors; mycobiota; fungiom; survival

1. Introduction

Biliary tract cancer (BTC) is an overall rare, but highly lethal cancer entity [1,2]. Glob-
ally, BTC is much more common in Asia with incidence rates of more than 80 persons per
100,000 per year, e.g., in Thailand compared to an incidence of approximately 1–2 person
per 100,000 in Western countries [3]. Recent epidemiological studies have shown a general
increase in incidence over the last 20 years [4,5]. The occurrence of BTC is associated with
a variety of liver- and biliary tract-damaging diseases such as gall- and bile duct stones
and recurrent cholangitis, hepatitis B or C infection, primary sclerosing cholangitis (PSC),
parasite infection (especially of Opisthorchis viverrini) as well as all kinds of chronic liver
diseases such as alcoholic and non-alcoholic liver diseases [2,6,7]. Risk factors are also not
evenly distributed worldwide. In Western countries, BTC is more common in the elderly
(>65 years of age) and in men [2,8].
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1.1. Systematic of Biliary Tract Cancers

The biliary tract (also called biliary tree or biliary system) is the generic term for the
biliary ducts, the gallbladder and the common hepatic duct. Due to the anatomy of the
biliary tract, the term “biliary tract cancers” summarizes a heterogeneous group of tumors.
Carcinomas of the biliary ducts and the common hepatic duct are named cholangiocarci-
noma (CCA) referring to its origin, the cholangiocytes, specialized epithelial cells lining the
biliary tract [9]. More than 90% of CCA are mucin-producing, well-differentiated adeno-
carcinomas [2]. CCA can occur in all parts of the biliary tract, and a distinction is made
between intrahepatic CCA and extrahepatic CCA (perihilar or distal; see Figure 1) [3,9,10].
The different types of CCA share molecular patterns that are relevant to systemic therapy,
but the distinction between intrahepatic, perihilar and distal CCA is of high relevance as
surgical treatment and prognosis differs significantly [11]. Gallbladder carcinomas are
usually named separately from other CCA due to their particularly aggressive tumor bi-
ology [12]. Furthermore, unlike CCA, gallbladder carcinoma occurs more frequently in
women than in men [8,13].
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1.2. Diagnosis, Therapy and Prognosis of Biliary Tract Cancers

Early clinical manifestation of all BTCs is unspecific or even asymptomatic [2].
Advanced-stage disease goes along with jaundice, cholestasis and cholangitis depend-
ing on the tumor site (Figure 1) [2,14]. Several publications emphasize the necessity to
expect BTC in patients with liver and biliary tract diseases, but structured concepts for
early detection of CCA and gallbladder carcinoma are widely lacking [9,14,15].

Therapy decision is usually made multidisciplinary and mostly combines hepatobiliary
surgery and (adjuvant) systemic chemotherapy in case of resectability [3,16–18]. The only
potential curative therapeutic approach is the complete surgical tumor resection, but
research indicates that curative-intent surgery is only possible in approximately a third of
patients [19–21]. Because tumor resection requires major hepatobiliary surgery, surgery
is associated with a significant risk of complications bearing also the possibility of liver
failure or other severe postoperative complications [22,23]. Even though surgery is the
only approach to cure CCA and gallbladder carcinoma, long-term survival rates after
surgery are still poor, mainly due to rapid disease recurrence [13,17,19]. Recent research
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indicates that more than one in two CCA patients develop recurrence after curative-intent
surgery [24–27].

1.3. The Gut–Liver Axis

Even more than most of the other organs, the liver is in direct contact with the gut
microbiota due to the enterohepatic circulation. The portal vein transports gut-derived
metabolites to the liver [28]. In turn, the liver is able to “communicate” with the gut micro-
biota by secretion of bile acids and other molecules which shape the microbial environment
(Figure 2).
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In 2022, Binda et al. recapitulated three mechanisms of cancer-inducing gut microbiota
activity: first, bacterial toxins and metabolites; second, modulation of the host’s local and
systemic immune response; third, metabolic changes in the microbiota and the host [29].
The gut–liver axis has a bidirectional relationship that allows communication between
liver cells and bile duct cells and the gut microbiota. Therefore, it can be assumed that the
mechanisms described by Binda et al. can also play a role in promotion and progression of
liver cancer and BTC. Several publications emphasize the role of gut microbiota in in liver
diseases and in carcinogenesis. The development of PSC in patients with ulcerative colitis
might be provoked by gut microbiota dysbiosis [30–33]. Furthermore, it has been suggested
that gut microbiota dysbiosis might be also able to promote carcinogenesis [34–36]. As
early as 2012, it was suggested that Escherichia coli and its metabolites may contribute to
inflammation that promotes the development of colorectal cancer [37]. A potent genotoxin
of certain strains of Escherichia coli, named colibactin, is able to induce DNA damage in
human cells [38]. In 2013, Yoshimoto et al. were able to show that obesity-associated
changes in gut microbiota contribute to an increase in intestinal deoxycholic acid, which is
known to cause DNA damage. By the enterohepatic circulation, deoxycholic acids provokes
a pro-inflammatory type of hepatic stellate cells, which contribute to development of liver
cancer in mice [39]. Dapito et al. showed that the toll-like receptor-driven promotion of hep-
atocellular carcinoma (HCC) in mice is affected by ligands of the intestinal microbiota [40].
Several publications were able to promote data about the role of gut microbiota in HCC
genesis, but the evidence for CCA and gallbladder carcinoma is still not clarified. The role
of gut microbiota in CCA and gallbladder carcinoma is plausible, but recommendations
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for considering gut microbiota in BTC patients are still lacking. Therefore, this scoping
review aimed to evaluate recent publications regarding the role of the gut microbiota in
diagnosis, treatment and prognosis of CCA and gallbladder carcinoma to estimate potential
recommendations for gut microbiota handling in BTC patients.

2. Methods

We performed a scoping literature review searching databases of Medline, Cochrane
Library and Web of Science from database inception to June 2023. The search terms were
“‘biliary cancer’ AND gut microbio*”, “‘biliary carcinoma’ AND gut microbio*”, “‘biliary
tract cancer’ AND gut microbio*”, “‘bile duct cancer’ AND gut microbio*”, “cholangiocar-
cinoma AND gut microbio*”, “‘gallbladder cancer’ AND gut microbio*” and “‘gallbladder
carcinoma’ AND gut microbio*”. Only English and German abstracts and manuscripts
were evaluable. All types of publications were considered, including human and animal
trials, with the exception of conference abstracts, editorials, and methodical publications.
We checked the reference lists of all relevant manuscripts for other appropriate publications.
If the results of reviews were a repetition of original research already included, the reviews
were excluded. To ensure quality of this narrative review, the manuscript was prepared
according to the PRISMA Extension for Scoping Reviews and the recommendations of von
Elm et al. [41,42].

2.1. Population

All kinds of animal trials as well as adult patients diagnosed with CCA or gallbladder
carcinoma, regardless of gender and curative or palliative intention to treat, were eligible for
review inclusion. For review evaluation, it was obligatory that publications provided data
about the patient composition of gut microbiota, measured by sequencing or conventional
stool cultivation. Since the review focused on gut microbiota, data about tissue or bile
microbiota were not considered.

2.2. Research Questions

The aim of this scoping review was to evaluate the role of gut microbiota in diagnosis,
treatment and prognosis of CCA and gallbladder carcinoma. The following research
questions were posed before starting database research:

Do patients with CCA or gallbladder carcinoma show distinct gut microbiota changes
compared to healthy controls?

Does the gut microbiota affect the postoperative outcome of CCA or gallbladder
carcinoma patients who underwent curative-intent surgery?

Does the gut microbiota affect the chemotherapeutic or systemic treatment response
of CCA or gallbladder carcinoma patients?

Does the gut microbiota affect the prognosis and the overall survival of patients
suffering from CCA or gallbladder carcinoma?

3. Results

Systematic search yielded 154 results, of which 68 were not suitable for evaluation
after screening of abstracts. Further 28 reports were excluded after full-text evaluation.
Overall, a total of 12 studies and one systematic review were included. An overview of the
search progress is shown in Figure 3. Detailed methods of included trials are shown in a
supplementary file (see Supplementary Materials—Methods).
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3.1. Do Patients with CCA or Gallbladder Carcinoma Show Distinct Gut Microbiota Changes
Compared to Healthy Controls?

In total, data from 282 CCA patients and 268 gallbladder carcinoma patients were
evaluated. Two studies used cultivation methods for evaluation of single bacteria [43,44],
and seven studies used novel sequencing techniques for evaluation of the entire gut
bacteriota (six studies, [45–50]) or gut mycobiota (one study, [51]). Most of the studies
excluded patients with other gastrointestinal diseases. The timing of measurement varied;
four studies reported stool sampling before treatment, one reported mixed timing, and
others did not specify the exact timing of measurements. Six studies excluded patients with
prior use of antibiotics [46–51], one study stated the use of various antibiotics before stool
sampling [45] and two studies did not report about prior application of antibiotics [43,44].
An overview of the characteristics of the eight included studies and one systematic review
addressing the first research question is shown in Tables 1 and 2.
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Table 1. Overview of included original research addressing the first research question “Do patients with cholangiocarcinoma or gallbladder carcinoma show
distinct gut microbiota changes compared to healthy controls?”—General information is sorted by year of publication (aCCA = all sites of cholangiocarcinoma or
not specified in detail, HCC = hepatocellular carcinoma, iCCA = intrahepatic cholangiocarcinoma, n. s. = not specified, pCCA = perihilar cholangiocarcinoma,
PSC = primary sclerosing cholangitis).

Reference and Author Year Country Type of Study N Groups Excluded

[43] Nagaraja et al. 2014 Australia systematic review 255/861 Salmonella typhi
carrier/non-carrier n. s.

[44] Koshiol et al. 2016 Chile case–control 13/9/13 gallbladder can-
cer/cholelithiasis/healthy n. s.

[48] Jia/Lu/Zeng et al. 2019 China case–control 28/28/16/12 iCCA/HCC/cirrhosis/healthy metastatic CCA,
mixed-type CCA

[49] Zhang et al. 2021 China case–control 53/47/40 aCCA/cholelithiasis/healthyother gastrointestinal or
oncological diseases

[47] Deng/Li et al. 2022 China case–control 46/143/40 aCCA/HCC/healthy
other gastrointestinal or
oncological diseases, age

> 80 years

[50] Ito et al. 2022 Japan case–control 30/11/10 aCCA/BBD */healthy
cholangitis, severe

medical comorbidities,
previous treatment +

[46] Ma et al. 2023 China case–control 63/184/40 iCCA/HCC/healthy other gastrointestinal or
oncological diseases

[45] Miyabe et al. 2023 USA case–control 11/16/31 pCCA
#/PSC+CCA/PSC

unsuccessful cannulation
of bile duct, no bile duct

sample, abnormal
postsurgical anatomy

[51] Zhang et al. 2023 China case–control 23/17 iCCA/healthy

mixed-type CCA,
infectious diseases, other

gastrointestinal,
autoimmune or

oncological diseases

* benign biliary tract disease (cholelithiasis or gallbladder polyps); + including also endoscopic retrograde cholangiography, # not specified in detail, more than 90% pCCA.
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Table 2. Overview of included original research addressing the first research question “Do patients with cholangiocarcinoma or gallbladder carcinoma show distinct
gut microbiota changes compared to healthy controls?”—Results are sorted by year of publication (see Table 1) (n. s. = not specified, Ref. = Reference).

Ref. Method Time Point Antibiotics or Probiotics α-Diversity * Abundance *

[43] cultivation n. s. n. s. n. s. Salmonella typhi carrier status was associated with gallbladder carcinoma

[44] cultivation n. s. n. s. n. s. no detection of Salmonella spp. (neither in gallbladder cancer patients nor
in controls)

[48] 16s RNA
(V4) n. s. recently none ↑ ↑ family Peptostreptococcaceae

↑ genera Actinomyces, Lactobacillus, Alloscardovia

[49] 16s rDNA
(V3-V4) before treatment none for at least 2 months no difference

↑ family Muribaculaceae
↑ genera Bacteroides, Muribaculum, Alistipes

↓ genera Burkholderia, Caballeronia, Paraburkholderia, Faecalibacterium,
Ruminococcus (suggested biomarkers for differentiation between CCA

patients and healthy controls)

[47] 16s rRNA
(V3-V4) n. s. none for at least 8 weeks no difference

↑ phylum Bacteroidota, family Muribaculaceae
↑ genera Bacteroides, Shigella, Klebsiella, unclassified Lachnospiraceae NK4A136

group
↓ phylum Bacillota, genus Megamonas

[50] 16s rRNA
(V3-V4) before treatment none for at least 8 weeks no difference

↑ class Gammaproteobacteria (main family Enterobacteriaceae)
↓ class Clostridia (main family Lachnospiracea)

genera Faecalibacterium and Coprococcus enriched in healthy controls

[46] 16s rRNA
(V3-V4) before treatment none for at least 2 months ↓ ↓ phylum Bacteroidota, family Porphyromonadaceae

[45] 16S rRNA
(n. s.) Mixed different antibiotics n. s. + n. s. +

[51] ITS2 rDNA before treatment none for at least 3 months ↓

↑ phylum Ascomycota, genus Candida (main species Candida albicans), genus
Monographella (main species Monographella nivalis)

↓ phylum Mucoromycota, phylum Basidiomycota, genera Saccharomyces (main
species Saccharomyces cerevisiae), Pichia (main species Pichia mandshurica),
Mucor (main species Mucor circinelloides), Staphylotricum (main species

Staphylotricum coccospurum), Actinomucor (main species Actinomucor
elegans), Alternaria (main species Alternaria alternata), Fusarium (main

species Fusarium oxysporum), Humicola (main species Humicola fuscoatra)

* of cholangiocarcinoma patients compared to healthy subjects; + no comparison to healthy controls, no difference between other groups.
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3.1.1. Gut Microbiota Changes in CCA Patients

The entire composition of gut microbiota of CCA patients compared to healthy controls
was investigated in seven studies [45–51]. The results of diversity indices were inhomo-
geneous. One study reported higher α-diversity of CCA patients compared to healthy
controls [48]. Two studies stated lower α-diversity of CCA patients compared to healthy
controls (one of gut bacteriota [46] and one of gut mycobiota [51]). Three studies found no
differences of α-diversity of CCA patients compared to healthy controls [47,49,50], and an-
other study did not measure α-diversity of CCA patients compared to healthy controls [45].
The β-diversities within CCA patients were lower compared to healthy controls in one
trial [48], whereas another trial did not report differences of β-diversities within CCA
patients compared to healthy controls [45]. Further two trials reported a separated cluster
of CCA patients based on β-diversities [46,47].

The composition of gut microbiota differed significantly between CCA patients and
healthy controls to various degrees. A simplified overview of differences in gut microbial
composition of CCA patients compared to healthy controls is shown in Figure 4.
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The differences of gut mycobiota, which were evaluated in one trial by Zhang et al.,
are reported in Table 2. The authors found a higher abundance of opportunistic pathogenic
fungi such as Candida albicans and a lower abundance of potential beneficial fungi such as
Saccharomyces cerevisiae in CCA patients compared to healthy controls [51].

Besides comparisons with healthy controls, one study compared gut microbiota compo-
sition of CCA patients with patients suffering from primary sclerosing cholangitis (PSC) [45].
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The authors reported no differences of diversity indices or taxa abundances between CCA
patients and PSC patients with and without CCA.

Two of the publications suggested the use of predictive models to distinguish CCA
patients from healthy subjects by evaluating gut microbiota. Zhang et al. suggested that the
genera Burkholderia, Caballeronia, Paraburkholderia, Faecalibacterium and Ruminococcus were
able to discriminate CCA patients from healthy controls [49]. Deng et al. postulated that the
genera Muribaculaceae unclassified, Lachnospiraceae NK4A136 group, Escherichia/Shigella, and
Klebsiella might be promising biomarkers for distinguishing CCA patients from patients
with hepatocellular carcinoma (HCC) or from healthy controls [47].

3.1.2. Gut Microbiota Changes in Gallbladder Carcinoma

One systematic review and one case–control study were evaluated that address the
gut microbial changes in gallbladder carcinoma patients. The studies focused on the
impact of Salmonella spp. in the development of gallbladder carcinoma. There were no
studies examining the composition of the entire gut microbiota of patients suffering from
gallbladder carcinoma.

A systematic review published in 2014 by Nagaraja et al. emphasized the role of
Salmonella typhi in development of gallbladder carcinoma [43]. The chronic carrier status as
determined by cultivation was associated with gallbladder carcinomas, whereas the past
medical history of infection with Salmonella typhi was not associated. A case–control study
by Koshiol et al. compared stool samples from patients with gallbladder carcinoma (n = 13),
patients with gallstone disease (n = 9) and healthy subjects (n = 13), but found no differences
of Salmonella spp. by culture between the groups [44]. The authors added an additional
systematic review with meta-analysis evaluating the associations between Salmonella spp.
and gallbladder carcinoma, and concluded that the results support a potential role of
Salmonella spp. measured by of stool culture in development of gallbladder carcinoma.

3.2. Does the Gut Microbiota Affect the Postoperative Outcome of CCA or Gallbladder Carcinoma
Patients Who Underwent Curative-Intent Surgery?

None of the evaluated studies reported about the postoperative outcome of CCA
patients or gallbladder carcinoma patients. Therefore, it is not possible to draw any
conclusions regarding this research question.

3.3. Does the Gut Microbiota Affect the Chemotherapeutic or Systemic Treatment Response of CCA
or Gallbladder Carcinoma Patients?

Two studies with a total of 44 patients evaluated the role of gut microbiota in re-
sponse to programmed cell death receptor-1 (PD-1) antagonists in patients suffering from
CCA [52,53]. Both studies reported the results of patients with advanced-stage disease after
failure of first-line treatment. We found no reports evaluating the impact of gut microbiota
on chemotherapeutic response of CCA or gallbladder carcinoma patients. An overview of
the characteristics of the included studies is presented in Tables 3 and 4.
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Table 3. Overview of included original research addressing the third research question “Does the gut microbiota affect the chemotherapeutic or systemic treatment
response of CCA or gallbladder carcinoma patients?”—General information is sorted by year of publication (BTC = biliary tract cancer, HCC = hepatocellular
carcinoma, n. s. = not specified).

Reference and Author Year Country Type of Study n Groups Excluded

[52] Mao/Wang/Long/Yang et al. 2021 China cohort 30/35 advanced HCC/BTC + n. s.

[53] Jin et al. 2023 China Phase II
clinical trial 11 * local advanced aCCA

(clinical stage IV)

age < 75 years, cardiac or
autoimmune disease,

immunosuppressive treatment

* including 3 patients with a rapid progress and 8 patients with a progression-free survival of more than 6 months. + authors did not differentiate gut microbiota of HCC and
aCCA patients.

Table 4. Overview of included original research addressing the third research question “Does the gut microbiota affect the chemotherapeutic or systemic treatment
response of CCA or gallbladder carcinoma patients?”—Results are sorted by year of publication (see Table 3) (n. s. = not specified, Ref. = Reference).

Ref. Treatment Method Time Point Antibiotics or Probiotics α-Diversity * Abundance *

[52] anti-PD-1 based systemic
therapy sequencing, n. s. after failure of first-line therapy none for at least 3 months n. s.

↑ class Negativicutes,
order Enterobacterales,

order Veillonellales,
family Veillonellaceae
↓ phylum Bacteroidota,

order Bacteroidales

[53] sintilimab plus anlotinib 16s rRNA
(V3-V4) after failure of first-line therapy n. s. n. s.

↑ phylum
Pseudomonadota

suggested species for
response:

Serratia Marcescens and
Raoultella Planticola

* of patients with rapid progress (<6 months) compared to patients with slower progress.
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The first study by Mao et al. reported on the response of patients with unresectable
HCC and advanced biliary tract carcinoma [52]. The authors did not find differences in
bacterial diversity indices or abundances between HCC patients and advanced biliary tract
carcinoma patients and evaluated the treatment response of both entities together. In the
group of patients with a complete or partial response or stable disease of ≤6 months, a
higher abundance of phylum Bacteroidota and of order Bacteroidales and a lower abundance
of order Veillonellales were found. Furthermore, the relative abundance of Lachnospiraceae
bacterium-GAM79 and a few species from the Oscillospiraceae family (Ruminococcus callidus,
Gemmiger formicilis, Eubacterium siraeum and Faecalibacterium genus) were significantly
enriched in patients with a complete or partial response or stable disease. The authors
were able to perform a dynamic fecal sampling (sampling every three weeks before the
anti-PD-1 infusion) in eight patients indicating the stability of gut microbiota along with
the treatment in patients with a complete or partial response or stable disease.

Jin et al. compared gut microbiota of advanced-stage CCA patients with rapid progress
within 6 months to advanced stage CCA patients with a slower progress [53]. The au-
thors reported a higher abundance of phylum Pseudomonadota in patients with a rapid
progress. A total of 26 Pseudomonadota species differed significantly between patients with
rapid progress and patients with slower progress. Of particular interest were Serratia
Marcescens and Raoultella Planticola, and the authors proposed these species as biomarkers
of treatment response.

3.4. Does the Gut Microbiota Affect the Prognosis and the Overall Survival of Patients Suffering
from CCA or Gallbladder Carcinoma?

Five studies (four human studies and one animal trial) reported on potential prognostic
factors of the gut microbiota for promotion or progression of CCA or gallbladder carcinoma.
Four studies evaluated CCA patients and one study reported on gallbladder carcinoma
patients. The aims of these studies varied as two studies reported on gut microbial alteration
in patients with advanced disease compared to patients with limited disease [48,51], and
another study evaluated the association between the gut microbiota and the progression-
free survival (PFS) and overall survival (OS) of advanced disease patients being treated
with programmed cell death receptor-1 [52]. The animal trial focused on the development of
CCA in PSC [54], and the last study evaluated epidemiological data regarding the mortality
of Salmonella typhi or Salmonella paratyphi carriers [55]. An overview of the included studies
is shown in Tables 5 and 6. Further results of four of the five studies were previously
mentioned in other subheadings.

Jia et al. (see also Section 3.1) found higher abundances of family Oscillospiraceae and
lower abundances of family Eubacteriaceae as well as of genera Allobaculum, Pediococcus,
Pseudoramibacter, and Peptostreptococcus in CCA patients with venous infiltration compared
to CCA patients without venous infiltration [48]. Vascular infiltration is known to worsen
the outcome of CCA patients [56,57].

Zhang et al. (see also Section 3.1) showed distinct differences of the gut mycobiota
composition of patients with advanced-stage CCA (stage III and IV) compared to CCA
patients with lower stages (stages I and II) [51]. The authors postulated a potential role of
Candida albicans in advanced disease.
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Table 5. Overview of included original research addressing the fourth research question “Does the gut microbiota affect the prognosis and the overall survival of
patients suffering from CCA or gallbladder carcinoma?”—General information is sorted by year of publication (BTC = biliary tract cancer patients, BDL mice = bile
duct ligation mice, DSS-colitis mice = dextran sulfate sodium-induced colitis mice, HCC = hepatocellular carcinoma, iCCA = intrahepatic cholangiocarcinoma,
n. s. = not specified).

Reference & Author Year Country Type of Study n Groups Excluded

[55] Caygill et al. 1994 UK case–control 83/386 Salmonella
carrier/non-carrier subjects with ongoing infection

[48] Jia/Lu/Zeng et al. 2019 China case–control 28/28/16/12 iCCA/HCC/cirrhosis/healthy metastatic CCA, mixed-type CCA

[54] Zhang et al. 2021 USA experimental
(including mice) n. s. BDL mice/DSS-colitis

mice/germ-free mice -

[52] Mao/Wang/Long/Yang et al. 2021 China cohort 30/35 advanced HCC/BTC + n. s.

[51] Zhang et al. 2023 China case–control 23/17 iCCA/healthy
mixed-type CCA, infectious diseases, other
gastrointestinal, autoimmune or oncological

diseases
+ authors did not differentiate gut microbiota of HCC and aCCA patients.

Table 6. Overview of included original research addressing the fourth research question “Does the gut microbiota affect the prognosis and the overall survival of
patients suffering from CCA or gallbladder carcinoma?”—Results are sorted by year of publication (see Table 5) (PFS = progression-free survival, OS = overall
survival, Ref. = Reference, n. s. = not specified).

Ref. Method Time Point Antibiotics or Probiotics Results

[55] cultivation - n. s. carriers of Salmonella typhi and Salmonella paratyphi had a large excess of cancer mortality, particularly of gallbladder
carcinoma (compared to non-carriers)

[48] 16s RNA
(V4) n. s. recently none in case of venous infiltration ↑ family Oscillospiraceae and ↓ family Eubacteriaceae, genera Allobaculum, Pediococcus,

Pseudoramibacter, Peptostreptococcus

[54] 16s RNA
(V4) - none treatment with neomycin for elimination of Gram-negative bacteria resulted in fewer CCA, after dysbiotic fecal microbial

transplantation germ-free mice developed liver myeloid cell accumulation, which is associated with worse outcome of CCA

[52] sequencing, n. s. n. s. none for at least 3 months

↑ species Lachnospiraceae bacterium-GAM79, Erysipelotrichaceae bacterium-GAM147, Ruminococcus callidus, Alistipes megaguti
and Bacteroides zoogleoformans

=> longer PFS and OS; ↑ family Veillonellaceae => shorter PFS and OS
In biliary tract cancer patients: ↑ order Bacteroidales => longer PFS and OS, ↑ family Veillonellaceae = shorter PFS and OS

[51] ITS2 rDNA before treatment none for at least 3 months
↑ Candida spp. (main species Candida albicans), Dipodascus spp., family Ustilaginaceae, family Clavulinaceae, and Bipolaris spp.

CCA patients with stage III–IV compared to those with stage I–II; ↑ class Sordariomycetes, order Xylariales, family
Hyponectriaceae, Monographella spp., Annulohypoxylon spp., increased in CCA patients with stage I–II compared to stage III–IV
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Mao et al. (see also Section 3.3) investigated the association between the gut micro-
biota and the oncological outcome of unresectable HCC and advanced biliary tract carci-
noma [52]. Survival analysis revealed longer progression-free survival (PFS) and overall
survival (OS) in patients with a higher abundance of species Lachnospiraceae bacterium-
GAM79, Erysipelotrichaceae bacterium-GAM147, Ruminococcus callidus, Alistipes megaguti and
Bacteroides zoogleoformans. Higher abundance of family Veillonellaceae was negatively associ-
ated with the patients’ PFS and OS. The authors separated biliary tract cancer patients from
HCC patients and reported that biliary tract cancer patients with a higher abundance of
order Bacteroidales had a significantly better PFS and OS. As mentioned before in the overall
group analysis, a higher abundance of family Veillonellaceae was also negatively associated
with the PFS and OS of biliary tract cancer patients.

Regarding the development of CCA, an animal trial by Zhang et al. emphasized the
role of Gram-negative bacteria in CCA progression of patients suffering from PSC [54]. The
authors treated mice with bile duct ligation (BDL) and mice with dextran sulfate sodium
(DSS)-induced colitis with neomycin to eliminate Gram-negative bacteria, resulting in
lower rates of CCA. After fecal transplantation of vancomycin-treated mouse stool in germ-
free mice, a higher tumor burden of intrahepatic injected RIL-175 tumor cells (a murine
HCC cell line) was found. The results could not be reproduced in mice free of colitis or
PSC-like lesions.

The study published by Caygill et al. (see also Section 3.1) almost 30 years ago
postulated that carriers of Salmonella typhi or Salmonella paratyphi have a large excess of
cancer mortality compared to non-carriers, particularly of gallbladder carcinoma [55].

4. Discussion

In summary, the studies discussed above highlight a possible role of the gut microbiota
in diagnosis, therapy and prognosis of CCA and gallbladder carcinoma.

4.1. Limitations of the Included Studies

Regarding the methodology of the studies evaluated, most studies had small sample
sizes (on average, 29 CCA patients per study), and proper statistical planning and power
analyses were missing. Differences in sequencing techniques and primers made the studies
considered hardly comparable. In most of the included studies, only one stool sample
was examined, which makes it difficult to draw conclusions due to the dynamic microbial
environment, which is affected by the circadian rhythm and other external factors [58].

It is necessary to note that the included publications showed demographic differ-
ences of patients. Both studies about the clinical response to programmed cell death
receptor-1 treatment provided just limited or no information about further clinical data
of patients [52,53]. In four publications, patients suffering from CCA were significantly
older and more often male than controls [45,46,49,50]. It is known that age and sex can
affect the composition of the gut microbiota [59]. Furthermore, all authors said nothing
about the diet of included patients, although food is one of the main modulators of the gut
microbiota [60,61].

The majority of studies were conducted in China. Although it can be assumed that
the included patients might have similar nutritional and lifestyle habits due to their origin,
we found no consistent or overlapping observations between the studies. In general, the
results are hardly comparable to those of patients from Western countries as it is known
that origin and ethnicity affect the gut microbiota composition [62–64].

Most of the studies controlled for application of antibiotics as a major influencing
factor of the gut microbial composition. The results of the study by Miyabe et al. are of
limited value as different antibiotic therapies have been administered [45]. Due to microbial
selection by antibiotics, it is clearly comprehensible that CCA patients with an antibiotic
treatment are not comparable to other subjects without an antibiotic treatment.

Mao et al. analyzed data of patients suffering from HCC together with data of CCA
patients, which is debatable [52]. Both tumor entities are primary liver cancers, but etiology,
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treatment modalities, tumor biology, prognosis and at last affected patient demographic
data might differ significantly [65,66]. All of the studies refrained from distinguishing
between the different sites of biliary tract cancer, although, as mentioned in the introduction,
it is known that the location of the tumor has an influence on therapy and prognosis [11].

4.2. Alteration of Gut Microorganisms in CCA

The lack of clear and consistent changes in the microbial diversity indices is interesting,
but unsurprising. Despite changes in habits or lifestyle, research indicates high stability
of gut microbiota diversity, and an alteration of individual species might not be able to
affect the diversity of the entire microbial community [64,67,68]. Noteworthy, the results of
our review did not reveal a clear trend towards a lower abundance of health-promoting
genera and a higher abundance of potential harmful species in CCA patients. Due to
the inconsistent results, it can be hypothesized that the crucial factor for promotion or
progression of CCA and gallbladder carcinoma may not be the species, but the metabolites
that they provide. The liver is exposed to a variety of bacterial components and metabolites
by the enterohepatic circulation, which contribute to the normal function of the human
body (Figure 2) [69,70]. However, some of these molecules such as deoxycholic acid can
also be harmful [39]. Usually, none of these molecules are exclusively synthesized by one
single species. However, some of the possible harmful bacterial metabolites are also useful
and contribute to the self-regulating and self-controlling equilibrium of the commensal
bacteria [71].

Some of the altered genera observed in this review are discussed in more detail below.

4.2.1. Genera with Lower Abundances in CCA

The included studies reported lower abundances of genera Faecalibacterium, Ruminococ-
cus, Megamonas, Burkholderia, Caballeronia and Paraburkholderia.

The most commonly mentioned species of Faecalibacterium is Faecalibacterium praus-
nitzii, which is able to produce butyrate and other short-chain fatty acids. It is often consid-
ered an indicator for health due to its anti-inflammatory activity [72]. Another potentially
harmful species of the same family belonging to the genus Ruminococcus, is Ruminococcus
gnavus, which was found to be associated with inflammatory bowel disease and negative
cardiovascular health indices [73,74]. Zhai et al. postulated that diarrhea-predominant
irritable bowel syndrome might be provoked by Ruminococcus-driven stimulation of the
serotonin biosynthesis [75]. However, Ruminococcus is also able to produce butyrate and
other short-chain fatty acids [76].

Megamonas appears to be an indicator for the nutritional status of a patient, as studies
indicate a higher abundance of Megamonas in obese subjects and a lower abundance in can-
cer patients suffering from cachexia [77,78]. It remains unclear whether Megamonas might
be a sign of a cancer-related cachexia in the patients included in our review. Additionally,
Megamonas was found to be negatively correlated with flavonoids, which are discussed to
reduce cellular stress [79,80].

Burkholderia encompasses multiple pathogenic species involved in chronic infec-
tions [81]. The role of Caballeronia and Paraburkholderia for human health appears to be not
clarified at the moment. Liu et al. found higher abundances of Burkholderia, Caballeronia
and Paraburkholderia in Uyghur Chinese patients with ulcerative colitis compared to Han
Chinese patients with ulcerative colitis [82]. The clinical consequence of this observation
remains unclear.

4.2.2. Genera with Higher Abundances in CCA

In the evaluated studies, higher abundances of genera Actinomyces, Alloscardovia,
Lactobacillus, Bacteroides, Alistipes, Shigella and Klebsiella were reported in CCA patients.

Species of Actinomyces are known to cause a slowly progressing granulomatous dis-
ease named actinomycosis [83]. The infection is endogenous as the natural habitat of
Actinomyces is the oral cavity. In addition to actinomycosis, species of Actinomyces can
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also lead to brain abscesses, or infections of others sites of the body [83]. Although it
appears plausible that Actinomyces might be harmful for patients during chemotherapy
due to the immunosuppressive situation, there is no evidence for a higher infection risk in
chemotherapy-treated patients. Similar to Actinomyces, Alloscardovia omnicolens, a species
belonging to the genus Alloscardovia, is sometimes found in infections of poor-conditioned
patients [84]. Both genera might be a sign of the poor condition of the included patients.

Interestingly, CCA patients had higher abundances of Lactobacillus, a mutualistic genus
that is thought to protect the balance of the human gut microbiota and promote human
health [85,86]. One species of Lactobacillus, Lactobacillus plantarum provides indole-3-lactic
acid, which ameliorates tumor growth and intestinal inflammation in colorectal cancer
mice [87]. Yu et al. reported that Lactobacillus lactis is able to inhibit the non-alcoholic fatty
liver disease progression by resorption of its metabolites via the gut–liver axis [88].

The genus Bacteroides is a highly relevant group for health and disease in humans
and focus of several research projects. Bacteroides spp. are opportunistic human pathogens
causing severe infections and abscesses and being resistant to a variety of antibiotics [89,90].
However, Bacteroides spp. are also mutualistic species protecting the equilibrium of the
human gut microbiota from pathogens. Bacteroides spp. are discussed to be able to modulate
the immune system, to enhance phagocytosis, to prohibit the colonization of pathogenic
species, and to induce the colonization of beneficial species [91]. Animal-based diets and
high-fat diets are associated with a higher abundance of Bacteroides spp. [67,92,93]. In
mice, Bacteroides spp. is reported to show strong correlations with deoxycholic acid [94].
Bacteroides fragilis belonging to the genus Bacteroides is discussed to be a colorectal cancer-
promoting species and a contributor to metastatic disease due to its modulation of cellular
adhesion and epithelial tight junctions [95–97]. Overall, Bacteroides appears to be a key
player, but its role in CCA needs to be further elucidated.

Another interesting and potentially health-promoting genus, which showed a higher
abundance in the included CCA patients, is Alistipes. Recent research indicates a lower
abundance of Alistipes in liver diseases, accompanied by an increasing reduction in Alistipes
in the case of liver disease progression [98]. The higher abundance of this genus in CCA
patients is surprising, but the results of Mao et al. underline the impact of Alistipes in
these patients as a higher abundance of Alistipes megaguti was associated with a better
survival [52]. Nevertheless, Alistipes spp. are associated with mental diseases such as
anxiety and eating disorders. It is suggested that Alistipes spp. decreases serotonin by
metabolism of the serotonin precursor tryptophan [98,99]. This observation is of interest,
as cancer patients have a high risk for developing depression, which is known to affect
patient survival [100].

Klebsiella pneumoniae, an ethanol-producing species, is discussed to promote non-
alcoholic fatty liver disease due to its metabolites [101]. Species of the genera Klebsiella and
Shigella are known to cause severe and potentially life-threatening diseases in humans, but
both are also inhabitants of the gut microbiota.

4.3. Clinical Consequences and Future Aspects

Overall, we observed a deficiency in validated and consistent findings across multiple
studies and, therefore, we see a lack of high-quality evidence. This lack of consistency in
reported bacterial changes, without a clear trend towards either more harmful or more
beneficial genera in patients with CCA, along with divergent results observed in different
studies, aligns with the methodological inconsistencies. However, gut microbiota research
is challenging due to the nature of the gut microbiota. It requires careful research planning
that takes into account possible influencing factors and the microbial dynamics. Due to
the limitations mentioned above, the analysis of gut microbiota in CCA patients and the
usage of predictive models to distinguish between CCA patients and healthy controls is
experimental and cannot be recommended at this time. More consistent and evident results
might be achieved by larger samples-sizes and by considering influencing factors such as
application of antibiotics, age, sex, nutrition, origin and ethnicity in future gut microbiota
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research. Due to the nature of gut microbiota and its circadian rhythm more longitudinal
trials are needed to provide valid results. Experimental studies could investigate the effects
of bacterial components and metabolites on the growth of CCA cells. Since our review
emphasizes that high-quality data regarding the association between gut microbiota and
BTC are widely lacking, both animal and human studies are of future interest.

5. Conclusions

Although evaluated studies show interesting alterations in intestinal microorganisms
of patients suffering from BTC, the results are currently still limited by the methodologi-
cal shortcomings and inconsistent findings mentioned above. Thus, no recommendation
can be made at this time to evaluate the gut microbiota in patients with BTC regularly.
Future studies need to address these shortcomings in order to clarify whether gut micro-
biota have an impact on the diagnosis, therapy and prognosis of patients with CCA and
gallbladder carcinoma.
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