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Abstract: Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading
to biofilm-associated diseases in humans and animals that are refractory to conventional antibi-
otic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a
promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and
break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs,
tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 µM). By constructing a
promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 µM or
1.5 µM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in
the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that
tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms
formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition,
tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal
effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent
anti-biofilm activity and synergized with oxacillin against USA300.

Keywords: Staphylococcus aureus; MRSA; biofilm; inhibitor; two-component system

1. Introduction

Staphylococcus aureus is an important pathogen causing localized and systemic infec-
tions in both humans and animals, which are associated with high morbidity [1]. The
methicillin-resistant S. aureus (MRSA) strains are spreading globally and regionally, not
only causing community-acquired and nosocomial infections but also becoming more
resistant to a broad spectrum of commonly used antibiotics [2,3], such as β-lactams, amino-
glycosides and macrolides. Furthermore, the increasing MRSA infection and colonization
in both food-chain and companion animals show that MRSA is also an important zoonotic
and veterinary pathogen [4].

S. aureus has the ability to produce biofilms both in vitro and in vivo (e.g., wounds
and organs in humans and animals, implanted medical devices, etc.), which enhances its
resistance and tolerance to antibiotic treatment and makes this pathogen a major cause of
refractory biofilm-related diseases [5–7]. It has been estimated that over 80% of human
infectious diseases are related to bacterial biofilms [8]. Moreover, approximately 60% of
nosocomial infections are associated with bacterial biofilms formed on medical implants [9–13].
Furthermore, there are reports that about 61% of biofilm infections in humans have a
zoonotic origin [14], and bacterial biofilms are closely related to animal diseases, such as
mastitis, wound infection and periodontal disease [15]. Thus, the importance of S. aureus
biofilm in clinical medicine and veterinary medicine should not be underscored [16].

The major concern of biofilm-related infections is that the bacterial cells embedded
in biofilm exhibit inherent resistance to antimicrobial agents [17]. Previous studies have

Microorganisms 2024, 12, 256. https://doi.org/10.3390/microorganisms12020256 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12020256
https://doi.org/10.3390/microorganisms12020256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-1358-2807
https://doi.org/10.3390/microorganisms12020256
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12020256?type=check_update&version=1


Microorganisms 2024, 12, 256 2 of 15

already shown that biofilm bacteria are 10–1000 times more resistant to antibiotic killing
and act as a source of persistent and chronic infections [18,19]. The underlying mechanisms
are very complicated, including the slow penetration of drugs through the extracellular
polymeric substance (EPS), the reduced susceptibility of bacteria cells inside biofilm matrix
due to a low metabolic state (e.g., persisters) [20], the altered micro-environment in different
layers of biofilms (e.g., pH, oxygen), the changed transcription profiles of bacteria under
stress [6,7,21], the facilitated horizontal gene transfer among different bacterial species,
etc. [22–24]. Therefore, there is an urgent need to develop new antimicrobial agents and
discover already-in-use drugs with anti-biofilm activities to overcome the ineffectiveness of
conventional antibacterials and to fight against staphylococcal biofilm-related diseases [25–27].

Bacterial two-component signal transduction systems (TCSTs) play a key role in
sensing various stimulus signals and making corresponding responses to help bacteria cells
adapt better to environmental stress [28–31]. Moreover, TCSTs have no human homologs
and thus have been considered potential targets for antimicrobial therapy [32]. Among
the 16–17 TCSTs in S. aureus, ArlRS (autolysis-related locus) is a unique one with a global
regulatory effect on S. aureus virulence, autolysis, slime layer formation, cell aggregation
and biofilm development in vitro [33–39]. Our group previously reported arlRS deficiency
or deletion in S. epidermidis abolished biofilm production [40,41]. A similar influence of
arlRS inactivation on S. aureus biofilm development has also been reported in vitro and
in vivo [42,43]. Furthermore, our group demonstrates that ArlRS directly regulates the
transcription of a redox regulator spx and is vital for modulating oxacillin susceptibility [44].
These findings make ArlRS a promising target for screening anti-biofilm compounds and
antibiotic resistance breaker drugs [45,46].

A typical TCST is composed of two proteins: a histidine kinase (HK), which is a trans-
membrane protein, and a response regulator (RR), which is a cytoplasmic DNA binding
protein. HK is considered a promising drug target [47–49] because its autophosphorylation
is mediated via the conserved catalytic and ATP-binding (CA) domain that contains a
typical substrate binding pocket, which may be suitable for drug screening [32]. In this
work, we screened the FDA-approved drug library for ArlS HK inhibitors and found that
tilmicosin has a strong inhibitory effect on ArlS kinase activity. Tilmicosin is a macrolide
that is active against Gram-positive bacteria by inhibiting bacterial protein synthesis. It can
bind to the bacterial 50S subunit of the ribosome, thereby blocking polypeptide elongation
and releasing [50]. The effect of tilmicosin on the biofilm formation of multiple staphy-
lococcal strains was investigated in this study, which indicates that it has an additional
antibacterial mechanism.

2. Materials and Methods
2.1. Strains and Plasmids

The MRSA strains USA300 FPR3757, USA300 TCH1516 and USA500 2395 (GenBank
Accession Number: NC_007793, NC_010079 and CP007499, respectively) [51–53] and the
methicillin-sensitive S. aureus Newman and S. epidermidis 1457 (GenBank Accession Num-
ber: NC_009641 and NZ_CP020463.1, respectively) [54,55] were used as wild-type strains
in this study. The MRSA strains 234 and 15,098 were biofilm-positive clinical isolates [44].
The TCH1516∆arlRS, USA500∆arlRS and 1457∆arlRS were previously constructed in our
laboratory [40,44], which were corresponding arlRS gene-knockout mutants of the USA300
TCH1516, USA500 2395 and 1457 strains. The arlRSc (TCH1516) and arlRSc (1457) were
corresponding arlRS complementation strains of the TCH1516∆arlRS and 1457∆arlRS. The
bacterial strains that were constructed in this work are listed in Table 1.

The pCM29, pRB475, pCN51 and pKOR-1 are Escherichia coli-S. aureus shuttle vec-
tors [44,56,57]. pCM29 is used to build a promoter-GFP reporter system. pRB475 and pCN51
are used to construct arlRS complementation plasmids pCN-arlRS and pRB-arlRS [58,59].
The temperature-sensitive plasmid pKOR1 is used for gene knockout in staphylococci [60].
pETMG is used for protein expression [61]. The plasmids constructed in this work are listed
in Table 1.
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Table 1. The staphylococcal strains and plasmids constructed in this work.

Staphylococcal
Strains/Plasmids Information

Strains
FPR3757∆arlRS an arlRS knockout strain of the MRSA USA300 FPR3757
Newman∆arlRS an arlRS knockout strain of the MSSA Newman
arlRSc (FPR3757) an arlRS complementation strain of the FPR3757∆arlRS
arlRSc (USA500) an arlRS complementation strain of the USA500∆arlRS
arlRSc (Newman) an arlRS complementation strain of the Newman∆arlRS
FPR3757-PmgrA-P2 a mgrA promoter-reporter strain by transforming the USA300 FPR3757 with the plasmid pCM29-mgrA-P2
FPR3757-Pspx-P2 a spx promoter-reporter strain by transforming the USA300 FPR3757 with the plasmid pCM29-spx-P2
∆arlRS::PmgrA-P2 FPR3757∆arlRS harboring pCM-mgrA-P2
∆arlRS::Pspx-P2 FPR3757∆arlRS harboring pCM-spx-P2
Plasmids
pCM-spx-P2 pCM29 modified by replacing its GFP promoter with spx P2 promoter
pCM-mgrA-P2 pCM29 modified by replacing its GFP promoter with mgrA P2 promoter
pRB-500arlRS pRB475 carrying the arlR and arlS genes of USA500
pRB-NMarlRS pRB475 carrying the arlR and arlS genes of Newman
pETMG-arlSHK the arlS gene histidine kinase region cloned into pETMG

2.2. Growth Media and Chemical Agents

Tryptic soy broth (Oxoid, UK) was used for the proliferation of S. aureus and S. epider-
midis strains. TSB medium with 1% glucose (TSBG) was used for staphylococcal biofilm
formation [59,62]. Luria–Bertani (LB, Oxoid, UK) medium was used for E. coli cultiva-
tion. Calcium-adjusted Mueller–Hinton Broth (CAMHB, Oxoid, UK) was chosen for the
antimicrobial susceptibility test (AST) [10,63–65]. The antibiotics ampicillin (100 µg/mL),
kanamycin (50 µg/mL), chloramphenicol (10 µg/mL) and erythromycin (10 µg/mL) were
used for selection of the constructed bacterial strains. Tilmicosin and oxacillin were pur-
chased from MedChemExpress China and Sangon Biotech (Shanghai, China) Co., Ltd.,
respectively.

2.3. Construction of the arlRS Deletion Mutants

The arlRS locus in the Newman strain (locus tag: NWMN_1327 and NWMN_1328) and
the USA300 FPR3757 strain (locus tag: SAUSA300_1307 and SAUSA300_1308) were deleted
by homologous recombination, as previously described [60], generating Newman∆arlRS
and FPR3757∆arlRS, respectively [12]. Afterward, the plasmids harboring arlRS, pRB-
500arlRS and pRB-NMarlRS were built and transformed into the gene-knockout mutants
by electroporation for arlRS complementation [66,67].

2.4. Semi-Quantitative Detection of Static Biofilms Formation

Biofilm-forming abilities of the staphylococcal strains on polymeric surfaces were
assessed by a microplate assay [25]. The overnight bacterial cultures were 1:200 diluted in
fresh TSBG, added into tissue-culture-treated 96-well microplates (Nunc, Denmark) and
incubated for 24 h at 37 ◦C [7]. To detect the activities of tilmicosin against S. aureus and
S. epidermidis biofilms formation in static condition, tilmicosin was added to TSBG culture
medium at a 1/4 of MIC (0.78 µM or 0.67 µg/mL) to minimize its effect on bacterial growth.
Several biofilm-producing MRSA strains, including USA300 TCH1516, FPR3757, USA500;
two clinic isolates, 234 and 15,098; together with a strong biofilm-forming S. epidermidis
strain 1457, were cultured in TSBG overnight, then 1:100 diluted with TSBG supplemented
with tilmicosin in the wells of microtiter plates. Biofilms in the wells were fixed with 99%
methanol, stained with 1% violet crystal and then dissolved with 10% acetic acid. Biofilm
formation by each strain was assessed at OD570 in a plate reader (Victor X5, PerkinElmer,
Boston, MA, USA).
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2.5. Purification of the Catalytic Domain of ArlS (ArlSHK)

To obtain the intracellular region of S. aureus ArlS with histidine kinase activity, the
expression plasmid (pETMG-arlSHK) was constructed and transformed into E. coli BL21
(DE3) [68–70]. The bacterium was cultured in LB for 4 h at 37 ◦C, and then 0.4 mM isopropyl
β-D-1-thiogalactopyranoside was added for overnight induction at 25 ◦C. Afterward, the
cells were washed with lysis buffer and sonicated at 4 ◦C. The recombinant ArlSHK
consisted of a HisKA and a HATPase_c domain was fused with a GB1-tag (IgG domain B1
of Protein G) and purified using a Qiagen Ni-NTA column by affinity chromatography.

2.6. ATPase Assay for Screening ArlSHK Kinase Activity Inhibitors

To screen ArlSHK ATPase activity inhibitors, the Promega Kinase-Glo(R) Luminescent
Kinase Assay was used as previously described [44,71–73]. The optimized condition for
reactions was as follows: 2 µg purified ArlSHK, 3.5 µM ATP, 30 min incubation at room
temperature. The luminescence was measured with a Victor X5 Reader. To detect the
half-maximal inhibitory concentration (IC50) of the inhibitor, a series of dilutions of the
compound were pre-incubated with ArlSHK, and then ATP was added. The IC50 value
was calculated by using the sigmoidal fit module of the Origin 9.0 software (OriginLab).

2.7. Promoter-Florescence Reporter Assay

To investigate the effect of tilmicosin on ArlRS regulation in S. aureus, the previously
reported mgrA P2 promoter and spx P2 promoter from the FPR3757 genome were chosen for
constructing the promoter-florescence reporter system in the USA300 FPR3757 strain and its
∆arlRS mutant, as previously described [44]. Tilmicosin was added to the mid-exponential
phase culture of the reporter strains of FPR3757 at a concentration of 0.75 µM or 1.5 µM.
The DMSO treatment served as a negative control, and the reporter strains of ∆arlRS were
used as low spx and mgrA expression controls.

2.8. Visualization of Three-Dimensional Structure of Biofilms by Confocal Laser Scanning
Microscopy (CLSM)

Bacteria were inoculated into the glass-bottomed dishes (FluoroDish, WPI, Sarasota,
FL, USA) containing 2 mL of TBSG. After incubation for a certain time, the unattached cells
were carefully removed, and then the biofilms formed on glass were gently washed with
normal saline and subsequently stained with SYTO9 and propidium iodide (PI, Molecular
Probes, Eugene, OR, USA). A TCS SP8 microscope (Leica, Heidelberg, Germany) was
used to acquire fluorescent images, determine biofilm thickness and analyze fluorescence
intensities.

The strain USA300 FPR3757 was selected to investigate the impact of drugs on its
biofilm formation. After live/dead staining, the three-dimensional view of the biofilm was
generated with the IMARIS 7.0 software (Bitplane, Zurich, Switzerland).

2.9. Antimicrobial Susceptibility Test

The broth microdilution method was performed to detect minimal inhibitory con-
centrations (MIC) of the tilmicosin and oxacillin in S. aureus strains, as previously de-
scribed [74].

The checkerboard method was used to determine if drugs are synergistic for inhibiting
S. aureus proliferation (synergism is defined as a fractional inhibitory concentration index
(FICI) ≤ 0.5 [75]).

2.10. Detection of Biofilm Formation in Flow Conditions by a BioFlux System

The BioFlux 1000 system (Fluxion Biosciences, Oakland, CA, USA) was used to detect
dynamic biofilm formation in shear flow conditions. First, the microfluidic channels of a
BioFlux 48-well plate were primed with 37 ◦C pre-warmed TSBG from the inlet wells. After
the removal of the excess medium in the inlet wells [76–78], the mid-log phase S. aureus
FPR3757 cells that were pre-cultured in TSBG (~108 colony forming unit per mL) were flown
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into the channels and incubated for 1 h. After bacterial primary attachment, tilmicosin
and oxacillin were added into the culture medium separately (16 µg/mL and 1 µg/mL,
respectively) or in combination (8 µg/mL oxacillin and 0.5 µg/mL tilmicosin), then flowed
at a stress of 0.15 dyn/cm2. Bacterial biofilm development was automatically monitored
for 16 h with BioFlux Montage software 2.3 by acquiring the bright-field images at 10 min
intervals [79–81].

2.11. Statistical Analysis

Student’s t-test was applied for data comparison. A p-value less than 0.05 was consid-
ered statistically significant.

3. Results
3.1. Effect of arlRS Knockout in Biofilm Formation in Multiple Staphylococcal Strains

To confirm the important role of arlRS in biofilm development in S. epidermidis and S.
aureus, in vitro biofilm-forming abilities of the newly constructed arlRS knockout mutants
of the MRSA strain USA300 FPR3757 and the MSSA strain Newman; the corresponding
arlRS complementation strains (Table 1); and the previously constructed arlRS mutants
of USA300 TCH1516, USA500 2395 and 1457 strains, were assessed by the classic mi-
crotiter plate assay. It showed that the biofilm formation in the arlRS mutants of TCH1516,
FPR3757, USA500 and 1457 all decreased dramatically (OD570 = 0.59 ± 0.22, 0.83 ± 0.33,
0.49 ± 0.07, 1.29 ± 0.14) compared to their wild-type counterpart (OD570 = 1.48 ± 0.37,
2.03 ± 0.22, 1.73 ± 0.11, 3.40 ± 0.22) (Figure 1). Newman showed a weak biofilm for-
mation (OD570 = 0.78 ± 0.24), and its arlRS mutant formed a mildly decreased biofilm
(OD570 = 0.54 ± 0.29) with no significance. Complementation of arlRS in each of the arlRS
mutants restored biofilm-forming abilities to almost the wild-type level.
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Figure 1. Impact of arlRS knockout on biofilm production of S. aureus and S. epidermidis strains
in vitro. Biofilms produced by the arlRS knockout mutants and complementation strains of the MRSA
TCH1516, FPR3757 and USA500 strains; the MSSA Newman strain; and S. epidermidis 1457 strain in
TSBG in 96-well tissue-culture-treated polystyrene microplates for 24 h were compared with their
parental strains.

3.2. Inhibitory Effect of Tilmicosin on ArlS Activity

As ArlRS is vital for biofilm development regulation, the cytoplasmic part of histidine
kinase ArlS (ArlSHK) was purified and used for screening compounds that can inhibit
its ability to hydrolyze ATP, thereby blocking signal transduction. The purified protein
had an approximate molecular weight (MW) of 37 kDa (Figure 2A), and its kinase activ-
ity was confirmed (Figure S1). After primary drug screening, we found that tilmicosin
(MW = 869.147 g/mol) at a concentration of 25 µM can inhibit the ArlSHK (2 µg) kinase
activity by 95% and that its inhibitory effect was in a dose-dependent manner (Figure 2B).
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The data were further analyzed by using the sigmoidal fit module, and it showed that the
half-maximal inhibitory concentration of tilmicosin was 1.09 µM. Tilmicosin had antibacte-
rial activity, and its MIC was 3.1 µM (~2.7 µg/mL) in all of the MRSA and MSSA strains
used in this study.
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Figure 2. Inhibition of ArlS activity by tilmicosin: (A) the purified ArlSHK and the chemical structure
of its kinase inhibitor tilmicosin; (B) dose-dependent inhibition of tilmicosin on the ArlSHK kinase
activity detected by the Kinase-Glo(R) Luminescent Assay; (C) the effect of tilmicosin on ArlS activity
in S. aureus at 4 h and 10 h, indicated by the spx P2 promoter and mgrA P2 promoter-GFP reporter
systems (in each panel, from left to right: mock, 0.1% DMSO, 0.75 µM tilmicosin, 1.5 µM tilmicosin,
∆arlRS control).

To investigate the effect of tilmicosin on ArlS activity and its subsequent regulation
in S. aureus, two ArlRS regulon genes, spx and mgrA, which have been proven to be
directly modulated by ArlRS [44,82–85], were chosen to serve as indicators for ArlRS
regulation. The P2 promoters of the spx and mgrA were used for constructing promoter-
green fluorescence reporter systems in the USA300 FPR3757 strain and its ∆arlRS mutant.
Tilmicosin was added to the mid-exponential phase culture of the reporter strains of
FPR3757 at a concentration of 0.75 µM or 1.5 µM. The DMSO treatment served as a negative
control, and the reporter strains of ∆arlRS were used as low spx and mgrA expression
controls. After further cultivation for 4 h and 10 h, the 0.75 µM tilmicosin group showed
obviously lower spx and mgrA promoter activities than the mock and DMSO groups. Both
promoter activities were even lower in the 1.5 µM tilmicosin group (Figure 2C).

3.3. Effect of Tilmicosin on Static Biofilms Formation of the Staphylococcal Strains

To detect the activities of tilmicosin against S. aureus and S. epidermidis biofilms for-
mation in static condition, a microtiter plate biofilm assay was performed. It showed that
tilmicosin at 1/4 of MIC (0.78 µM or 0.67 µg/mL) inhibited MRSA biofilm formation by
72.9–85.8% and reduced S. epidermidis 1457 biofilm formation by 67.9% (Figure 3).
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Figure 3. Inhibition of static staphylococcal biofilm production in vitro by tilmicosin. Effect of
tilmicosin at a 1/4 of MIC on biofilms formed by the MRSA TCH1516, FPR3757 and USA500 strains;
two clinical MRSA isolates (234 and 15,098); and the S. epidermidis 1457 strain were semi-quantitatively
determined as described above.

The impact of tilmicosin on cell viability in young biofilms of MRSA strains was
further investigated by CLSM. The young biofilms (6 h) formed by the strains USA500,
15,098 and 234 in TBSG in fluorodishes were treated with 1 µg/mL (1/3 MIC) tilmicosin
or 0.1% DMSO for 18 h. It showed that in the control group (0.1% DMSO), the average
thickness of biofilm in each MRSA strain was 16.9, 12.5 and 14.2 µm, respectively, while
tilmicosin treatment reduced the average thickness of biofilm to 12.7, 9.4 and 10.9 µm,
respectively. Furthermore, the proportion of dead cells in the control group was 0.27, 0.39
and 0.25, respectively, while in the tilmicosin-treated biofilm, it was increased to 0.55, 0.73
and 0.65, respectively, indicated with a ratio of the PI intensity value and corresponding
total (i.e., PI + SYTO9) intensity value (Figure 4).
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3.4. Effect of Tilmicosin on MRSA Biofilm Formation in a Flow Condition

As ArlRS regulates oxacillin susceptibility in MRSA, we detected whether tilmicosin
showed a synergistic effect with oxacillin against TCH1516, FPR3757, USA500, 234 and
15,098 strains in the planktonic state. The checkerboard method was performed to calculate
the FICI. Although the FICI varied in those MRSA strains (0.25~0.5), the results all indicated
a synergism of tilmicosin and oxacillin.

The individual effect of tilmicosin and the combination effect of tilmicosin/oxacillin
on dynamic biofilm development were further determined by using a BioFlux 1000 system.
The USA300 FPR3757 cells in TSBG were seeded in the BioFlux microfluidic channels
and incubated for 1 h for primary attachment, then fresh TSBG containing ~1/3 MIC of
tilmicosin, ~1/4 MIC of oxacillin and a combination (~1/6 MIC of tilmicosin with ~1/8 MIC
of oxacillin) were flowed into separate channels at a 0.15 dyn/cm2 stress. After real-time
monitoring for another 16 h, a series of images were obtained, and continuous biomass
was analyzed with BioFlux Montage software 2.3. In the 0.1% DMSO treatment control
group, FPR3757 cells adhered tightly to the bottom of the channel (Figure 5, left panel)
and gradually increased its biofilm biomass, which reached a peak at 8.5 h (Figure 5, right
panel) and occupied ~33% threshold areas. In the channels treated with an individual
agent (1 µg/mL tilmicosin; 16 µg/mL oxacillin), biofilm biomass showed a moderate
decrease with delayed peaks at about 11.5 h, which occupied 16% and 15% threshold areas,
respectively. In the drug combination group, it showed significant inhibition of biofilm
formation (4~5% threshold areas), and no obvious peak was observed.
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3.5. Effect of Tilmicosin on MRSA Mature Biofilms and Embedded Cells Viability

CLSM showed that mature biofilm (24 h) of the FPR3757 strain after 0.1% DMSO
treatment had an average thickness of 13.6 µm and maintained the intact structure, while
after 3 × MIC tilmicosin treatment, it not only showed a reduction in average thickness to
10.8 µm but also displayed a ruined structure. As a control, 8 µg/mL vancomycin treatment
resulted in an increased biofilm thickness of 18.9 µm. Moreover, the proportion of dead
bacterial cells in the DMSO and vancomycin groups was 0.28 and 0.41, respectively, while
it was increased to 0.69 in the tilmicosin-treated mature biofilm.

4. Discussion

Two-component signal transduction systems are signal sensing-responding systems
in bacteria, regulating their antimicrobial resistance, adaption and survival in various
environments, as well as virulence in hosts. To date, no TCST homolog has been identified
in humans. Thus, TCSTs have been recognized as novel antibacterial targets.

In a TCST, histidine kinase (HK), which contains a conserved substrate binding pocket,
has been considered a good candidate for drug design. In this work, we used the catalytic
and ATP-binding (CA) domain of ArlS HK for screening compounds that can inhibit
the ATPase enzyme activity. The inhibitors block HK activity to hydrolyze ATP and
subsequently hinder self-phosphorylation of the protein, thereby interfering with the
transfer of the phosphate group to its cognate response regulator (RR), which is involved
in transcriptional regulation. This strategy has been demonstrated to be feasible and
effective. Previous studies in our laboratory have discovered novel compounds targeting
S. epidermidis essential YycG histidine kinase CA domain, which have potent inhibitory
effects on staphylococcal growth and biofilm formation [74,86–93]. Recently, there has
been inspiring progress on the development of novel inhibitors against several other HKs,
including S. aureus VraS (involved in cell call-targeting antibiotics susceptibility) [94],
AgrC (important for quorum sensing and virulence regulation) [95], etc. In addition, the
extracellular domain of HK is responsible for sensing environment signals, so it may also
serve as a potential target for screening inhibitory peptides or monoclonal antibodies
(mAbs) that can block signal recognition [96,97]. Our laboratory has made efforts to
develop the mAbs that bind to the epitopes in the extracellular domain of YycG. The
mAbs show good anti-biofilm activities [98]. Although HK attracts the most attention for
inhibitor development, there are also several reports about inhibitors targeting RR protein.
RR typically contains a conserved receiver (REC) domain and an effector domain (DNA
binding). REC functions as a phosphorylation-mediated switch within RR and controls
the activity of the effector domain that elicits output responses. In addition to previously
reported Walrycin B targeting S. aureus RR WalR [99], SaeR has recently been found to be a
novel target for antivirulence therapy [100].

As a TCST that is unique in staphylococci, ArlRS has been proven to have vital func-
tions in regulating S. epidermidis and S. aureus biofilm production, modulating S. aureus
virulence and affecting antibiotic resistance in MRSA strains [101]. These findings indicate
that ArlRS is a promising target for screening inhibitors that may eradicate young/mature
biofilms, retard virulence and break antimicrobial resistance. We found that oritavancin has
an inhibitory effect against ArlS kinase activity with an IC50 of 5.47 µM, and it has a syner-
gistic effect with oxacillin. Recently, Kwiecinski et al. reported that 3,4′-dimethoxyflavone
directly inhibits ArlS autophosphorylation and decreases the severity of MRSA infection in
mice [102]. In this study, our group found that tilmicosin can strongly inhibit the ArlSHK
kinase activity, with an IC50 of 1.09 µM (about 1/5 of the oritavancin IC50), indicating
tilmicosin has more potent inhibition than oritavancin.

As a macrolide, tilmicosin has an antibacterial activity by inhibiting protein synthesis.
The MIC of tilmicosin against MRSA strains obtained in this work was 3.1 µM (about
2.7 µg/mL), which was similar to that in a previous report [103]. Our work shows that
besides its known function, it also can inhibit ArlSHK kinase activity and subsequently
interfere with ArlR regulation, suggesting another role against staphylococci, including
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MRSA. In a previous study, we demonstrated that the transcriptional regulator gene spx
was under the direct control of the ArlRS system [44]. Crosby et al. confirmed our finding
and further showed that the P2 promoter of spx contained a consensus motif that was
recognized by ArlR [85]. A series of studies in their group proved that the P2 promoter of
another gene mgrA is also directly modulated by ArlRS [82–84]. Thus, the P2 promoters
of spx and mgrA were chosen for constructing transcription reporter systems that indicate
ArlRS regulation. As a result, both spx and mgrA P2 promoters show low activities in
tilmicosin treatment groups at 4 h and 10 h, suggesting a strong inhibition of ArlS activity
by tilmicosin. Considering the importance of ArlRS in modulating oxacillin resistance and
biofilm development, this may explain why tilmicosin shows synergism with oxacillin
not only against MRSA proliferation in planktonic state but also against MRSA biofilm
formation in flow condition. Furthermore, CLSM observation suggests that tilmicosin
treatment disrupts mature S. aureus biofilms (Figure 6) and may subsequently facilitate its
bactericidal activity against embedded MRSA cells (indicated by a significant increase in
propidium iodide intensities). Overall, tilmicosin is a potent antibacterial and anti-biofilm
agent that may be used in the treatment of acute S. aureus infections and biofilm-associated
infections in animals. Additionally, it has a potential to serve as a lead compound for future
structural modifications that may broaden its applications to humans.
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