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Abstract: Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute res-
piratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not
completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of
SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with
a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune
dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocardi-
tis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation.
However, recent studies have shown that naringenin and naringin have palliative effects on various
COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and veg-
etables, have various positive effects, including reducing inflammation, preventing viral infections,
and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of
naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the
treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as ex-
tended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements
for the comprehensive alleviation of the various manifestations of COVID-19 complications.

Keywords: long COVID; SARS-CoV-2; COVID-19; naringin; naringenin; beneficial effects

1. Introduction

COVID-19 encompasses a range of illnesses resulting from the contraction of se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is spread in the pop-
ulation mainly through droplets, but also via aerosol transmission [1], contamination
transmission [2], and the fecal–oral route of transmission [3]. SARS-CoV-2 binds to the
angiotensin-converting enzyme II (ACE2) receptor in the body via the S protein, which
then invades human tissues and releases RNA via cytotoxicity [4]. The ACE2 receptor is
mainly found in type II alveolar cells and is also found in many tissues, such as the heart,
esophagus, kidneys, and bladder [5]. Therefore, SARS-CoV-2 invades the human body and
causes a multi-tissue disease, including respiratory symptoms. SARS-CoV-2 has a high
rate of transmission. The majority of patients experience acute symptoms within a span of
2–14 days following viral exposure. The symptoms are primarily fever, cough, sore throat,
myalgia, and an altered sense of smell/taste [6,7]. In addition to cardiac disease [8], neu-
rologic disease [9] and gastrointestinal disease are also seen in critical patients [10]. Most
acute symptoms subside within 2–3 weeks of being infected with the virus, although sub-
sequent research has revealed that certain individuals do not completely recuperate from
their ailment, but instead, experience post-acute consequences of SARS-CoV-2 infection
(PASC), commonly referred to as long COVID [11].
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Long COVID is characterized by the presence of persistent, relapsing, new symptoms,
or other health effects that manifest following acute SARS-CoV-2 infection [12]. Approx-
imately half of the infected individuals worldwide will develop long COVID, especially
in Asia (51%), Europe (44%), and the United States of America (31%), and this figure
could be higher due to insufficient statistics and a lack of standardized scoring [13,14].
The symptoms of long COVID are more widespread and have a greater impact on hu-
man health and working ability [15]. Statistical analysis of the symptoms of COVID-19
patients one year after infection found that the main symptoms of long COVID include
dizziness, fatigue, sleep difficulties, memory loss, anxiety and depression, hair loss, smell
and taste disorder, decreased appetite, thirst, chronic cough, pulmonary fibrosis, palpi-
tations, chest pain, diarrhea or vomiting, gastrointestinal disorders, diabetes, changes
in sexual desire or capacity, joint and muscle pain, post-exertional malaise, abnormal
movements, and thrombus formation [12,16] (Figure 1). Among them, fatigue, memory
loss, multiorgan abnormalities, pulmonary fibrosis, heart damage, sleep difficulties, and
anxiety and depression will continue unimproved for four months up to two years [17,18].
Furthermore, women and individuals with chronic underlying conditions are more sus-
ceptible to the detrimental effects of long COVID, and the intensity of symptoms can
be affected by vaccination and the mutated strains of the virus [19]. Current research
suggests that the main pathogenic mechanisms of long COVID are the persistence of the
SARS-CoV-2 virus [20], microthrombosis [21], immune dysregulation [22], the disruption of
mitochondrial function [23], the activation of pathogens such as Epstein–Barr virus (EBV)
and human herpesvirus 6 (HHV6) [24], changes in the body microbiota [25], persistent
inflammation [26], the activation of autoimmunity [27], brainstem signal transduction, and
vagal signaling dysfunction [28,29].
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At present, the primary treatment for long COVID is based on distinct symptoms,
and there are no definitive medications and therapies for long COVID treatment [30].
However, a large number of studies have identified several potential therapeutic agents
against long COVID in the natural constituents of medicinal plants, including the organic
sulfur compound from garlic (Allium sativum L.) [31], curcumin from Curcuma longa [32],
nigellone and α-hederin from Nigella sativ [33,34], phytocompound 6-gingerol from Zingiber
officinale [35], and flavonoids from garlic, propolis, and honey [31,36]. In particular, natural
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and semi-synthetic flavonoids and neutrophil elastase inhibitors isolated from natural
sources show great advantages in fighting SARS-CoV-2 or treating long COVID [37–39].

Naringin and naringenin are two of the most common flavanones found in citrus
plants (Figure 2). They are known to cause bitterness in citrus fruits and have a wide
range of biological functions. Naringin is the glycoside form of naringenin. After the oral
ingestion of naringin or naringenin by the human body, naringin is converted to naringenin
in the presence of intestinal microorganisms and absorbed in the intestinal epithelium [40].
The efficacy of naringin and naringenin is due to anti-inflammatory [41], anticancer [42],
antioxidant properties [43,44], treatment of cardiovascular disease [45], antiviral [36] and
immune-modulation effects [41], which may play an effective role in treating long COVID.
The anti-inflammatory and antioxidant effects of naringenin can effectively counteract the
cytokine storm induced by SARS-CoV-2, especially targeting and inhibiting interleukin(IL)-
6, the main pro-inflammatory factor of COVID-19 [46]. Moreover, numerous molecular
docking studies reveal that naringenin binds to viral spiking proteins, viral major proteases,
host receptors, and host viral transport channels and has multiple antiviral effects against
SARS-CoV-2 [47]. For instance, naringenin can influence the replication of the viral genome
by attaching to SARS-CoV-2 macrodomain RNA polymerase (NSP3), SARS-CoV-2 RNA-
dependent RNA polymerase (NSP12), and 3-chymotrypsin-like protease, as well as affect
viral invasion by attaching to the ACE2 receptor to achieve an antiviral effect [48,49].
However, despite the abundance of evidence suggesting that naringin and naringenin can
be more effective in treating various illnesses, there is yet to be a review of their combined
potential in treating multiple coexisting conditions of long COVID. The purpose of this
research was to assess the potential beneficial effects of naringin and naringenin in treating
long COVID.
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2. Therapeutic Potential of Naringin and Naringenin in Long COVID

In the following, we will discuss the pathogenesis of 11 common symptoms in patients
with long COVID and make reasonable assumptions about the potential therapeutic role of
naringin and naringenin in treating these symptoms (Figure 3).

https://pubchem.ncbi.nlm.nih.gov
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2.1. Cognitive Dysfunction

Cognitive dysfunction is an extremely common persistent psychiatric manifestation
after COVID-19 referred to as “brain fog”. It is characterized by attention/processing
speed deficits, mainly in memory and executive functioning [50]. Fatigue, sleep distur-
bances, language disorders, and loss of smell/taste accompany it [51,52]. According to
meta-statistics, cognitive dysfunction was found to be present in 22% of COVID-19 patients
19 weeks after diagnosis, and the symptom was continued in 19.7% at 9 months after
infection [53,54]. The condition is seen in both mildly and severely ill patients and persists
for long periods without relief, and the longer the duration of symptoms, the greater the
cognitive impairment [55]. The main way that COVID-19 survivors experience cognitive
decline is through the extended inflammation caused by SARS-CoV-2, which can increase
blood–brain barrier permeability and activate microglia and astrocyte subtypes, leading to
cellular stress and neuronal damage [56,57]. The invasion of SARS-CoV-2 also causes mid-
brain dopamine neuron senescence, which has been implicated in Parkinson’s disease [58].
The downregulation of new neuron formation caused by long-term inflammation leads to



Microorganisms 2024, 12, 332 5 of 25

reduced synaptic plasticity in the hippocampus, resulting in memory loss in COVID-19
survivors [59]. Moreover, some of the pro-inflammatory factors are involved in mood
regulation, leading to depression and other mood abnormalities in survivors [60]. In addi-
tion, SARS-CoV-2 directly infects the nervous system and causes neurological destruction
mediated by neurological inflammation [61,62]. The virus directly damages the olfactory
epithelium via neuropilin-1 and ACE2, thereby affecting the olfactory neural network
and causing olfactory malfunction [63]. Patients have exhibited notable enhancements
in IL-6, CD70, C-reactive protein (CRP), C-C Motif Chemokine Ligand 11 (CCL11), sero-
tonin, and serum biomarkers of neuronal and gliotic degeneration in the blood, as well
as alterations in the brain’s microstructure and functional brain integrity, as indicated by
neuropsychological tests, blood tests, and diagnostic brain imaging [64–66].

Naringin and naringenin have been shown to provide protection and potentially offer
therapeutic benefits against cognitive decline in neurological disorders like Alzheimer’s
disease [67,68]. Therefore, they can be reasonably hypothesized to have an ameliorative
effect on cognitive dysfunction after COVID-19. Naringin shows a protective effect on
the nervous system, mainly through the modulation of glial cell activation and protection
against nervous system stresses. Microglia and astrocytes are both essential for safeguard-
ing neurons. Microglia have two activation phenotypes: the M1 type is pro-inflammatory
and damages neurons, while the M2 phenotype exerts anti-inflammatory and neuronal-
repair functions. Naringin can promote microglia activation toward the M2 type and inhibit
its activation toward the M1 type by modulating the janus kinase/signal transd ucer and ac-
tivator of transcription 3 (JAK/STAT3) signaling pathway [69]. Astrocytes are protective of
neuronal cells [70]. Naringin regulates the expression of nuclear factor erythroid 2-related
factor 2 (Nrf2), thereby enhancing neuronal protection by astrocytes [71]. Naringenin com-
bination therapy attenuates the pro-inflammatory activation of astrocytes and significantly
attenuates 3-nitro propionic acid-induced neuronal cell death [72]. Naringin and naringenin
have been shown to protect the nervous system from oxidative stress and inflammation
in various studies. Naringenin reduces the production of reactive oxygen species, mod-
ulates pro-inflammatory cytokines (IL-1β, IL-6, and (tumor necrosis factor)TNF-α) and
anti-inflammatory cytokines (IL-10 and IL-4) to reduce inflammation, and enhances synap-
tic plasticity by increasing the expression of N-methyl-D-aspartate receptors associated
with learning and memory [73]. Naringin significantly attenuates D-galactose, doxorubicin,
and Bisphenol A-induced oxidative stress in the nervous system and improves cognitive
performance after treatment [74–76]. Naringenin exerts a protective effect against lead
damage to the nervous system by maintaining the antioxidant enzyme system (superoxide
dismutase (SOD), catalase (CAT), and glutathione (GSH)) and inhibiting the elevation of
inflammatory factors (NF-κB) and proapoptotic-related protein (Bcl-2 and caspase-3) [77].

Moreover, naringenin has depression-relieving effects. Depression disorders are linked
to decreased levels of brain-derived neurotrophic factor (BDNF), which is controlled by the
cyclic adenosine monophosphate (cAMP)-cAMP response element binding protein (CREB)-
BDNF signaling pathway [78,79]. Naringenin reverses the reduction in BDNF expression
induced by high cortisol levels and modulates the mitochondrial apoptotic pathway to
inhibit hippocampal apoptosis [80]. Naringenin can potentially enhance the endocrine
nervous system by controlling the levels of glucocorticoid receptors and monoamines in
the hippocampus, resulting in an antidepressant impact [81]. Furthermore, naringenin and
SARS-CoV-2 can cross the blood–brain barrier and enter brain tissue [73]. The combination
of naringenin and naringin, which block primary viral proteases, decrease receptor activity,
and attach to viral spiny proteins, could potentially lessen neurological harm [48,82].

2.2. Immune Dysregulation

SARS-CoV-2 invasion activates the body’s innate and adaptive immunity to clear the
invading pathogen [83]. Patients with long COVID have exhibited changes in immune
cells, increased levels of autoantibodies, and the reactivation of dormant viruses [27,84,85].
The long-term effects of COVID-19 on the patient’s immune system can be seen through
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alterations in the epigenetic and transcriptional makeup of monocytes, which can result
in long-term inflammation, excessive autoimmune activity, and long-term consequences
in the body [86]. Intermediate monocyte abnormalities and T-cell activation were found
in recovering COVID-19 patients, which were associated with persistent endothelial cell
activation and coagulation dysfunction [87,88]. Patients with long COVID exhibited a
decline in cluster of differentiation (CD)4+ and CD8+ effector memory cells [22], and the
expression of the pro-inflammatory cytokines interferon (IFN)-β and IFN-λ1 remained high
during the 8 months after infection [89]. The persistence of SARS-CoV-2 also leads to a
lack of dendritic cells in the host [90], along with a reduction in non-classical monocyte
and lymphocyte subsets [91]. The persistent aberrant activation of immunity produces
a broad spectrum of self-targeting antibodies and is hypothesized to be associated with
different long COVID symptoms [92]. Long COVID patients exhibit abnormally high
levels of functional autoantibodies targeting different G protein-coupled receptors, which
are associated with persistent neurological and cardiovascular symptoms in patients [93].
SARS-CoV-2-induced autoimmunity causes immune blood disorders, antiphospholipid
syndrome, systemic lupus erythematosus, vasculitis, acute arthritis, and Kawasaki-like
syndromes [94].

Naringenin has a palliative effect on T cell-mediated autoimmune diseases [95,96].
Following antigen induction, CD4+ T cells differentiate into distinct subpopulations, encom-
passing pro-inflammatory T cells and anti-inflammatory regulatory T cells, which maintain
equilibrium within healthy organisms [97]. Naringenin modulates the immune system’s re-
sponse to autoantigens by influencing the growth and specialization of T cells, as well as cy-
tokine signaling [98,99]. Naringenin effectively alleviates symptoms of rheumatoid arthritis
in rats by modulating lymphocyte polarization, primarily through the reduction in T helper
(Th)1 and Th17 cell differentiation and the reduction in IL-6 and TNF-α levels [99,100].
Similarly, naringenin alleviates symptoms of multiple sclerosis and systemic lupus erythe-
matosus by inhibiting the growth and specialization of harmful pro-inflammatory T cells
while maintaining the differentiation of anti-inflammatory subgroups [101,102]. Narin-
genin also modulates cellular inflammatory responses by regulating the transcription of
inflammatory factors and enhancing the lysosomal degradation of cellular inflammatory
factors [103,104].

2.3. Microbiota Dysbiosis

SARS-CoV-2 leads to long-term changes in the microbiota, with decreased gut microbial
diversity, fewer beneficial commensal bacteria, and increased opportunistic pathogens in
patients [105]. Viral invasion dysregulates gut ecology by activating immunity, deregulating
ACE2 expression, disrupting the intestinal barrier, and directly infecting bacteria [106,107].
Moreover, the antibiotics administered during treatment can cause more harm to the
patient’s intestinal flora [108]. Furthermore, COVID-19 patients exhibited noteworthy
alterations in the lung [109], oral [110], and nasopharyngeal microbiomes [111]. Changes
in the microbiome persist for an extended period, and patients do not return to normal
microbial abundance after 6 months of rehabilitation therapy [112]. Gut microbes remained
significantly different from healthy controls after 3 months of recovery and showed a
correlation with persistent symptoms of long COVID [113]. Changes in the composition
and abundance of a patient’s gut microbes also affect their susceptibility to long COVID
and complication severity [25]. These changes can have a serious impact on the health
of the survivor, causing an inflammatory immune response in the body, changes in the
levels of basal metabolite levels (e.g., amino acids, carbohydrates, and neurotransmitters),
and clinical gastrointestinal symptoms [114]. Gut microflora dysbiosis can have neurologi-
cal and pulmonary effects through cytokines and metabolites [115], which are mediated
through the gut–lung and brain–gut axes [116,117].

Naringin and naringenin have been found to have beneficial regulatory effects on
the composition and metabolism of gut flora [118,119]. The dietary intake of naringin and
naringenin helps to control the intestinal microenvironment [120]. Naringin and naringenin
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can directly regulate the intestinal microbiota and its metabolism. Naringin significantly
reduces the abundance of gastrointestinal disease-related bacteria (e.g., Lachnoclostridium
and Bilophila) and enhances probiotic content in experiments [121]. Naringenin can regulate
the growth and gene expression pattern of intestinal commensal microorganisms through
interaction and activate genes related to cellular metabolism [122]. In addition, gut barrier
dysfunction caused by microbiota dysbiosis may increase bacterial ectopia and contribute
to host immune destabilization [123]. Naringin has been shown to reduce inflammation-
associated protein expression and colonic damage caused by dextran sulfate sodium, as
well as improve colonic barrier dysfunction [124].

2.4. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

ME/CFS is a chronic multisystem disease that often follows infectious diseases and
may be associated with chronic viral infections such as human herpesviruses, human
parvovirus B19V, and enteroviruses [125]. Patients with long COVID often experience
persistent fatigue, myalgia, post-exertional malaise, insomnia, and exercise intolerance,
with symptoms resembling the diagnostic criteria for ME/CFS [126]. Although there
are no studies directly proving that acute COVID-19 triggers ME/CFS, several studies
have identified multiple overlapping or similar symptoms between long COVID and
ME/CFS [127]. COVID-19 also greatly increases the number of patients with ME/CFS [128],
and bioinformatics analysis has identified a common network of genetic interactions
between the two [129]. According to the diagnostic criteria for ME/CFS, the overall
prevalence of ME/CFS was as high as 43% among patients with long COVID, with fatigue,
malaise on exertion, and insomnia representing the main symptoms [130]. The invasion of
SARS-CoV-2 significantly impacts both mitochondrial function and reserves, and the SARS-
CoV-2 membrane protein causes mitochondrial apoptosis in epithelial cells [131]. Virus-
induced decreases in mitochondrial membrane potential [132] and the downregulation of
nuclear-encoded mitochondrial genes [133] have been observed in patients. In addition,
the infiltration of amyloid-containing deposits and skeletal muscle injuries have also been
observed in patients with long COVID [134]. The pathogenesis of ME/CFS involves
neuroinflammation, redox imbalance, mitochondrial dysfunction, autoantibodies, and
autonomic dysfunction [135–137].

The treatment of ME/CFS is still unclear and there are no effective treatments. Most
treatments are based on the clinical condition and include central nervous system drugs,
antiviral drugs, immunomodulators, analgesics, and nutritional supplements [138]. Fa-
tigue and post-exercise discomfort may be due to reduced energy sources, mitochondrial
dysfunction, and redox imbalance. Serum matrix metalloproteinase 9 (MMP-9) and muscle
damage-associated lactate dehydrogenase (LDH) are associated with muscle fatigue. By
stabilizing redox and elevating blood glucose levels, naringin effectively diminishes MMP-9
and LDH concentrations, thereby augmenting energy sources. This prolongs the duration
of fatigue-inducing exercise and relieves post-exercise discomfort [139,140]. Moreover,
naringenin can exert anti-fatigue effects by participating in the promotion of testosterone
secretion [141]. Additionally, naringin can help to stabilize mitochondrial membrane poten-
tial, preserve mitochondrial integrity, and sustain mitochondrial complex activity [142,143],
all of which can help to reduce mitochondrial dysfunction. Naringenin also protects neu-
ronal mitochondrial function by activating the transcription factor Nrf2 [144]. In addition,
naringin and naringenin are important redox regulators. Naringin significantly attenuated
antigen-induced oxidative stress and reduced TNF-α levels in fatigued mice [145] while
reinstating oxidative stress markers in rodent brains [146].

2.5. Myocarditis

Certain individuals who have survived the initial stages of COVID-19 experience en-
during cardiac impairment following their recovery, ultimately resulting in myocarditis [147].
The clinical signs of myocarditis are heterogeneous and non-specific, typically consisting of
chest pain, arrhythmias, generalized fatigue, dyspnea, and tachycardia [148]. The analysis
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of cardiac symptoms among COVID-19 survivors revealed that 9.79 percent displayed
indications of chest pain, whereas 8.22 percent presented with arrhythmias [149]. Within a
span of 2–3 months following SARS-CoV-2 infection, 19% of patients developed persistent
symptoms of myocarditis [150]. One year after rehabilitation, patients had a significant
4.16-fold increased risk of myocarditis [151] and poorer clinical outcomes, with a mortal-
ity rate of 1.36% to 5% [152]. The direct pathogenic mechanism of myocarditis in long
COVID is the direct interaction of SARS-CoV-2 with ACE2 receptors in cardiomyocytes
and pericytes, causing immune dysregulation. Subsequently, immune dysregulation leads
to cardiomyocyte injury and the release of inflammatory factors, such as IL-2, IL-6, IL-7,
TNF-a, IFN-α/β, C-X-C motif cytokine 10 (CXCL10), and C-C motif ligand 2 (CCL2), which,
in turn, induces persistent low-level inflammation [153]. Indirect pathogenic mechanisms
include hypoxemia caused by the cytokine storm [154], high levels of antiheart autoanti-
bodies caused by CD4+ T-lymphocytes [155], and cardiac mitochondrial dysfunction [156].
Myocardial injury can be identified by the presence of markers such as myoglobin, troponin,
creatine kinase-MB, IL-6, LDH, and N-terminal pro-b-type natriuretic peptide [157].

Naringin and naringenin have been shown to have cardioprotective properties [45].
First, the anti-inflammatory properties of naringin can drastically reduce the inflamma-
tory factors associated with cardiovascular injury, such as NF-κB, IL-6, IL-1β, and TNF-α,
and suppress the inflammatory response [158]. Furthermore, the antioxidant effects of
naringin can scavenge free radicals and increase the activity of antioxidant enzymes (su-
peroxide dismutase and catalase) and GSH levels, effectively protecting the heart mito-
chondria from damage, thereby reducing DOX-induced apoptosis and vacuolization in
cardiomyocytes [67]. In addition, naringin has the potential to alter the cellular channel
currents in mouse ventricular myocytes, consequently exerting antiarrhythmic effects [159].

2.6. Pulmonary Fibrosis

Pulmonary fibrosis is one of the serious sequelae of COVID-19. It is estimated that 19%
of patients recovering from COVID-19 have residual lung abnormalities [160]. The lungs
are the primary target organ for viral invasion. SARS-CoV-2 causes severe lung damage,
ultimately leading to post-COVID-19 pulmonary fibrosis (PCPF). Radiological manifesta-
tions of pulmonary fibrosis usually include bilateral lung infiltrates, “ground glass” opacity,
and “honeycomb” lungs [161]. Its cellular and molecular characteristics include a decrease
in lymphocytes and an increase in CRP and IL-6 [162]. Multiple studies have shown that
the prevalence of PCPF among COVID-19 survivors is more than 9.3% [163]. Alveolar
injury caused by SARS-CoV-2 leads to the secretion of pro-fibrotic and pro-inflammatory
cytokines by alveolar macrophages and type 2 alveolar epithelial cells (AEC), including
IFN-γ, transforming growth factor (TGF)-β, and IL-6 and IL-17. Cytokines induce my-
ofibroblast differentiation by activating the WNT/β-catenin and YAP/TAZ pathways,
ultimately leading to the combined effects of pulmonary fibrosis [164,165].

Naringin and naringenin are effective inhibitors of pulmonary fibrosis. The main
target of current anti-pulmonary fibrosis therapy is the TGF-β/Smad pathway [166]. It
has been shown that naringin inhibits cellular fibrosis by suppressing TGF-β overexpres-
sion and reducing downstream regulatory factor phosphorylation [167]. Moreover, the
anti-inflammatory and antioxidant effects of naringin and naringenin can be used against
pulmonary fibrosis [168]. Naringin has been shown to significantly reduce the infiltra-
tion of inflammatory cells induced by lipopolysaccharide and decrease the production of
macrophage nitrogen monoxide (NO) and IL-6 [169]. In critically ill COVID-19 patients,
naringenin also showed excellent IL-6 inhibition compared to synthetic monoclonal anti-
bodies [46]. In a paraquat-induced acute lung injury model, naringin not only decreased
the production of the inflammatory cytokines TNF-α and TNF-β1 but also inhibited ox-
idative stress by activating the expression of antioxidant enzymes (superoxide dismutase,
glutathione peroxidase, and heme oxygenase 1) and regulated collagen formation by mod-
ulating the ratio of tissue inhibitors of metalloproteinases-1 (TIMP-1) to MMP-9, thereby
preventing lung fibrosis [170]. Furthermore, naringin modulates the activating transcrip-
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tion factor 3/PTEN-induced kinase 1 (ATF3/PINK1) pathway and enhances mitophagy
in lung tissues, resulting in the alleviation of bleomycin-induced idiopathic pulmonary
fibrosis [171]. Naringenin also protects against cigarette-induced lung injury by regulating
miRNAs in extracellular vesicles [172].

2.7. Cough

Coughing is the most common symptom of COVID-19 sequelae and is present in
approximately 23% to 57% of COVID-19 survivors in all countries, and is highly prevalent
in both mild and severe cases [173,174]. Cough can persist for months, with a prevalence
of up to 2.5% even after one year of recovery [175], making it a major source of distress
for patients. SARS-CoV-2 may induce chronic coughing through neuroinflammatory
and neuroimmune mechanisms. Viral invasion causes the release of neuroinflammatory
mediators (IL-1β, TNF, IFN, adenosine triphosphate (ATP)) and, in turn, activates vagal
sensory neurons via transient receptor potential (TRP) channels. Sensory neurons release
a variety of neuropeptides (calcitonin gene-related peptide, substance P, and neurokinin
A), eventually leading to hypersensitivity of the cough pathway [176]. In addition, the
underlying mechanisms of chronic cough may also be related to post-infectious lung
abnormalities, cough underlying disease, upper airway cough syndrome, or cough-variant
asthma (CVA) [177–179].

The current treatment of chronic coughing focuses on suppressing the cough reflex,
reducing airway inflammation, drying and relieving coughing, and resolving phlegm to
relieve coughing [180,181]. Naringin and naringenin have long been shown to have positive
antitussive effects [182]. Naringenin can reduce inflammation caused by cigarette smoke
in mice with chronic obstructive pulmonary disease by inhibiting the production of the
pro-inflammatory factors IL-8, TNF-α, and MMP9, as well as the NF-κB pathway [183].
In an experimental CVA model, naringin has been shown to reduce irritation-induced
cough and suppress the growth of airway-inflammatory factors (IL-4, IL-5, and IL-13) and
leukocytes [184]. Moreover, naringin has been shown to significantly attenuate cigarette
smoke-induced airway neurogenic inflammation by reducing substance P and NK-1
receptors [185]. Furthermore, naringin can be used in asthma treatment by promoting the
proliferation of AECs through the bitter taste receptor (TAS2R)-related signal pathway,
thereby inducing the relaxation of airway smooth muscle cells [186].

2.8. Diabetes

The occurrence of new-onset diabetes mellitus can be attributed to acute infection with
SARS-CoV-2, and complications such as diabetic ketoacidosis (DKA) and hyperglycemic
hyperosmolar syndrome are highly prevalent [187,188]. COVID-19 survivors have a
64–66% higher risk of developing diabetes than uninfected individuals [189]. The risk
of developing diabetes in the first three months after COVID-19 infection was up to 95%,
with a higher risk of developing type 2 diabetes (T2D) than type 1 diabetes (T1D) (70% and
48%, respectively) [190]. The data indicated that during the initial year of the COVID-19
outbreak, there was a notable surge of 9.5% and 25% in the occurrence of new pediatric
T1Ds and DKAs, correspondingly, alongside a substantial rise in blood glucose levels [191].
A follow-up study found that most patients with new-onset T2D were cured 3 months
after discharge from the hospital. In contrast, the remaining 37% of patients with T2D
were diagnosed with persistent diabetes mellitus [192]. COVID-19-related abnormalities in
glucose metabolism also recovered after one year [193]. On this bases, diabetes was also
associated with serious illness, hospitalization, and death in COVID-19, so a bidirectional
causal relationship between COVID-19 and diabetes was hypothesized [194]. Both COVID-
19 patients and survivors exhibit insulin resistance and beta-cell dysfunction, which endure
even after recuperation from the illness [195].

The pathogenesis of new-onset diabetes is mainly related to pancreatic autoimmunity,
pancreatic injury, pro-inflammatory cytokine storms, the triggering of steroid drugs, and
underlying diabetic activation of the body. T1D is an autoimmune disease, and the invasion
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of SARS-CoV-2 leads to autoimmune hyperactivation in the body [196]. Additionally,
researchers have found pancreatic damage in some COVID-19 patients [197]. Thus there
has been a hypothesis suggesting that ACE2 exhibits elevated expression levels in exocrine
glands and pancreas islets [198] when SARS-CoV-2 enters them to induce pancreatic β-
cell dysfunction or apoptosis, hindering insulin signaling [199]. T2D is mainly caused
by short-term treatment and inflammation. Steroids, a widely prescribed medication for
COVID-19, can potentially impact insulin sensitivity; nevertheless, the discontinuation of
steroid therapy may lead to the recurrence of new-onset diabetes [200]. The inflammatory
factor TNF has also been recognized as a common pathogenic target of COVID-19 and
T2D [201].

Naringin and naringenin may exert antidiabetic potential by attenuating pancreatic
β-cell damage or activating their proliferation. Naringenin protects pancreatic β-cells
from streptozotocin (STZ)-induced immune stress by activating Nrf2, leading to a substan-
tial decrease in blood glucose levels and restoring normal insulin levels [202]. Naringin
inhibits mitochondria-mediated and death receptor-mediated apoptosis in pancreatic β

cells [203]. Forkhead box M1 (FoxM1) transcription factor affects pancreatic adult beta
cell proliferation, and naringin increases beta cell mass and treats diabetes by upregulat-
ing FoxM1 [204]. Naringin and naringenin also showed significant ameliorative effects
on insulin resistance. In the an STZ- and a nicotinamide-induced T2D model, naringin
and naringenin enhanced insulin secretory responses and the expression of insulin recep-
tors and their sensitizers [205]. In T2D patients, naringin was found to improve glucose
metabolism, increase residual insulin secretion, and stimulate glycogen synthesis; however,
absolute insulin deficiency prevented it from regulating glucose levels in T1D patients, yet
it could reverse T1D-induced DKA [206]. Furthermore, naringin and naringenin regulate
carbohydrate and lipid metabolism. Naringin modulates the activity of glycolysis-related
enzymes and regulates intestinal carbohydrate absorption [207]. Naringenin can reduce
metabolic disorders by modulating immune-related inflammatory factors and inhibiting
the infiltration of inflammatory cells into adipose tissue [208]. In addition, naringenin has a
mitigating effect on the complications of diabetes. Naringenin, when used in conjunction
with insulin, modulates matrix metalloproteinases to reduce neuropathic pain caused by
diabetes [209]. Naringenin inhibits high-glucose-induced vasculopathy by downregulating
the hyperproliferation and migration of vascular smooth muscle cells [210].

2.9. Pain

COVID-19 patients often have accompanying pain, including headache, musculoskeletal
pain, and testicular pain, during the acute infection period and after rehabilitation [211,212].
Although the majority of pain symptoms subside two months after recovery, 10% of
COVID-19 survivors still experience persistent musculoskeletal muscle pain, and the length
of the pain does not correlate with the intensity of COVID-19 [213]. The post-infection
follow-up of COVID-19 survivors unveiled a range of symptoms, encompassing general
pain (13.40%), joint pain (28.25%), muscle pain (13.30%), headache (9.50%), and chest
pain (12.12%) [214]. Pain development is mainly associated with direct action through
ACE2 receptors [215], the inflammatory cytokine storm [216], and the driving effect of
prostaglandins [217]. ACE2 receptors are abundant in skeletal muscle and other organs,
resulting in viral harm to the muscles, and their neurophilicity can also lead to neuronal
damage, resulting in pain [218]. The virus triggers an extended inflammatory reaction, re-
sulting in heightened hyperexcitability of the central nervous system, thereby exacerbating
pain [219]. COVID-19 patients experiencing headache symptoms exhibited elevated concen-
trations of inflammatory molecules and harmful molecules (high-mobility group protein
B1 (HMGB1), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3),
and IL-6), potentially contributing to the initiation of trigeminal activation [220,221].

Naringin and naringenin have effective analgesic effects. Naringin and naringenin can
attenuate neuronal stimulation directly by inhibiting the inflammatory response. Naringin
attenuates iodoacetate-induced osteoarthritis pain by inhibiting the secretion of adrenaline
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and pro-inflammatory factors (IL-6, NO, and TNF-α) [222]. The administration of narin-
genin in a rat model of neuropathic pain resulted in the inhibition of glial cell activation
caused by spinal nerve ligation injury, as well as a reduction in elevated levels of inflamma-
tory factors (TNF-α, IL-1β, and monocyte chemotactic protein 1) [223]. Moreover, naringin
and naringenin can directly modulate the damage perception pathway to achieve analgesic
effects. Transient receptor potential vanilloid member 1 (TRPV1) is associated with noxious
temperature sensation and inflammatory pain, and its antagonists have been considered
potential analgesics [224–226]. By interacting with TRPV1, naringin suppresses nervous
system hyperexcitability and potentially mitigates nerve pain by inhibiting oxidative
stress [227]. Transient receptor potential melastatin-3 (TRPM3) ion channels are involved
in organismal injury perception and are expressed on somatosensory neurons. Naringenin
can effectively block TRPM3 channels in vivo and in vitro, thus supporting its analgesic
effect [228]. Moreover, naringenin inhibits superoxide anion-induced inflammatory pain by
activating the NO-cGMP-PKG-KAP signaling pathway and reducing nociceptive cytokine
expression [229].

2.10. Reproductive Dysfunction

The acute infection phase of COVID-19 leads to reproductive dysfunction in both
genders, including erectile dysfunction, orchitis, reduced testosterone levels, ovarian dys-
function, and menstrual changes [230,231]. After 3.8 months of recovery, 35.9% of men and
27.7% of women were found to have sexual dysfunction, with different mechanisms in
both cases [232]. A continued high prevalence of erectile dysfunction in men was observed
3 months after COVID-19 recovery [233]. The impact of long COVID on women’s repro-
ductive health is mainly characterized by menstrual irregularities, gonadal dysfunction,
and fertility problems [234]. Both ACE2 and transmembrane serine protease 2 (TMPRSS2)
are highly expressed in the gonads, with higher expression in male gonads and detectable
SARS-CoV-2 infection in the testis [235]. Therefore, it is hypothesized that the gonads, espe-
cially the testes, are susceptible to SARS-CoV-2 infection and damage. Male long COVID
patients with coagulation abnormalities and endothelial damage also experience testicular
inflammation [236]. Testicular injury, oxidative stress by reactive oxygen species [237],
and decreased testosterone due to dysfunction of the hypothalamic–pituitary–gonadal
axis [238] can lead to erectile dysfunction [239]. Moreover, the autoimmune inflammatory
response of the body can also cause a decrease in sperm quality [240].

Naringenin also has an attenuating effect on testicular and sperm damage. Naringenin
can reduce the harmful effects of bisphenol A on the testes by suppressing oxidative stress
and mitochondrial apoptosis [241]. Naringenin has been shown to reduce the harmful
effects of antiretroviral medication on the male reproductive system of rats while preserv-
ing the normal physical structure of the testes and sperm viability [242]. Furthermore,
naringenin has a protective effect on the ovary and can alleviate polycystic ovary syndrome.
In vivo naringin treatment in rats inhibits steroidogenic enzymes and consequently controls
ovulation, thereby restoring ovarian morphology and cystic follicle levels in patients with
polycystic ovary syndrome [243].

2.11. Thrombus Formation

Endothelial damage caused by SARS-CoV-2 can lead to coagulation dysfunction
in certain patients, ultimately resulting in the development of long-term concomitant
thrombosis [244]. Individuals afflicted with long COVID face an elevated likelihood of
experiencing arterial thromboembolic events and venous thromboembolic events. They are
susceptible to acute pulmonary embolism (PE), deep vein thrombosis (DVT), myocardial
infarction, and acute respiratory distress syndrome (ARDS) [245,246]. COVID-19 survivors
had a significantly higher incidence of thrombophilia, PE (2.5–6.3%), and DVT (1.2–6.4%),
which was 2 to 3 times higher than in uninfected individuals [247]. Long COVID-induced
thrombosis can be caused by various factors, such as damage to the endothelium, the ab-
normal production of fibrin during platelet aggregation, and dysregulation of the immune
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system [248]. SARS-CoV-2 invasion can promote endothelial damage and dysfunction
through direct interaction with ACE2 receptors [244]. Its spiny proteins can also interact
with platelets and fibrin, inducing the formation of fibrin-like microclots, which are difficult
to hydrolyze [249]. Moreover, viral invasion inducing a storm of inflammatory factors (IL-
1β, IL-6, and TNF) activates exogenous coagulation pathways and promotes the inhibition
of anticoagulant routes [250]. In addition, the persistence of the virus in the outer vesicles,
the formation of autoantibodies, and chronic hypoxia can lead to long-term coagulation dis-
orders [251]. Patients with long COVID who displayed coagulation abnormalities exhibited
increased levels of hepatocyte growth factor (HGF), IL-6, and D-dimer [252].

Naringin can exert its antithrombotic effect by protecting endothelial cells, inhibiting
platelet activation, and inhibiting thrombin activity. Naringin has been shown to reduce
inflammation and alter the permeability of endothelial cells, thus mitigating endothe-
lial dysfunction [169]. Naringin protects endothelial cell function by upregulating NO
bioavailability [253], decreasing levels of inflammatory factors (IL-1β, IL-6, and IL-18), and
reversing YAP downregulation [254]. Naringin inhibits excessive autophagy in endothelial
cells by activating the PI3K-Akt-mTOR pathway [255]. Moreover, naringenin can impede
platelet aggregation. Naringenin has a structure-dependent inhibitory effect on platelet
function in both whole blood and plasma [256], and can also inhibit platelet activation
by targeting the PI3K/Akt pathway, preventing FeCl3-induced carotid artery thrombosis
and vascular occlusion and displaying effective antithrombotic properties [257]. In addi-
tion, research on molecular docking demonstrated that naringenin is strongly attracted
to thrombin and can attach itself to the active core of thrombin, potentially impeding its
activity [258]. Protein disulfide isomerase (PDI) in plasma is involved in the conforma-
tional formation of coagulation-associated proteins, and naringin can also affect thrombus
formation and stabilization by binding to PDI and inducing conformational changes [259].

3. Conclusions and Prospects

This review addresses the pathogenesis and statistical status of eleven complications of
long COVID and specifically addresses the therapeutic potential of naringin and naringenin
in long COVID (Table 1). The clinical symptoms and biomarkers of long COVID have been
widely reported, and long COVID can indeed have serious long-term effects on human
health [260,261]. There are no definitive medications that directly treat multiple long COVID
complications [262], and the treatment approach for long COVID is still based solely on
clinical symptoms and the use of nutraceuticals and probiotics to improve symptoms [263].
Therefore, treating patients with multiple syndromes requires a combination of drugs.
Naringin and naringenin, as important constituents of medicinal plants, are characterized
by strong safety, multiple targets, and few side effects, with excellent performance in
treating various diseases. They demonstrate protection against biotic stress by inducing a
hormonal dose response in various cell models [264]. Moreover, it is worth noting that nano-
preparations of natural products such as naringenin can improve their bioavailability and
drug targeting after oral administration [265]. We enumerate the therapeutic and palliative
effects of naringin and naringenin on conditions with symptoms or pathogenic mechanisms
similar to those of long COVID, which are based on their anti-inflammatory, antimicrobial,
antiviral, anti-free radical, cardiovascular-protection, microbiota-modulation, and neuron-
protection effects. The purpose of this review is to provide a theoretical foundation for the
use of naringin and naringenin as potential treatments for long COVID. Further research is
necessary to ascertain the true efficacy and appropriate dosage of naringin and naringenin
in treating long COVID, as well as conduct thorough follow-up clinical trials.
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Table 1. Potential pathophysiological mechanisms of long COVID symptoms and the functions of
naringin and/or naringenin.

Long COVID Symptoms Potential Pathophysiological Mechanisms of
Long COVID Functions of Naringin and/or Naringenin

Cognitive Dysfunction

Interference with blood–brain barrier led to neuronal
damage [56,57]
Downregulation of new neuron formation [59]
Pro-inflammatory factors led to depression [60]
Direct damage to the olfactory epithelium [63]

Modulation of glial cell activation [69,71,72]
Enhanced synaptic plasticity [73]
Protected the nervous system from oxidative stress and
inflammation [77]
Inhibited hippocampal apoptosis [80]
Enhanced the endocrine nervous system [81]

Immune Dysregulation

Intermediated monocyte abnormalities and T-cell
activation [87,88]
Decline in CD4+ and CD8+ effector memory cells [22]
Lack of dendritic cells [90]
Reduction in non-classical monocyte and lymphocyte
subsets [91]
Increased levels of autoantibodies [93]

Influenced growth and specialization of T cells [98–102]
Regulated the transcription and lysosomal degradation
of inflammatory factors [103,104]

Microbiota Dysbiosis

Changes in the composition and abundance of the
gut [105], lung [109], oral [110], and nasopharyngeal
microbiomes [111]
Altered basal metabolite levels [114]

Controlled the intestinal microenvironment [120] and
colonic barrier [124].
Regulated the intestinal microbiota [121]
Regulated gene expression pattern of intestinal
commensal microorganisms [122]

ME/CFS
Impacted both mitochondrial function and
reserves [131–133]
Infiltration of amyloid-containing deposits [134]

Stabilization of energy sources [139–141]
Reduced mitochondrial dysfunction [142–144]
Attenuated oxidative stress [145,146]

Myocarditis

Inflammation of cardiomyocytes through direct action
of SARS-CoV-2 [153]
Hypoxemia [154]
High levels of antiheart autoantibodies [155]
Cardiac mitochondrial dysfunction [156]

Reduced the inflammatory factors associated with
cardiovascular injury [158]
Protected cardiac mitochondria from oxidative
damage [67]
Altered the cellular channel currents [159]

Pulmonary Fibrosis Alveolar injury led to secretion of pro-fibrotic and
pro-inflammatory cytokines [164,165]

Inhibition of TGF-β overexpression [167]
Reduced the infiltration of inflammatory cells [169]
Regulated collagen formation [170]
Enhanced mitophagy in lung tissues [171]
Regulated miRNAs in extracellular vesicles [172]

Cough Neuroinflammatory mediators led to hypersensitivity
of the cough pathway [176]

Inhibited the production of pro-inflammatory
factors [183,184]
Attenuated airway neurogenic inflammation [185]
Induced relaxation of airway smooth muscle cells [186]

Diabetes
Autoimmune hyperactivation in the body [196]
β-cell harm and pancreatic damage [197,199]
Steroids impacted insulin sensitivity [200]

Attenuated pancreatic β-cell damage or activated their
proliferation [202–204]
Ameliorative effect on insulin resistance [205,206]
Regulated carbohydrate and lipid
metabolism [207,208]
Mitigated effect on the complications of
diabetes [209,210]

Pain
Direct damage to muscle by the virus [218]
Inflammation led to overstimulation of the nervous
system [219–221]

Attenuated neuronal stimulation by inhibiting the
inflammatory response [222,223]
Modulated the damage perception pathway [227–229]

Reproductive Dysfunction

Virus-induced gonadal damage [235]
Coagulation abnormalities and endothelial
damage [236]
Decreased testosterone [238]
Decrease in sperm quality caused by inflammatory
response [240]

Inhibition of oxidative stress and mitochondrial
apoptosis in testes [241]
Preserved the structure of the testes and sperm
viability [242]
Inhibited steroidogenic enzymes and controlled
ovulation [243]

Thrombus Formation

Endothelial damage and dysfunction [244]
Formation of fibrin-like microclots that are difficult to
hydrolyze [249]
Inflammatory factor storm activated exogenous
coagulation pathways [250]
Formation of autoantibodies and chronic hypoxia [251]

Upregulated NO bioavailability [253]
Decreasing levels of inflammatory factors [254]
Inhibited excessive autophagy in endothelial cells [255]
Inhibited platelet activation [256,257]
Inhibited thrombin activity [258,259]
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