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Abstract: Recent observational studies revealed an association between gut microbiota and aging, but
whether gut microbiota are causally associated with the aging process remains unknown. We used a
two-sample Mendelian randomization approach to investigate the causal association between gut
microbiota and biological age acceleration using the largest available gut microbiota GWAS summary
data from the MiBioGen consortium and GWAS data on biological age acceleration. We further
conducted sensitivity analysis using MR-PRESSO, MR-Egger regression, Cochran Q test, and reverse
MR analysis. Streptococcus (IVW, β = 0.16, p = 0.0001) was causally associated with Bioage acceleration.
Eubacterium (rectale group) (IVW, β = 0.20, p = 0.0190), Sellimonas (IVW, β = 0.06, p = 0.019), and
Lachnospira (IVW, β = −0.18, p = 0.01) were suggestive of causal associations with Bioage acceleration,
with the latter being protective. Actinomyces (IVW, β = 0.26, p = 0.0083), Butyricimonas (IVW, β = 0.21,
p = 0.0184), and Lachnospiraceae (FCS020 group) (IVW, β = 0.24, p = 0.0194) were suggestive of
causal associations with Phenoage acceleration. This Mendelian randomization study found that
Streptococcus was causally associated with Bioage acceleration. Further randomized controlled trials
are needed to investigate its role in the aging process.

Keywords: biological aging; aging; gut microbiota; mendelian randomization study; instrumen-
tal variables

1. Introduction

With the continuous improvement in the medical field and quality of life, people’s
life expectancy has generally been extended. However, the problem of aging has become
increasingly serious [1]. According to the WHO’s predictions, the number of people
over 60 years old in the global population will reach 2.1 billion by 2050 [2]. Aging is a
major challenge that all countries in the world will face. Aging populations are severely
affected by aging-associated diseases (AAD) and geriatric syndromes (GSs), which not
only affect their quality of life but also create a significant burden on the social public
health system [3]. Reversing the adverse effects of aging-associated diseases and geriatric
syndromes is a difficult task, so the prevention and promotion of successful aging are
particularly important. Traditionally, the process of aging is influenced by complex factors,
including genetic and epigenetic factors as well as environmental factors [4]. Biological age
refers to an assessment of an individual’s age based on various biological markers, health
indicators, and physiological characteristics rather than simply relying on the passage of
time as in chronological age. Biological aging, compared to chronological aging, offers
several advantages in understanding the aging process [5]. Biological aging provides a more
comprehensive and dynamic perspective on the aging process compared to chronological

Microorganisms 2024, 12, 370. https://doi.org/10.3390/microorganisms12020370 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12020370
https://doi.org/10.3390/microorganisms12020370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://doi.org/10.3390/microorganisms12020370
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12020370?type=check_update&version=1


Microorganisms 2024, 12, 370 2 of 15

aging. This knowledge is crucial for developing interventions to promote healthy aging,
prevent age-related diseases, and improve overall well-being in aging populations. In this
article, we employed two metrics to measure biological aging. PhenoAge is computed
based on chronological age and includes factors such as albumin, creatinine, C-reactive
protein (CRP), alkaline phosphatase, glucose, lymphocyte percentage, mean corpuscular
volume, red blood cell distribution width (RDW), and white blood cell count. On the other
hand, BioAge, also contingent on chronological age, encompasses albumin, creatinine,
CRP, and alkaline phosphatase (shared with PhenoAge). Additionally, Bioage incorporates
glycated hemoglobin (HbA1c), systolic blood pressure, and total cholesterol. Both aging
metrics, as established in previous studies [6,7], demonstrate robust predictive capabilities
for aging-related outcomes.

Increasing evidence suggests that gut microbiota play an important role in the aging
process [8]. The gut microbiome, the collection of microorganisms inhabiting the human
gastrointestinal tract, emerged as a key player in regulating host physiology and health.
The gut microbiota begin to colonize the body from birth and develop together with the
individual, playing a role in different stages of an individual’s life. Accumulating evidence
indicates that alterations in the gut microbiota composition and function, collectively
referred to as dysbiosis, are associated with age-related diseases and may contribute to
the aging process. Indeed, dysbiosis has been shown to affect systemic inflammation,
immune function, and metabolism, all of which are hallmarks of aging [8–11]. Studies on
some model animals suggested that gut dysbiosis may be a sign of aging [12–14]. Some
studies show that gut microbiota diversity is higher in the high-longevity population [15].
A large-scale survey study of the elderly showed that the increase and decrease in the
diversity of gut microbiota occur with actual age changes [16]. Some studies also show
that supplementing certain gut microbiota can extend the lifespan of progeroid mice [17].
Investigating whether gut microbiota lead to accelerated aging or slow down aging, or
whether other lifestyle and psychosocial factors play a role, is extremely challenging.
Mendelian randomization (MR) provides powerful conditions for this purpose.

Observational studies cannot infer causal relationships between exposure and out-
comes, and randomized controlled trial (RCT) studies often require a lot of research funding
and costs and are constrained by experimental design limitations. Mendelian randomiza-
tion uses genetic variation as an instrumental variable to infer causal relationships between
exposures and outcomes from non-experimental data. It has been widely used as a novel
research method. [18]. Using MR has identified causal relationships between gut micro-
biota and aging-related diseases such as cardiovascular diseases and neurodegenerative
diseases [19,20]. MR studies also found causal relationships between gut microbiota and
longevity [21,22]. However, no MR studies have yet demonstrated a causal relationship
between gut microbiota and biological aging. In this study, MR was used to analyze the
causal relationship between gut microbiota and biological aging in order to explore whether
specific gut microbiota accelerate or decelerate the biological aging process and to provide
new insights into promoting healthy aging through the modulation of gut microbiota.

2. Materials and Methods
2.1. Study Design and Ethics

Our study design is illustrated in Figure 1. We used two-sample Mendelian ran-
domization to investigate association between gut microbiota and biological aging. The
study is based on publicly available data from MiBiogen consortium [23,24] and a study
about biological aging carried out by Kuo et al. [5]. There is no sample overlap in the
Genome-Wide Association Studies (GWAS) data between the exposure and the outcome.
Each study is subject to the approval of the corresponding ethics committee.
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GWAS summary data are based on the study of MiBiogen consortium, which pro-
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data from 24 cohorts involving 18,340 participants, along with 16S ribosomal RNA (rRNA) 
gene sequencing profiles of fecal samples. The majority of participants had European an-
cestry (n = 13,266). Microbiota quantitative trait loci (mbQTL) mapping analysis was con-
ducted to identify host genetic variants that were mapped to genetic loci associated with 
the abundance levels of bacterial taxa in the gut microbiota. Genus was the lowest taxo-
nomic level analyzed, and the study identified 131 genera with a mean abundance greater 

Figure 1. Overview of the design and methods used in this Mendelian randomization study. MR,
Mendelian randomization; BioageAccel, Bioage Accelaration; PhenoageAccel, PhenoAge Accelara-
tion; SNP, single-nucleotide polymorphism; se, standard error.

2.2. Exposure Data Sources

GWAS summary data are based on the study of MiBiogen consortium, which provided
genetic variants related to gut microbiota. This study coordinated genetic genotype data
from 24 cohorts involving 18,340 participants, along with 16S ribosomal RNA (rRNA) gene
sequencing profiles of fecal samples. The majority of participants had European ancestry
(n = 13,266). Microbiota quantitative trait loci (mbQTL) mapping analysis was conducted
to identify host genetic variants that were mapped to genetic loci associated with the
abundance levels of bacterial taxa in the gut microbiota. Genus was the lowest taxonomic
level analyzed, and the study identified 131 genera with a mean abundance greater than 1%.
Our study analyzed data on 131 genera of European ancestry to investigate the association
between gut microbiota and biological aging.

2.3. Outcome Data Sources

The GWAS summary data for biological age acceleration was obtained from Kuo
et al.’s study. [5]. The study collected data on PhenoAge acceleration (PhenoAgeAccel)
and Bioage acceleration (BioageAccel) from 107,460 and 98,446 individuals of European
ancestry, respectively. PhenoAge and Bioage are two effective predictors of biological age.
These two predictors were trained by Levine et al. using data from National Health and
Nutrition Examination Survey (NHANES) III [6,7]. The calculation formulas and biological
markers included in PhenoAge and Bioage can be found in Kuo et al.’s paper [5]. Kuo
et al. validated PhenoAge and Bioage using data from the UK BioBank. Biological age
acceleration is estimated by using the residuals of PhenoAge and Bioage after eliminating
the effect of chronological age using linear regression models.

2.4. Statistical Analysis

We used a two-sample Mendelian randomization approach to analyze summary
data. Following the basic principles of MR, we employed genetic variants as instrumental
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variables (IVs), which are required to fulfill three key assumptions: (1) the IVs used in the
analysis must have an association with the gut microbiota, (2) the IVs must not be associated
with any confounders, and (3) the IVs must affect the aging process (outcome variable)
solely through the gut microbiota and not via any other pathway. We initially treated the
gut microbiota as the exposure variable to assess its causal effects on the aging process. To
obtain more single-nucleotide polymorphisms (SNPs) for subsequent sensitivity analyses,
we referred to previous MR studies on the gut microbiota [25–27] and set a threshold of
p < 1 × 10−5 to screen SNPs. In the reverse Mendelian randomization analysis, when
BioageAccel and PhenoageAccel were used as exposure variables, we used a significance
threshold of p < 5 × 10−8 to select SNPs. We evaluated the linkage disequilibrium (LD) of
the selected SNPs using the 1000 Genomes Project European samples data and retained
only the SNP with the lowest p-value, with an LD threshold of r2 < 0.001. To avoid
weak instrument bias, we calculated the F-statistic. The formula for the F-statistic is as
follows: F = R2×(N−K−1)

(1−R2)×K , where R2 represents the proportion of variance in the exposure
explained by genetic variation, N represents the sample size, and K represents the number
of instrumental variables [28]. If the F-statistic is less than 10, it is considered a weak
instrument. We used an online tool to calculate the power of the MR estimate [29,30].

We used multiple methods to infer causal associations, including the inverse variance
weighted (IVW) method, MR-Egger, Weighted median, Weighted mode, and Maximum
likelihood. The IVW method is the standard method for MR meta-analysis [28]. It does not
require individual-level data and can directly calculate the causal effect size using summary
data. If genetic variables are uncorrelated, the IVW estimate is equal to the estimate from
the 2SLS method used for individual-level data [31]. The MR-Egger method relaxes the
assumption of no pleiotropy among genetic variants in the IVW method. It assumes that
the association between the instrument exposure and instrument outcome is independent,
known as the instrument strength independent of direct effect (InSIDE) hypothesis [32].
This hypothesis is weaker than strict exclusion restriction criteria. However, both the IVW
and MR-Egger regression methods theoretically assume that the genetic variant-exposure
association is a measurement without error (no measurement error, NOME) [33]. The
MR-Egger regression method violates the NOME assumption and results in greater bias
than IVW estimates, particularly when affected by weak instrument bias. The Weighted
median estimate takes into account the issue of large differences in estimation accuracy,
requiring that only at least 50% of the weight is contributed by genetic variants [34]. When
the InSIDE hypothesis is violated, the Weighted mode method is then shown to have higher
statistical power for detecting a causal effect, less systematic error, and reduced type I error
rates than the MR-Egger regression method [34]. The Maximum likelihood approach is
similar to the IVW method, assuming no heterogeneity or horizontal pleiotropy. Assuming
these assumptions are met, the obtained results will be unbiased, and the standard errors
will be smaller compared to the IVW method [35]. In the sensitivity analyses, we used the
MR pleiotropy residual sum and outlier (MR-PRESSO) method. The MR-PRESSO analysis
identifies and endeavors to mitigate horizontal pleiotropy by eliminating noteworthy
outliers. However, the MR-PRESSO outlier test mandates the validation of a minimum
of 50% of the genetic variants as instruments and hinges on InSIDE assumptions [36]. We
calculated the Cochran’s Q test to assess heterogeneity. This involves a weighted sum of
the squared distances of the variant-specific estimates from the overall IVW estimate. A
high value of the Q statistic indicates that the variant-specific ratio estimates differ more
than expected due to chance alone. We used the MR-Egger regression to test for horizontal
pleiotropy. To examine the causal relationship between gut microbiota and biological
aging, we conducted a reverse MR analysis on the bacteria identified as causally linked to
biological aging in the forward MR analysis. The methodologies used were in line with
those applied in the forward MR analysis.

To avoid false positive results due to multiple testing, we employed the q-values to
calculate False discovery rate and set the threshold for q-values at 0.05 [37]. A p-value < 0.05
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but q-value > 0.05 was considered suggestive of a causal association. All statistical analyses
were performed using R (version 4.2.2).

3. Results

Using summary-level data from GWAS meta-analyses of 131 genus-level gut micro-
biota as the exposure variables and GWAS meta-analyses of BioageAccel and PhenoageAc-
cel as the outcome variables, we identified 3 to 21 SNPs with F-statistics ranging from 16.00
to 103.66, with no evidence of potential weak instrument bias (Tables S1–S4).

For Bioage acceleration, Eubacterium (brachy group) showed suggestive protective
association in the IVW analysis (β = −0.06, standard error(se) = 0.03, p = 0.036, q = 0.77);
in the Weighted median analysis, the association was suggestive (β = −0.10, se = 0.04,
p = 0.0089, q = 0.97); and in the Maximum likelihood analysis, the β was −0.07 (se = 0.03,
p = 0.0170, q = 0.29) (Tables 1 and S3). For Eubacterium (rectale group), there was a suggestive
association in the IVW analysis (β = 0.20, se = 0.08, p = 0.0190, q = 0.48) and a causal
association in the Maximum likelihood analysis (β = 0.21, se = 0.06, p = 0.0008, q = 0.03).
Since IVW was the main analysis, Eubacterium (rectale group) was considered to have a
suggestive association. Adlercreutzia was found to have a causal association after the
FDR correction in the IVW and Maximum likelihood analyses (IVW, β = 0.15, se = 0.04,
p = 0.0004, q = 0.03; Maximum likelihood, β = 0.16, se = 0.04, p = 0.0005, q = 0.03). It showed a
suggestive causal association in the Weighted median analysis (β = 0.14, se = 0.06, p = 0.015,
q = 0.97) but had an opposite direction of effect in the MR-Egger analysis (β = −0.06,
se = 0.19, p = 0.75, q = 0.86). Bilophila was found to have a suggestive causal association in
the IVW and Maximum likelihood analyses (IVW, β = 0.09, se = 0.04, p = 0.042, q = 0.77;
Maximum likelihood, β = 0.09, se = 0.04, p = 0.041, q = 0.51). Lachnospira was found to have
a suggestive protective association (IVW, β = −0.18, se = 0.07, p = 0.01, q = 0.43; Weighted
median, β = −0.18, se = 0.08, p = 0.029, q = 0.99; Maximum likelihood, β = −0.18, se = 0.07,
p = 0.011, q = 0.23). Sellimonas was found to have suggestive association (IVW, β = 0.06,
se = 0.03, p = 0.019, q = 0.48; Maximum likelihood, β = 0.06, se = 0.03, p = 0.011, q = 0.23).
Streptococcus was causally associated with Bioage acceleration (IVW, β = 0.16, se = 0.04,
p = 0.0001, q = 0.01; Maximum likelihood, β = 0.17, se = 0.04, p = 0.0001, q = 0.01).

When using PhenoAge acceleration as the outcome variable, Actinomyces was found
to have suggestive associations (IVW, β = 0.26, se = 0.10, p = 0.0083, q = 0.54; Maximum
likelihood, β = 0.27, se = 0.10, p = 0.0086, q = 0.25) (Table 2 and Table S4). Butyricimonas
also had suggestive associations (IVW, β = 0.21, se = 0.09, p = 0.0184, q = 0.64; Maximum
likelihood, β = 0.21, se = 0.09, p = 0.0189, q = 0.35). Lachnospiraceae (FCS020 group) had
suggestive associations (IVW, β = 0.24, se = 0.10, p = 0.0194, q = 0.64; Maximum likelihood,
β = 0.25, se = 0.10, p = 0.0104, q = 0.25). Roseburia had suggestive protective associations after
FDR correction in the IVW analysis (β = −0.42, se = 0.14, p = 0.0034, q = 0.45) and remained
protective even after FDR correction in the Maximum likelihood analysis (β = −0.42,
se = 0.11, p = 0.0003, q = 0.03).

All the gut microbiota mentioned above have causal or suggestive causal associations,
except for Roseburia when PhenoAge acceleration was used as the outcome (Cochran’s
IVW Q = 23.84, p = 0.033; Cochran’s MR Egger Q = 20.75, p = 0.054), showed no significant
heterogeneity in their Cochran’s IVW Q and Cochran’s MR Egger Q values (Figures 2 and 3;
Tables S5–S10). MR-Egger regression intercept analysis did not reveal significant directional
pleiotropy. Subsequent MR-PRESSO analysis found only one outlier SNP for Eubacterium
(rectale group) in relation to Bioage acceleration (GlobalTest p = 0.0484), and no outliers were
found for the others. After the MR-PRESSO analysis, the results for Adlercreutzia, Bilophila,
Lachnospira, Sellimonas, and Streptococcus remained robust (p < 0.05) when the outcome
was Bioage acceleration, and the results for Actinomyces and Lachnospiraceae (FCS020 group)
remained robust (p < 0.05) when the outcome was PhenoAge acceleration. No obvious
abnormal SNP was found in the subsequent leave-one-out analysis (Figures S1 and S2).
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Table 1. Mendelian randomization results of causal effects between gut microbiota and Bioage
acceleration.

Exposure No. of SNP Method F-Statistic β se p q-Value

Eubacterium 10 Inverse variance weighted 72.05 −0.06 0.03 0.0363 0.77
(brachy group) MR−Egger 0.08 0.11 0.4880 0.86

Weighted median −0.10 0.04 0.0089 0.97
Weighted mode −0.12 0.06 0.1063 0.99

Maximum likelihood −0.07 0.03 0.0171 0.29
Eubacterium 8 Inverse variance weighted 18.28 0.20 0.08 0.0187 0.48

(rectale group) MR-Egger 0.45 0.30 0.1849 0.86
Weighted median 0.12 0.09 0.1706 0.99
Weighted mode 0.05 0.14 0.7219 0.99

Maximum likelihood 0.21 0.06 0.0008 0.03
Adlercreutzia 8 Inverse variance weighted 34.19 0.15 0.04 0.0004 0.03

MR−Egger −0.06 0.19 0.7474 0.86
Weighted median 0.14 0.06 0.0147 0.97
Weighted mode 0.11 0.09 0.2509 0.99

Maximum likelihood 0.16 0.04 0.0005 0.03
Bilophila 12 Inverse variance weighted 22.41 0.09 0.04 0.0423 0.77

MR−Egger −0.21 0.19 0.3103 0.86
Weighted median 0.10 0.06 0.0892 0.99
Weighted mode 0.09 0.09 0.3117 0.99

Maximum likelihood 0.09 0.04 0.0407 0.51
Lachnospira 6 Inverse variance weighted 18.13 −0.18 0.07 0.0101 0.43

MR−Egger −0.56 0.41 0.2478 0.86
Weighted median −0.18 0.08 0.0286 0.99
Weighted mode −0.21 0.12 0.1443 0.99

Maximum likelihood −0.18 0.07 0.0115 0.23
Sellimonas 9 Inverse variance weighted 103.66 0.06 0.03 0.0189 0.48

MR−Egger 0.21 0.15 0.2022 0.86
Weighted median 0.04 0.03 0.2444 0.99
Weighted mode 0.04 0.05 0.4205 0.99

Maximum likelihood 0.06 0.03 0.0111 0.23
Streptococcus 15 Inverse variance weighted 19.41 0.16 0.04 0.0001 0.01

MR−Egger 0.14 0.16 0.3990 0.86
Weighted median 0.11 0.06 0.0789 0.99
Weighted mode 0.08 0.11 0.4728 0.99

Maximum likelihood 0.17 0.04 0.0001 0.01
MR, Mendelian randomization; SNP, single nucleotide polymorphism; se, standard error.

Table 2. Mendelian randomization results of causal effects between gut microbiota and PhenoAge
acceleration.

Exposure No. of SNP Method F-Statistic β se p q-Value

Actinomyces 7 Inverse variance weighted 46.62 0.26 0.10 0.0083 0.54
MR−Egger 0.30 0.27 0.3138 0.95

Weighted median 0.20 0.13 0.1366 0.99
Weighted mode 0.18 0.19 0.3781 0.98

Maximum likelihood 0.27 0.10 0.0086 0.25
Butyricimonas 13 Inverse variance weighted 30.12 0.21 0.09 0.0184 0.64

MR−Egger 0.29 0.30 0.3597 0.95
Weighted median 0.21 0.12 0.0816 0.99
Weighted mode 0.13 0.20 0.5130 0.98

Maximum likelihood 0.21 0.09 0.0189 0.35
Lachnospiraceae 12 Inverse variance weighted 24.73 0.24 0.10 0.0194 0.64
(FCS020 group) MR−Egger 0.46 0.26 0.1074 0.95

Weighted median 0.15 0.14 0.2797 0.99
Weighted mode 0.14 0.19 0.4635 0.98

Maximum likelihood 0.25 0.10 0.0104 0.25
Roseburia 14 Inverse variance weighted 19.24 −0.42 0.14 0.0034 0.45

MR−Egger 0.09 0.41 0.8333 1.00
Weighted median −0.24 0.15 0.1189 0.99
Weighted mode −0.17 0.21 0.4313 0.98

Maximum likelihood −0.42 0.11 0.0003 0.03
MR, Mendelian randomization; SNP, single nucleotide polymorphism; se, standard error.
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Figure 2. Scatter plots for the causal association between gut microbiota and Bioage acceleration.
SNP, single nucleotide polymorphism; MR, Mendelian randomization.

Figure 3. Scatter plots for the causal association between gut microbiota and PhenoAge acceleration.
SNP, single nucleotide polymorphism; MR, Mendelian randomization.



Microorganisms 2024, 12, 370 8 of 15

We further conducted a reverse Mendelian randomization analysis, and no significant
causal associations were found when the exposure factor was Bioage acceleration, and
the outcome factor was gut microbiota (Tables S11–S20). When the exposure factor was
PhenoAge acceleration, only Butyricimonas showed a causal association in the MR Egger
method (p = 0.0062), while IVW and other methods did not show significant causal asso-
ciations. However, potential heterogeneity was detected in the IVs in the heterogeneity
analysis (Cochran’s IVW Q = 68.94, p = 0.016), and potential horizontal pleiotropy was
found in the MR-Egger regression intercept analysis (p = 0.015).

4. Discussion

Based on a review of the current literature, this study represents the first Mendelian
randomization investigation into the potential causal relationship between gut microbiota
and the aging process. Utilizing summary data from gut microbiota and aging-related
GWAS, we conducted a two-sample Mendelian randomization analysis to explore the poten-
tial causal association between gut microbiota and accelerated aging. Our results show that
the increase in Streptococcus abundance can accelerate aging, and Eubacterium (rectale group),
Sellimonas, Actinomyces, Butyricimonas, Lachnospiraceae (FCS020 group), and Lachnospira have
suggestive causal effects on aging acceleration and deceleration, respectively.

In this study, BioageAccel and PhenoageAccel were used to characterize the outcome
variables of aging acceleration. Previous studies showed that Bioage and PhenoAge are
reliable predictors of aging outcomes [6,7,38]. Both have been used to characterize biological
age and aging acceleration in various studies [39–42]. Kuo et al. conducted a genome-wide
association study on Bioage and PhenoAge and found that BioageAccel and PhenoageAccel
were associated with cardiovascular metabolic risk and inflammation, respectively, both
of which are closely related to the aging process [5]. Importantly, dysbiosis of the gut
microbiota is a key factor in promoting cardiovascular and metabolic risk and systemic
inflammation [43]. Therefore, we believe that BioageAccel and PhenoageAccel are powerful
tools for quantifying the effect of gut microbiota on aging acceleration.

Based on existing research, there is evidence to suggest that dysbiosis of the gut micro-
biota is closely associated with the aging process. He et al. conducted a study to investigate
the genetic correlation and causal relationship between gut microbiota and longevity using
linkage disequilibrium score regression analysis and Mendelian randomization analysis.
Their findings suggest a potential bidirectional causal relationship between gut microbiota
and longevity [21]. Bárcena et al. found that both the progeria mouse model and clinical
patients exhibited dysbiosis of gut microbiota. Moreover, the gut microbiota of centenarians
exhibited a coexistence of healthy and pathogenic bacteria. Fecal microbiota transplantation
(FMT) from wild-type donors to progeria recipients weakened the progeria phenotype,
and the survival rate of progeria mice was also significantly improved [44]. Our study
results indicate a causal relationship between Streptococcus and aging acceleration, which is
of great significance for achieving anti-aging treatment by regulating gut microbiota and
promoting healthy aging.

As a common gram-positive opportunistic pathogen, Streptococcus can exist in the
nasopharynx and gut of healthy individuals. Under normal circumstances, it mostly does
not have pathogenicity. However, when various internal and external factors cause disrup-
tion of the body’s microbiota, it can cause opportunistic infections and lead to purulent
inflammation, scarlet fever, arthritis, acute glomerulonephritis, and other diseases. It was
reported that dysbiosis of gut Streptococcus is associated with various diseases, such as
atherosclerotic cardiovascular disease [45], hypertension [46], diabetes [47], obesity [48], col-
orectal cancer [49,50], lung cancer [51], gastric cancer [52], inflammatory bowel disease [50],
mental disorders [53], multiple myeloma [54], systemic lupus erythematosus [55], and
Parkinson’s disease [56]. Importantly, dysbiosis of gut Streptococcus is also closely related
to the occurrence of aging-related diseases. Singh et al. employed 16S rDNA metagenomic
sequencing analysis and reported a significant increase in the abundance of Streptococcus in
the gut and oral microbiota of non-healthy aging individuals compared to healthy aging
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individuals [57]. Meanwhile, another study further showed that the gut microbiota of
healthy longevity individuals had higher diversity, mainly dominated by Bacteroides, while
the abundance of Streptococcus and other pathogenic bacteria in the gut microbiota of non-
healthy longevity individuals was higher, leading to their abnormal biological metabolism
and function in a non-healthy state [58].

It is important to note that opportunistic infections by intestinal Streptococcus can
trigger an inflammatory response in the body, leading to the production of various inflam-
matory mediators within cells, such as IL-6, IL-8, and TNF-α [59–62]. These inflammatory
mediators play a significant regulatory role in the aging process, accelerating the degra-
dation and aging of cellular functions [63,64]. Streptococcus infections can also lead to
increased intracellular oxidative stress, generating reactive oxygen species and free radicals,
causing damage to cell structure and function [60,65]. Oxidative stress is one of the impor-
tant triggers of cell aging [66], and Streptococcus may promote the aging process of cells by
increasing oxidative stress levels. Furthermore, Streptococcus infections can induce changes
in chromatin remodeling, leading to the relaxation and contraction of chromatin, affecting
gene transcription and expression [67,68]. These changes in chromatin remodeling play a
significant role in the cellular aging process [68,69].

Eubacterium (rectale group), Sellimonas, Actinomyces, Butyricimonas, and Lachnospiraceae
(FCS020 group) were found to have suggestive accelerating effects on Bioage or Phe-
noAge in this study, while Lachnospira was found to have a suggestive protective effect
on BioAge. Although Eubacterium (rectale group) is believed to produce butyrate and have
anti-inflammatory effects [70], it has also been shown to promote inflammation and be
associated with diabetic retinopathy and colon cancer [71,72]. Sellimonas has been reported
to increase inflammatory diseases such as depression, ulcerative colitis, and ankylosing
spondylitis [73,74]. Lachnospira and Lachnospiraceae (FCS020 group), although belonging to
the same Lachnospiraceae family, have different effects on the body [75]. Studies found that
the level of Lachnospira population in longevity village communities of the elderly is sig-
nificantly higher than that in urbanized town communities [76], and Lachnospira levels are
negatively correlated with asthma [77], depression and anxiety associated with ulcerative
colitis [73], Parkinson’s disease [78], and psychiatric disorders [79]. Although Butyricimonas
is a butyrate-producing bacterium, it can also cause bacteremia [80–82]. Actinomyces, as
an opportunistic pathogen, is commonly colonized in the oral cavity, intestines, and uro-
genital tract [83]. Consistent with previous studies, the increase in the abundance of gut
Actinomyces is associated with various inflammatory diseases, such as ulcerative colitis [84],
Crohn’s disease [84,85], systemic lupus erythematosus [86], and COVID-19 [87,88]. A fun-
damental characteristic of aging is the presence of persistent low-grade inflammation, and
the chronic inflammation caused by gut microbiota dysbiosis may be a potential mechanism
for accelerating aging [63]. As people age, the abundance of beneficial microbes in the gut
gradually decreases while that of pro-inflammatory microbes increases, which may lead to
age-related diseases and premature death [89]. In contrast, although the gut microbiota
also undergoes changes in long-lived individuals, its diversity and beneficial microbes
are still preserved, thereby mitigating age-related inflammation and promoting healthy
aging [21,58,90]. Importantly, disruptions in gut microbiota caused by various internal and
external factors, such as improper diet and antibiotic use, can lead to a decrease in the ratio
of beneficial to pro-inflammatory microbes. This, in turn, may promote inflammation and
increase the risk of inflammation-related diseases, regardless of age [91]. Inflammation can
lead to higher levels of reactive oxygen species (ROS), which can cause anaerobic Firmicutes
in the gut to become inactive, exacerbating inflammation and promoting the occurrence of
aging-related phenotypes [91,92].

This study has several strengths. Firstly, the study utilized a two-sample Mendelian
randomization analysis method, which avoided bias from exposure and outcome summary
levels and confounding factors on the results. Additionally, the use of multiple statistical
methods in MR analysis minimized horizontal pleiotropy. The study utilized the largest
published multi-cohort gut microbiota GWAS summary data, which minimized bias from
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differences in gut microbiota sequencing methods and ensured the representativeness of
the results and the efficacy of the IV used in the MR analysis. Finally, the exposure and
outcome data used in the study had no sample overlap, which reduced the occurrence of
Type I errors caused by weak instrument bias [93].

This study also has several limitations. Mendelian randomization studies of the
gut microbiota mainly focus on gut microbiota associated with genetic variation, while
other gut microbiota weakly associated with individual genetic variation need further
investigation using other research methods. Due to the limitations of the currently available
gut microbiota GWAS summary data, this study included gut microbiota data at the genus
level, limiting the investigation of the impact of species-level gut microbiota on aging.
In order to include more instrumental variables for sensitivity analysis and horizontal
pleiotropy testing, the SNPs used for analysis in this study were below the traditional GWAS
significance threshold (p < 5 × 10−8). Aging is a complex process influenced by multiple
factors, and although Bioage and PhenoAge can reflect aging to some extent, the overall
characterization of aging still needs to be verified through larger sample GWAS studies
and the inclusion of more dimensions of observational indicators. While biological age is
considered a potentially significant indicator of the aging process, its predictive capacity in
practical applications might vary across different populations, methodologies, and datasets.
Aging processes vary widely among individuals due to genetic diversity, health status, and
environmental exposures. This heterogeneity can complicate the identification of universal
aging biomarkers or mechanisms. Since gut microbiota-related data in GWAS mainly come
from European populations, further research and validation are needed to investigate
the causal relationship between gut microbiota and accelerated aging in non-European
populations.

The causal relationship between the gut microbiota and the complex trait of aging has
always been a question worthy of exploration. However, conducting large-scale random-
ized controlled trials on the gut microbiota poses certain challenges. We have elucidated
the causal relationship between specific microbial communities and aging through an
alternative approach. It would be essential to delve deeper into the specific mechanisms
underlying the causal relationship between gut microbiota and biological aging identified
through MR analysis. Understanding the molecular pathways and interactions involved
can provide insights into the precise ways in which gut microbiota influence biological
aging processes. In terms of future outlook, continued research efforts in this area hold
promise for uncovering novel strategies for promoting healthy aging and preventing age-
related diseases. Integrating findings from MR analysis with other omics data, such as
metagenomics, metabolomics, and transcriptomics, can provide a more comprehensive
understanding of the complex interplay between gut microbiota and biological aging.
Ultimately, insights gained from these investigations may lead to the development of
personalized interventions to optimize gut microbial composition and promote healthy
aging trajectories.

5. Conclusions

This two-sample Mendelian randomization study found that Streptococcus was causally
associated with Bioage acceleration. Further randomized controlled trials are needed to
investigate its role in the aging process. Other gut microbiota that showed suggestive
causal relationships with the promotion or protection against aging also require further
validation and exploration.
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