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Abstract: Brazil is the second largest producer of broiler chicken in the world, and the surveillance of
avian pathogens is of great importance for the global economy and nutrition. Avian metapneumovirus
(aMPV) infection results in high rates of animal carcass losses due to aerosacculitis and these impacts
can be worsened through co-infection with pathogenic bacteria, particularly Escherichia coli (APEC).
The present study evaluated the seroprevalence of the main aMPV subtypes in unvaccinated broiler
chickens from poultry farms in Brazil, as well as the clinical effects of co-infection with APEC. Blood
samples, respiratory swabs, femurs, liver, and spleen of post-mortem broiler chickens were collected
from 100 poultry production batches, totaling 1000 samples. The selection of the production batch
was based on the history of systemic and respiratory clinical signs. The results indicated that 20%
of the lots showed serological evidence of the presence of aMPV, with two lots being positive for
aMPV-B. A total of 45% of batches demonstrated co-infection between aMPV and APEC. The results
point to the need for viral surveillance, targeted vaccination, and vaccination programs, which could
reduce clinical problems and consequently reduce the use of antibiotics to treat bacterial co-infections.

Keywords: clinical signs; slaughter convictions; virus–bacteria co-infection; colibacillosis

1. Introduction

The transmission of respiratory agents in poultry farming generates constant chal-
lenges for global activity; losses are related to the decrease in zootechnical performance
and direct impacts on the quality of life of affected animals [1]. The presumptive diagnosis
of these diseases is difficult to perform, as there are no pathognomonic signs for viral
respiratory diseases, such as avian influenza (IA), Newcastle disease (NCD), infectious
bronchitis virus (IBV) and avian metapneumovirus (aMPV) [2].

The aMPV is a virus belonging to the Pneumoviridae family, Metapneumovirus genus,
which mainly affects the respiratory and reproductive systems of birds when infected [3].
The classification of aMPV can be carried out based on its envelope glycoproteins (G, F, and
SH), the main of which is the G glycoprotein, which is responsible for binding to the host
cell receptor [4]. The distinction in some amino acids present in the genetic material can
alter the subtypes of aMPV; only four subtypes are described based on their antigenicity:
A, B, C, and D [5]. Two intermediate subtypes have also been described [6]. Subtypes A
and B are more similar to each other than subtype C, for example [5]. In Brazil, the first
reported case of aMPV occurred in the mid-1990s [7], although this disease is relatively
new in the country and few epidemiological studies have been developed. The aMPV has
already been identified on most continents and its first description occurred in South Africa
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in turkeys, as TRT (Turkish Rhinotracheitis) [8]. In just a few years, it has been possible
to identify aMPV in several different regions since its first appearance. A factor that can
significantly contribute to this spread, in addition to migratory birds, is the intercontinental
movement of people [9].

The aMPV Infection in turkeys and chickens continues to be a serious problem for
producers worldwide. Subtypes A and B are the most prevalent and are responsible for
causing the greatest production losses, particularly when associated with the swollen head
syndrome, which manifests as edema of the periorbital and infraorbital sinuses, along
with mucus production and nasal secretion [1,10]. The problems are not confined to the
respiratory system; the two main subtypes can also affect egg production and quality
due to their preference for replicating in tissues of the respiratory and genitourinary
tracts [11]. Although vaccines are available to prevent aMPV-A and aMPV-B in Brazil, the
immunoprophylaxis strategy to prevent this agent is not commonly employed, especially
in broiler chickens.

Upper respiratory tract infections caused by aMPV can be isolated or, in many cases,
associated with bacteria such as Escherichia coli [1]. Coinfection-related viral damage
and persistence may be altered compared to viral monoinfections [12]. Infections caused
by avian pathogenic Escherichia coli (APEC) can be primary or secondary [13,14]. The
development of secondary infections by APECs is conditioned by predisposing factors that
can disturb the host’s organic balance, such as compromised integrity of the skin or mucous
membranes, poor hygiene practices, influence of immunosuppressive factors, inadequate
ventilation, and the presence of viral diseases [13–15].

In this context, a primary viral infection of the airways can lead to a secondary bacterial
infection. The increase in bacterial binding factors induced by the virus favors the clinical
manifestation caused by Escherichia coli [16], and the damage generated by viral replication
in mucociliary tissues favors bacterial maintenance in the respiratory tract [17,18].

Regarding the economy and poultry production, Brazil is the second largest producer
and largest exporter of chicken meat in the world, being evidenced in global health and
nutrition. In relation to the slaughter of broiler chickens, the states of Paraná, Santa Cata-
rina and Rio Grande do Sul, São Paulo, Goiás, and Minas Gerais stand out (together they
represent 88.33% of the total birds slaughtered in Brazil and exported) [19]. The state of
Ceará allocates its production for Brazilian domestic consumption [19]. This high percent-
age of birds housed in a geographic region can pose health risks to the animals’ health,
mainly through the transmission of respiratory infectious agents [20]. An epidemiological
study conducted between 2004 and 2008 in Brazil, involving 228 samples from broilers,
broiler breeders, and turkeys, revealed a prevalence of 6.57% for aMPV-A and 10.08% for
aMPV-B [7].

In view of the above, the present study aimed to evaluate the seroprevalence of aMPV
in unvaccinated broiler chickens, perform molecular detection by RT-PCR, and identify
the subtypes present in Brazil, in addition to evaluating the impacts caused in batches of
broiler chickens that presented co-infection between aMPV and APEC.

2. Materials and Methods
2.1. Sample Collections

A total of 100 batches of broiler chickens were evaluated (Gallus gallus domesticus),
distributed throughout Brazil. Collections were carried out between August and December
2021. The definition of the states where the samples were collected was with respect to the
proportionality of broiler chicken production; ten chickens were sampled per batch, totaling
one thousand chickens, coming from the South Region (states of Paraná (n = 30 batches),
Santa Catarina (n = 15 batches), Rio Grande do Sul (n = 15 batches), Southeast Region
(states of São Paulo (n = 10 batches), and Minas Gerais (n = 10 batches)) and Northeast
Region (state of Ceará (n = 20 batches)), which represent 80% of chicken meat production
in Brazil [19]. Figure 1 shows the regions and collection areas.
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Figure 1. Map of Brazil, highlighting the South, Southeast, and Northeast Regions and the Brazilian
states sampled in the present study, being Rio Grande do Sul (RS), Santa Catarina (SC), Paraná (PR),
São Paulo (SP), Minas Gerais (MG), and Ceará (CE).

The batches were selected based on the history of respiratory problems and animals
that presented some respiratory disorder, such as sneezing, rales, snoring, nasal secre-
tions and swollen head, and suspected colibacillosis, based on the clinical assessment by
the responsible veterinarians at each farm. Furthermore, the birds were not vaccinated
for aMPV.

The samples were collected from chicken carcasses, aged between 13 and 32 days. The
chickens were necropsied in the field for routine health inspection. For each batch, ten
nasotracheal swabs, three livers, three spleens, and three femurs were collected. Liver and
spleen were evaluated, taking into account the presence of macroscopic lesions). Samples
were stored at a temperature of 2 ◦C to 8 ◦C. Respiratory swabs were eluted in saline buffer
for the purpose of diagnosing aMPV, while bone marrow was collected from the femurs to
detect APEC.

All biological samples evaluated here were donated by farms that carry out routine
inspections, eliminating the need for an ethics committee, as they are leftover biological
samples collected by routine health surveillance services—Consultation with the Ethics
Committee on the Use of Animals (no 4434190521/Federal University of Santa Catarina).

For the purpose of serological evaluation for aMPV, blood samples were collected
15 to 21 days after the first collection. Collection was carried out in pools of 20 animals and
the sera were stored individually by batches.

2.2. Clinical Signs in Batches

To survey the clinical signs of the sampled batches, anamnesis was carried out and the
individual sanitary control sheets of the batches were evaluated, where information such
as medications used, clinical signs, average weight, and feed consumption were recorded.

2.3. Serological Detection of aMPV

To detect antibodies against aMPV, the ELISA (Enzyme Linked Immuno Sorbent
Assay) method was used, using the BioChek commercial kit (Reeuwijk, The Netherlands),
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following the manufacturer’s instructions. The Freeze-Dried Reference Serum CR300
(BioChek) commercial kit (Reeuwijk, The Netherlands) was used as positive control. The
results were analyzed according to an optical density (OD) using the BioChek ii software
(version 2015) with sample/positive ratios (SP) > 0.5 (titer ≥ 0.501), indicating the average
titer of the 20 birds evaluated per batch against possible natural exposure to aMPV, since
they are not birds vaccinated against the pathogenic agent.

2.4. Molecular Detection of aMPV by RT-PCR

Total RNA from the samples was extracted using the RNeasy® Mini kit (QIAGEN,
Hilden, Germany) following the manufacturer’s instructions. The M-MLV Reverse Tran-
scriptase kit (Promega, Madison, WI, USA) was used to perform reverse transcription,
following the manufacturer’s instructions. For the polymerase chain reaction (PCR), the G
protein gene was used for the detection of subtypes A and B (Table 1), using the following
reagents and concentrations: 2 mM magnesium chloride, 0.25 mM deoxyribonucleotide
phosphates, 0.3 µM of each primer, 1 U of Taq DNA polymerase GoTaq® DNA Polymerase
(Promega, Madison, WI, USA), 1× Green GoTaq® Reaction Buffer (Promega, Madison, WI,
USA), 3 µL of sample and sterile ultrapure water, to make 25 µL. The reactions were carried
out in a thermocycler, using the following cycling parameters: 94 ◦C for 2 min; 35 cycles of
94 ◦C for 30 s, 63 ◦C for 30 s, 68 ◦C for 3 min; and a final cycle of 72 ◦C for 10 min [21].

Table 1. Primers, gene target, and size of gene fragments used in molecular detection of aMPVA A
and B.

Virus Target Gene Primer Sequence Amplicon
Size Ref.

aMPV/A G protein F 5′-GGACATCGGGAGGAGGTACA-3′

R 5′-CACTCCTCTAACACTGACTGTTCAACT-3′ 116 bp [21]

aMPV/B G protein F 5′-TCATCCCGGAAGCCTCCCTCACTAT-3′

R 5′-TAGCGTTTGCTGCACTGGCTTCTGATAC-3′ 135 bp [21]

The samples were subjected to horizontal electrophoresis in 1% agarose gel, using
GelRed (MilliporeSigma™, Burlington, MA, USA) as a DNA intercalating agent. Amplicon
sizes were determined by comparison with the low-molecular-weight (LMW) marker.

2.5. Assessment of APEC Co-Infection

For the isolation of Escherichia coli, femur swabs were inoculated on MacConkey agar
and incubated at 37 ◦C for 24 h. Typical Escherichia coli colonies were confirmed as APEC
using qualitative PCR, as described by [22,23] using the genes iroN, ompT, hlyF, iss, and
iutA as the predictors of APEC virulence (Table 2).

Table 2. Primers, genes, and size of gene fragments used in APEC detection.

Target
Gene Primer Sequence Amplicon

Size Reference

iroN F 5′-AAGTCAAAGCAGGGGTTGCCCG-3′

R 5′-GATCGCCGACATTAAGACGCAG-3′ 667 bp [23]

ompT F 5′-TCATCCCGGAAGCCTCCCTCACTACTAT-3′

R 5′-TAGCGTTTGCTGCACTGGCTTCTGATAC-3′ 496 bp [22]

hlyF F 5′-GGCCACAGTCGTTTAGGGTGCTTACC-3′

R 5′-GGCGGTTTAGGCATTCCGATACTCAG-3′ 450 bp [22]

iss F 5′-CAGCAACCCGAACCACTTGATG-3′

R 5′-AGCATTGCCAGAGCGGCAGAA-3′ 323 bp [23]

iutA F 5′-GGCTGGACATCATGGGAACTGG-3′

R 5′-CGTCGGGAACGGGTAGAATCG-3′ 302 bp [22]
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3. Results
3.1. Clinical Signs and Lesions in Batches

A total of 43 batches showed no clinical signs (attribute “0”), 29 batches showed only
one clinical sign (attribute “+”), and 28 batches showed the presence of more than two
clinical signs (attribute “++”). The ranking of the batches is shown in Table 3, evaluated
according to the clinical signs obtained from the batch health control sheets, containing
information on the clinical signs observed and medications used.

Table 3. Classification of batches according to clinical signs, injuries, medication used, and origin
of samples.

Ranking Scores Clinical Signs and Injuries Batches Total Batches
Medicated Medications

0

n = 29
(13, 40, 46, 48, 49, 50, 51, 52,
53, 54, 61, 62, 63, 64, 65, 66,
67, 68, 69,70, 71, 73, 74, 75,

76, 77, 78, 79, 80)

0 Unmedicated

+
sneezing, crackles, nasal
discharge, aerosacculitis,

nasal discharge,

n = 42
(1, 2, 3, 4, 5, 6, 7, 8, 10, 12,

16, 19, 20, 21, 27, 28, 34, 35,
37, 38, 39, 47, 55, 56, 81, 82,
84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 97, 98,
99, 100)

3

Sultfa +
Trimethoprim,
Ciprofloxacin,
Norfloxacin,
Florfenicol,

++

sneezing and mucopurulent
nasal discharge, sneezing and
rales, rales and swelling in the

periocular region, swollen
head and rales, sneezing and

presence of airsacculitis,
sneezing, rales and nasal
discharge, sneezing and

tracheitis, airsacculitis and
colibacillosis, septicemia,
suspected colibacillosis.

n = 29
(9, 11, 14, 15, 17, 18, 22, 23,
24, 25, 26, 29, 30, 31, 32, 33,
36, 41, 42, 43, 44, 45, 57, 58,

59, 60, 72, 83, 96)

21

Ciprofloxacin, Sul-
fachlorpyridazine +

Trimethopim,
Norfloxacin,
Florfenicol,

Classification of clinical conditions in birds based on clinical signs and lesions observed, where “0”: no clinical
signs (n = 29), “+”: only 1 clinical sign observed (n = 42), and “++”: 2 or more signs observed (n = 29). The origin
of the samples by state is identified as per the following description: 1–15 batches from the state of Santa Catarina;
16–30 batches from the state of Rio Grande do Sul; 31–60 batches from the state of Paraná; 61, 62, 65, 66, 67, 69,
75, 76, 77, 78, 80 batches from the state of Minas Gerais; 62, 63, 64, 68, 70, 71, 72, 73, 74, 79 batches from the state
of São Paulo; 81–100 batches from the state of Ceará. It is also possible to check the total number of medicated
batches and the medications used by the group.

During sample collection, it was observed that 71% of the batches showed clinical
respiratory signs, including rales, sneezing, nasal discharge, enlargement of the infraorbital
sinus, and swollen head. Among the batches from the southern states (Santa Catarina and
Paraná), 13.3% used antibiotics during the birds’ housing phase; among the drugs used were
ciprofloxacin, sulfachlorpyridazine+trimethopim, and florfenicol. In the Southeast region
(São Paulo and Minas Gerais), only one batch (5%) of the batches showed clinical signs,
and this batch was medicated with ciprofloxacin on the day of collection. The clinical signs
observed were different between the batches, when the batch control sheets were checked.

The states of Rio Grande do Sul, Paraná, and Santa Catarina, which make up the
southern region of Brazil, stand out, with 83.3% of the batches showing various respiratory
clinical signs. Additionally, 36.6% of these batches used antibiotic therapy at some point
in the production cycle. On the other hand, in the states of São Paulo and Minas Gerais,
representing the Southeast region, only 5% of the batches showed clinical signs of respi-
ratory diseases, coinciding with the use of antibiotics in one of these batches. In the state



Microorganisms 2024, 12, 56 6 of 10

of Ceará, representing the Northeast region, all batches collected exhibited clinical signs
at the time of sampling, and 20% of them were under drug treatment. This diversity of
scenarios highlights the variation in the prevalence of symptoms and the use of antibiotics
in different regions of the country.

In the macroscopic evaluations of the animals’ organs, a total of 90% (90/100) of
the batches exhibited alterations in the spleen, liver, or air sacs, such as splenomegaly,
hepatomegaly, changes in coloration and opacity, and vascularization of the air sacs. These
alterations were observed in 100% (15/15) of the bird batches from Rio Grande do Sul,
Minas Gerais (10/10), São Paulo (10/10), and Ceará (20/20), in 93% (14/15) from Santa
Catarina, and 70% (21/30) from the state of Paraná. This demonstrates the impact of
coinfections, particularly involving viruses and bacteria.

3.2. Seropositivity and Molecular Detection of aMPV

As a result, 20% of the samples showed the presence of antibodies against aMPV.
The positive samples were concentrated in the southern region of Brazil, as 70% came
from Paraná and the remaining 30% from Santa Catarina. In the State of Paraná, the
results indicate positivity in 14 of the 30 batches sampled, revealing a seroprevalence for
aMPV of 46.6% of the batches evaluated, with an average titratable weight of 6881.4 IU.
In Santa Catarina, the results indicate positivity in six of the fifteen batches sampled, with
aMPV seroprevalence of 40% of the batches evaluated, with a titratable average of 780 IU
(Figure 2).
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Figure 2. Serology for aMPV from different Brazilian states batches. (*) Batches with RT-qPCR
positivity for aMPV-B.

Of the one-hundred batches evaluated for detection and molecular typing of aMPV
by RT-qPCR, two batches were positive for the aMPV-B subtype, while no batches were
positive for aMPV-A. Both positive samples came from the state of Paraná, which had
positive serology with serological titers of 3.909 and 4.821 IU.
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3.3. Escherichia coli Detection and APEC Molecular Confirmation

A collection of 63 characteristics of E. coli isolates was acquired from the femurs.
Employing qualitative PCR, it was determined that, out of the 63 E. coli isolates, 58 (92%)
manifested three to five of the genes recognized as minimum virulence indicators for
APEC strains.

3.4. Co-Infection between aMPV and APEC

All batches with serology compatible with aMPV were tested for the presence of APEC.
Of the batches in which APEC was isolated from femurs, 20% (13/63) presented antibodies
against aMPV in the ELISA assay, and in one batch, the genetic material of type B aMPV
was detected.

Clinical signs in these animals were generally more severe compared to either disease
alone. The batches that showed co-infection between aMPV-B and APEC came from the
states of Paraná and Santa Catarina (Table 4).

Table 4. Co-infection between aMPV and APEC and classification of different levels of clinical
signs/lot lesions: (0) no clinical signs, (+) only one clinical sign, and (++) 2 or more clinical signs.

Batches Brazilian State Serology aMPV
(UI/mL) APEC Injury Scores by

Clinical Signs
1 Santa Catarina 1074 Yes +
6 Santa Catarina 756 Yes +
31 Paraná 3909 Yes ++
32 Paraná 7761 Yes ++
33 Paraná 10,564 Yes ++
38 Paraná 7932 Yes ++
39 Paraná 5788 Yes +
40 Paraná 7194 Yes 0
45 Paraná 9025 Yes ++

4. Discussion

The present study demonstrated seroconversion to aMPV in batches of broiler chickens
not vaccinated against aMPV in the southern region of Brazil, specifically in the states of
Paraná and Santa Catarina, which are the main poultry producers in the country, occupying
the first and second positions, respectively [19]. In this study, 20/100 batches demonstrated
seroconversion to aMPV and 2/100 of these were characterized as aMPV-B using RT-
PCR. The detection of the viral genome and isolation of aMPV represents a considerable
challenge, since the virus has a relatively short period of persistence in the host and is
often detected in the early stages of infection, without demonstrating characteristic clinical
signs [24].

The high density of poultry farms in certain regions and the frequent non-use of
vaccines to prevent aMPV allows viral spread in poultry flocks. It is also noteworthy
that in the southern region of Brazil, there is intense production of turkeys, which may
also contribute to the spread and maintenance of the virus in the region, considering that
subtypes A and B can be found mainly in turkeys and chickens [25].

The aMPV is widely distributed worldwide [2,26,27]. In Latin America, the first report
occurred in 1995 [28]; using field samples of aMPV and cells derived from chicken embryos,
they identified subtype A. At the first appearance, an increase in cases of aMPV, mainly
in long-lived turkeys and chickens, was observed. In 2011, ref. [29] characterized the first
appearance of aMPV-B in Brazil.

Despite being present in poultry flocks and often neglected in broiler chickens, aMPV
causes significant damage in poultry farming. It was revealed that aMPV, after viral infec-
tion, causes thickening of the tracheal mucosa [30]. This occurs due to congestion, edema,
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and infiltration of mononuclear cells in the lamina propria of the trachea, generally ap-
pearing between three and seven days after infection. Furthermore, flattening of epithelial
cells and focal disciliation were observed, which may facilitate the emergence of secondary
infections, worsening clinical signs.

The detection of aMPV-B in Brazilian poultry flocks may be related to the massive
use of vaccines against aMPV-A for many years, which may have exerted vaccine pressure
generating alternation of aMPV-B. It is worth mentioning that aMPV-A has more limited
transmission, as it is via the oral–fecal route, while MPV-B is respiratory, making it more
easily disseminated [24].

Although replicating subtype A and subtype B (live) vaccines are available for use
in immunoprevention, both are cross-protective [31–33]; however, they are not used in all
states in Brazil. Some regions use replicating vaccines to prevent aMPV in broiler chickens,
such as the Southeast (São Paulo and Minas Gerais) and Northeast (Ceará) regions, although
the batches were collected from farms that do not use them. But this practice is relatively
common in these regions. This factor may explain the low circulation of aMPV in these
locations, since vaccination generates selection and control pressure, reducing clinical signs
and viral excretion when used, although in the state of Ceará, 100% of batches showed
clinical respiratory signs, so another viral agent must be present at that time.

In the states of the southern region (Paraná, Santa Catarina, and Rio Grande do Sul),
of the 20 batches in which the presence of antibodies to aMPV was detected, only two did
not show clinical signs at the time of collection, which may be linked to the characteristic of
infection and viral replication in early stages [34–36].

Regarding the use of medicines during production cycles, there is a significant concen-
tration in the southern region of Brazil, which represented 88% of all batches medicated in
Brazil. These treatments were primarily aimed at controlling opportunistic bacteria or those
naturally present in birds. Isolates confirmed as APEC were obtained in 45% of the batches
in which there was seroconversion to aMPV, demonstrating the condition of co-infection.
This was linked to the clinical condition of the birds, which leads to production losses
during the life of the flock, as well as the loss of slaughtered birds.

The identification and characterization of APEC in aMPV-positive batches in Brazilian
states demonstrates the importance of this agent, regardless of its primary or secondary
role, especially in batches that were medicated to reduce impacts related to co-infection
with aMPV associated with APEC [37].

5. Conclusions

The study presents the seroprevalence of aMPV in 20% (20/100) of the batches eval-
uated in Brazil, with the presence of subtype B detected, with 45% (9/20) demonstrating
greater clinical problems in the presence of APEC co-infection.

This study points to the need to design constant monitoring strategies aimed at
combating aMPV in the poultry sector, as well as reducing viral circulation and bacterial
co-infections. This, together, will certainly have a positive impact on production, with a
view to protecting livestock, improving animal health, and consequently reducing the use
of antimicrobials.
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