
Citation: Liu, Y.; Zai, X.; Weng, G.; Ma,

X.; Deng, D. Brevibacillus laterosporus:

A Probiotic with Important

Applications in Crop and Animal

Production. Microorganisms 2024, 12,

564. https://doi.org/10.3390/

microorganisms12030564

Academic Editors: Diana Di Gioia and

Svetla Trifonova Danova

Received: 28 January 2024

Revised: 26 February 2024

Accepted: 5 March 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Brevibacillus laterosporus: A Probiotic with Important
Applications in Crop and Animal Production
Yucheng Liu 1,2,†, Xueying Zai 1,2,†, Guangying Weng 1, Xianyong Ma 1,* and Dun Deng 1,*

1 Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine
and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China,
Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and
Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control
and Evaluation, Guangzhou 510640, China; liuyucheng4934@outlook.com (Y.L.); zxying214@163.com (X.Z.);
wengguangying123@163.com (G.W.)

2 College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering,
Guangzhou 510225, China

* Correspondence: maxianyong@gdaas.cn (X.M.); dengdun@gdaas.cn (D.D.); Tel.: +86-020-8516-1289 (D.D.)
† These authors contributed equally to this work.

Abstract: Brevibacillus laterosporus (B. laterosporus) is widely distributed in nature and demonstrates
significant potential for applications in biological control, environmental protection, agricultural pro-
duction, and clinical medicine. This review provides a comprehensive overview of the applications of
B. laterosporus in crop cultivation and animal feeding, as well as an examination of the antimicrobial
peptides produced by B. laterosporus and their antibacterial mechanisms. B. laterosporus enhances
crop cultivation by secreting hydrolases to improve nutrient absorption capabilities, synthesizing
hormones to promote crop growth, and producing proteins to inhibit the reproduction of harmful
organisms. B. laterosporus has been used to improve animal production by regulating the structure of
the intestinal microbiota and inhibiting the growth of pathogenic bacteria through the secretion of
various antimicrobial peptides. The bactericidal activity of Brevilaterins secreted by B. laterosporus
is attributed to their ability to bind to lipopolysaccharide/lipid II molecules on the cell membrane,
thereby altering permeability. Brevilaterins also inhibit bacterial reproduction by affecting relevant
gene pathways in the cell membranes of pathogenic bacteria. These pathways include ATP syn-
thesis, peptidoglycan biosynthesis, membrane transport, and cellular metabolism. In conclusion,
B. laterosporus exhibits substantial potential as a probiotic activity in crop and animal production.
However, applications of B. laterosporus in animal production could be improved, necessitating further
research to elucidate the underlying probiotic mechanisms.

Keywords: Brevibacillus laterosporus; probiotic mechanisms; crop cultivation; animal production;
antimicrobial peptides

1. Introduction

Brevibacillus laterosporus (B. laterosporus) is widely distributed and can be found in a
variety of ecosystems, including soil, water, and animal bodies [1–4]. Precisely because of its
wide range of sources, researchers have obtained strains with different characteristics from
different places such as the rhizosphere of plants, seawater, and animal digestive systems.
B. laterosporus demonstrates adaptability to varying conditions of temperature and pH [5].
The growth of B. laterosporus commences at 4 ◦C, and it exhibits a high reproductive capacity
within the temperature range of 15 ◦C to 37 ◦C. Moreover, B. laterosporus demonstrates
excellent pH tolerance and adaptation in the range of 3.0 to 7.0. B. laterosporus (Firmicutes,
Bacilli, Bacillales, Paenibacillaceae, Brevibacillus) is a facultative anaerobic bacterium that
produces rod-shaped cells and endospores. B. laterosporus is significantly different from
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other Bacillus species due to its unique canoe-shaped parasporal bodies [6]. Some B.
laterosporus strains produce cytoplasmic crystalline inclusions of various shapes and sizes.

B. laterosporus was initially identified in water by Laubach in 1916 and named Bacillus
laterosporus [7]. The morphological and physiological characteristics of B. laterosporus were
meticulously elucidated by Laubach. B. laterosporus exhibits a granular morphology with
rounded ends and possesses globular spores. Its dimensions range from (0.375–0.5) µm
× (1.125–4) µm, which is shorter than the majority of Bacilli. Due to limitations in the
identification technology available at that time, its characteristics were described as similar
to those of Bacillus, leading to its subsequent designation as Bacillus laterosporus. In 1996,
Shida employed the analysis of 16S rRNA gene sequences and phylogenetics to demonstrate
that Bacillus brevis (B. brevis) clusters exhibited distinct phylogenetic separation from other
Bacillus clusters [8]. Therefore, Shida proposed reclassifying the B. brevis cluster as a novel
genus named Brevibacillus gen. nov., which includes Bacillus laterosporus, resulting in the
official renaming of Bacillus laterosporus as Brevibacillus laterosporus.

B. laterosporus is a probiotic bacterium exhibiting diverse biological activities encom-
passing insecticidal, antibacterial, anti-tumor, and biodegradation properties [9]. It has
applications in crop cultivation, animal production, clinical medicine, and biological degra-
dation. B. laterosporus is widely used to promote growth and protect crops. By producing
growth hormones, B. laterosporus stimulates root development and improves nutrient-
uptake efficiency, thereby increasing crop yield and quality. B. laterosporus also demon-
strates inhibitory activity against a variety of crop pests and pathogens, thereby effectively
regulating harmful organisms. B. laterosporus plays an important probiotic role in animal
feeding. By regulating the balance of the intestinal tract, B. laterosporus improves diges-
tive function and promotes animal growth. The scope of applications for B. laterosporus
also encompasses the medical field. The antimicrobial peptides (AMPs) [10,11] and en-
zymes [12,13] produced by B. laterosporus possess significant medicinal value. Moreover, B.
laterosporus also exhibits the capability to synthesize anticancer substances such as Brevila-
terin B [14]. The degradation of various substances by B. laterosporus has been increasingly
observed, exemplified prominently by the conversion of polyvinyl alcohol into acetate.
The utilization of B. laterosporus in various domains demonstrates its significant value
and extensive prospects. Microorganisms play a pivotal role in promoting sustainable
agricultural development, finding extensive applications in microbial pesticides, microbial
fertilizers, and microbial feeds. B. laterosporus not only exhibits remarkable insecticidal
and antibacterial properties but also contributes significantly to soil enhancement. The
multifunctionality demonstrated by B. laterosporus has captured our attention, particularly
the potential application of its AMPs as alternatives to antibiotics in animal breeding.
Consequently, we have chosen to concentrate our research on B. laterosporus within the
domains of crop cultivation and animal production. The focus of this study will focus on
the probiotic role of B. laterosporus in animal production and the involvement of probiotic
activity of B. laterosporus in crop symbiosis, as well as exploring the mechanism of action of
antimicrobial peptides produced by B. laterosporus.

2. The Salutary Effects of B. laterosporus on Crops
2.1. Enhances Nutrient Acquisition and Promotes Crop Growth

Microorganisms form a symbiotic relationship with plants, providing essential ele-
ments and synthetic hormones through metabolites, thereby significantly enhancing crop
yield [15,16]. The metabolites produced by microorganisms play a crucial role in providing
plants with essential elements, such as organic nitrogen and phosphorus, thereby address-
ing the issue of inaccessible inorganic nutrients in the soil. The application of microbial
hormones facilitates an increase in leaf area, prolongs the rate of senescence, induces flower
bud differentiation, and enhances fruit expansion.

The effectiveness of B. laterosporus in enhancing nutrient acquisition is significant.
It promotes the absorption and utilization of mineral nutrients by crops by secreting
phosphatase to convert organic phosphorus into inorganic phosphorus in the soil [17,18].
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B. laterosporus (rhizosphere of Lithocarpus sundaicus) isolated from the Sangagana forest
dissolved 27.67 mg/L of inorganic phosphorus [19]. This phosphate-solubilizing ability is
closely related to the phosphate-solubilizing genes in its genome. The strain B. laterosporus
K75, which exhibits robust capabilities in solubilizing phosphate, harbors additional genes
(pqq, pstA, and pstB) that are associated with the process of phosphate solubilization [20].

Furthermore, B. laterosporus has the capability to biosynthesize hormones. For ex-
ample, B. laterosporus SVC(II)14 isolated from the rhizosphere soil of a Haryana cotton-
growing area synthesized 4.74 µg/mL of indole acetic acid (IAA) [21]; Świątczak reported
that B. laterosporus K75 exhibited the highest concentration of synthesized IAA, total-
ing 13.892 µg/mL [20]. Furthermore, particular strains have demonstrated the ability to
produce up to 45.77 µg/mL of IAA under optimized culture conditions, such as with tryp-
tophan supplementation [22]. The different IAA-synthetic abilities of B. laterosporus have
been attributed to variations in its genome. For instance, the high plant hormone-producing
strain K75 harbors additional IAA synthesis genes (trp A, B, C, D, E, F, and S) within its
genome [20].

The practical applications of B. laterosporus encompass the effective stimulation of crop
root growth and enhancement of their absorptive capacity, thereby resulting in augmented
crop yields [20,22]. Some studies have shown that B. laterosporus significantly increased the
biomass of crops [20,23], as reflected by increased leaf weight and root length in maize by
54.55% and 26.90%, respectively, and an increase in the fresh weight of potato by 6.80%.

2.2. Suppresses Reproduction of Harmful Organisms
2.2.1. Inhibits Pathogenic Fungi in Crops

The cultivation of crops often encounters challenges posed by fungal diseases, resulting
in significant financial losses for agricultural practitioners. Thus, the use of microorganisms
as a viable solution to inhibit the growth and reproduction of fungi has emerged [24]. These
beneficial microorganisms enter the soil or plant and compete with potentially pathogenic
fungi for nutrients, space, and resources, thereby limiting fungal reproduction and infection.
This pollution-free, sustainable, and efficient biocontrol method has gained extensive appli-
cations in agricultural production and crop protection. B. laterosporus strains can control or
inhibit the reproduction of harmful fungi, such as Phytophthora capsici [25], Botryosphaeria
dothidea [26], and Fusarium oxysporum [20], thereby promoting crop growth [27,28] (Table 1).

Table 1. Bacteriostatic or disease-control activity of B. laterosporus against pathogenic fungi in crops.

Strains Pathogenic Fungi Anti-Fungal Activity * Reference

B. laterosporus ZQ2 Rhizoctonia solani, Growth inhibition was 80.17% [1]

B. laterosporus JX-5 Botryosphaeria dothidea Biocontrol efficacy was 70% [26]

B. laterosporus A60 Phytophthora capsici Biocontrol efficacy was 96.55% [25]

B. laterosporus Bl13 Alternaria solani Biocontrol efficacy was 26.7% [29]

B. laterosporus BPM3 Magnaporthe grisea Cav. Biocontrol efficacy ranged from 30% to 67% [30]

B. laterosporus K75 Fusarium oxysporum Growth inhibition was 26% [20]

* Growth inhibition (%) = [(mycelia length in the control plate—mycelia length in the treated plate)/mycelia
length in the control plate × 100]. Disease index = ∑ (disease severity × number of corresponding disease
severity tubers)/(highest disease severity × total number of tubers) × 100%, Biocontrol efficacy = (disease index
of control—disease index of treated)/disease index of control × 100%.

2.2.2. Inhibition of Pathogenic Bacteria in Crops

B. laterosporus inhibits a variety of bacteria that infect crops [31]. For example, the con-
trol effect of tomato bacterial wilt caused by Ralstonia solanacearum was 58.42–68.68% when
B. laterosporus X10 was added to tomatoes [32]. The biocontrol efficiency of B. laterosporus
AMCC100017 against potato common scab (PCS) caused by Streptomyces bottropensis was
70.5% [23]. The biocontrol efficacy of B. laterosporus BL12 against PCS was determined to
be 34.29% [33]. Some beneficial bacteria (Pseudomonas and Microbacterium) related to the
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control of crop diseases are significantly positively correlated with B. laterosporus BL12 and
significantly negatively correlated with the disease index, which may cooperate with BL12
to control PCS [33]. The biocontrol efficiency of B. laterosporus SN19-1 against bacterial leaf
blight caused by Xanthomonas was 90.92% [34]. The inhibitory effect of B. laterosporus B4 on
Acidovorax avenae subsp. avenae was significant, with a biocontrol efficacy of 71.9% against
brown streak disease caused by Acidovorax avenae subsp. Avenae [35]. The mechanism of
action may be that B. laterosporus B4 disrupts the formation of the pathogenic bacterial
biofilm by producing bacteriocins that directly inhibit growth or change the expression of
virulence-related genes, leading to the leakage of intracellular substances.

2.2.3. Inhibits Pests in Crops

The pathogenicity of B. laterosporus has been extensively documented against para-
sitic nematodes, mollusks, as well as eggs and larvae of various insect orders including
Coleoptera, Diptera, and Lepidoptera [36]. Nematodes are common crop pathogens that
cause severe damage. Beneficial microbial agents inhibit nematodes by promoting defense
responses through parasitization, occupation, and killing [37]. B. laterosporus kills nema-
todes by inhibiting egg hatching and larval development [38]. The culture supernatant of B.
laterosporus F5 demonstrated significant efficacy against microworms and Meloidogyne incog-
nita, leading to a larval mortality rate of 90% [39]. Notably, the median lethal concentration
(LC50) for Meloidogyne incognita was 0.4 mg/mL. The culture supernatant of B. laterosporus
G4 contained an alkaline protease (designated BLG4) that exhibited potent nematicidal
activity. Scanning electron microscopy has revealed that BLG4 caused severe damage to the
nematode cuticle, which subsequently underwent digestion by the host, suggesting that
hydrolytic proteases may serve as a key toxic component in nematode eradication [40,41].

B. laterosporus also has efficacy against a variety of insects, including Lepidoptera,
Diptera, and Coleoptera [36]. B. laterosporus V12/001946 isolated from hybrid cabbage
seed had a significant killing effect on a variety of Lepidopteran pests at a concentration of
1010 cells/mL. The brood mortality rates of Epiphyas postvittana, Cnephasia jactatana, and
Cydia pomonella were 73.3%, 76.7%, and 60%, respectively [36]. The dipteran pests can be
eradicated by the lethal effects of B. laterosporus. For example, Rivers et al. showed that B.
laterosporus LMG15441 has a 100% mortality rate against Aedes albopictus larvae [42]. The
lethal concentrations of B. laterosporus UNISS18 to Culex pipiens, Aedes aegypti, Calliphora
vomitoria, and spotted wing Drosophila were 0.10, 0.18, 78.84, and 217.51 × 106 spores/mL,
respectively [43]. B. laterosporus Bon707 demonstrated a lethality rate of 70.5% against
Chrysomya megacephala at a concentration of 1.46 × 107 CFU/mL [44].

The toxicity of particular B. laterosporus strains towards insects is attributed to various
factors, including spores, cell crystals, and the toxic proteins they produce [45]. The fer-
mentation supernatants of B. laterosporus MB438 and MB439 exhibited insecticidal activity
against Diabrotica virgifera in maize roots and leaves, and two toxin proteins were subse-
quently identified from these organs [46]. Following isolation, a strain of B. laterosporus
EG5553, obtained from grain, was found to harbor Mpp75Aa1, an insecticidal protein.
This protein can undergo oligomerization through corn rootworm protease processing
and subsequently bind to receptors on the midgut membrane, resulting in perforation and
tissue damage that ultimately leads to the mortality of corn rootworm [47].

3. The Probiotic Effects of B. laterosporus on Animals
3.1. Regulation of Animal Growth

Utilizing microbial agents as a means of regulating animal growth offers numerous
benefits. Microbial agents effectively enhance the functionality of the digestive system,
thereby optimizing nutrient absorption and feed utilization. Additionally, microbial agents
facilitate the accelerated growth and reproduction of farmed animals, resulting in short-
ened breeding cycles and improved efficiency. Moreover, microbial agents stimulate and
regulate the immune system to bolster resistance against external environmental factors
and pathogenic microorganisms, thereby mitigating the risk of infection and death. B.
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laterosporus has been added to animal feed, and the improvements in the growth of farmed
animals are shown in Table 2.

Table 2. The regulation of animal growth mediated by B. laterosporus.

Strains Species of Animals Status of Improvement Reference

B. laterosporus S62-9 arbor acre male broiler

Body weight exhibited a 7.2% increase, while the feed
conversion rate (FCR) demonstrated a significant decrease

of 5.19%, leading to an overall enhancement in
production performance

[48]

B. laterosporus
Texasporus male broiler The carcass percentage was increased by 1.11%, which

improved the production performance [49]

B. laterosporus PBC01 crucian carp

Weight gain rate (WGR) and specific growth rate (SGR)
were significantly increased by 32.19% and 0.24%, and FCR

was decreased by 0.28, which improved the production
performance

[50]

B. laterosporus FAS05 Litopenaeus vannamei SGR significantly increased by 0.5% (p < 0.05) to improve
production performance [51]

B. laterosporus S62-9 arbor acre male broiler

The meat quality of broilers could be enhanced through
significant improvements in breast muscle color (0.5%

decrease in lightness and 0.54% increase in redness) as well
as muscle chemistry (0.05% increase in protein content)

[52]

Supplementation of the broiler diet with B. laterosporus S62-9 resulted in a significant
7.2% increase in broiler weight, accompanied by a remarkable reduction of 5.19% in the
feed conversion rate and enhancement of the immune response [48]. Adding B. laterosporus
Texasporus to the diet of broilers infected with Salmonella effectively counteracted the decline
in performance and the increase in the immune factor IgM induced by the pathogenic
bacteria [49]. Additionally, adding B. laterosporus S62-9 to feed enhanced the pH level,
brightness, and tenderness of the chicken meat, as well as increasing its protein and fat
contents, thereby improving the quality and flavor of the broiler chickens [52].

B. laterosporus has also been used in the aquaculture of fish, crabs, shrimp, and fresh-
water turtles and has demonstrated significant benefits, such as the promotion of growth,
antibacterial properties, and enhancement of body weight [53]. Introducing B. laterosporus
PBC01 into the water significantly enhanced the growth performance of crucian carp [50].
The inclusion of B. laterosporus in aquaculture water significantly enhanced the antioxidant
status of crucian carp in both serum and liver, while also stimulating the activities of intesti-
nal digestive enzymes in crucian carp. The growth and health status of crucian carp can be
significantly enhanced by supplementation with an appropriate dosage of B. laterosporus
as a water probiotic [50]. Feeding Litopenaeus vannamei a diet containing 107 CFU of B.
laterosporus FAS05 per gram significantly increased its specific growth rate and reduced the
immune activity of hemocyte reactive oxygen species in a 28-day culture experiment [51].
Taken together, these results indicate that using B. laterosporus as a feed additive in various
cultured species significantly enhances growth and bolsters the immune response.

3.2. Regulation of Intestinal Health

The intestinal microbiota plays a crucial role in the maintenance of overall health and
homeostasis [54]. The gut microbiota actively participates in food decomposition and nutri-
ent absorption by synthesizing enzymes that facilitate the breakdown of carbohydrates,
proteins, and fats into bioavailable forms for utilization. These processes enhance digestive
efficiency and facilitate the augmentation of energy reserves, thereby bolstering produc-
tivity. In addition, the gut microbiota modulates the immune response by stimulating the
activation of T cells, B cells, natural killer cells, and other immune cells, thereby enhancing
their ability to recognize and eliminate pathogens, and bolstering the defense mechanism.
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The regulation of the intestinal flora structure by B. laterosporus enhances disease resis-
tance, promotes the relative abundance of beneficial bacteria, and inhibits the proliferation
of harmful microorganisms. Feeding with B. laterosporus S62-9 significantly enhanced the
relative abundance of beneficial bacteria (Adlercreutzia, Akkermansia, Lactobacillus, Intestini-
monas, and Ruminococcus) in the broiler cecum while reducing the relative abundance of
harmful bacteria (Pseudomonas, Klebsiella, Cupriavidus, and Ralstonia) [48]. B. laterosporus
sustains intestinal immune function by competing with pathogenic microorganisms on
the mucosa to inhibit colonization and promote intestinal health. Feeding B. laterosporus
BL1 to a high-fat mouse model improved the structure of the intestinal flora by increasing
the number of beneficial bacteria (norank_f_Muribaculaceae) and reducing the abundance of
pro-inflammatory bacteria (Faecalibaculum) [55]. In the aflatoxin B1 (AFB1)-infected quail
model, the number of Escherichia coli increased while the number of lactic acid bacteria
decreased in the ileum of quail fed AFB1 [56]. However, this effect was reversed by adding
B. laterosporus Bl (p < 0.001). Therefore, these results suggest that the probiotic B. laterosporus
improves the gut’s microbial-community structure in different animals, thereby promoting
overall health.

3.3. Other Functions

An existing patent has identified that a naturally prepared B. laterosporus Texasporus
(BT) lipopeptide derived from B. laterosporus Texasporus exhibits significant efficacy in the
treatment of obesity and associated disorders [53]. Examples of BT lipopeptide inventions
include oral administration of one or more BT lipopeptides, which effectively reduced body
weight in obese patients, controlled blood glucose level, and enhanced insulin sensitivity;
treatment with BT peptides decreased visceral adiposity and improved fatty liver in a mouse
obesity model after 30 days of feeding [53]. Weng reported that B. laterosporus BL1 effectively
reduced weight and fat in obese mice fed a high-fat diet (HFD), while also lowering blood
lipid and glucose levels, thereby achieving less adipose tissue [55]. A HFD group exhibited
a significant increase in body weight and body fat content compared to the CON group
(p < 0.001), whereas B. laterosporus BL1-fed obese mice demonstrated remarkable reductions
of 41.26% and 33.39% in body weight and body fat content, respectively (p < 0.01) [55].
These findings suggest that B. laterosporus possesses a probiotic function that effectively
mitigates obesity and lipid accumulation in animals.

4. B. laterosporus Antimicrobial Peptides
4.1. Structural Features of Brevilaterins

The innate immune system encompasses a crucial class of small peptides known as
AMPs, which are widely distributed in nature. AMPs exhibit a broad spectrum of inhibitory
efficacy against bacteria, fungi, and viruses [57,58] and play crucial roles as innate immune
effectors across diverse species, including humans, animals, and crops. AMPs serve as
the first line of defense against foreign invaders [59,60]. AMPs possess diverse biological
functions [61]. AMPs exhibit broad-spectrum antimicrobial properties by targeting a wide
range of pathogens, such as bacteria, fungi, viruses, and parasites. They disrupt micro-
bial cell membranes, inhibit intracellular processes, and modulate immune responses to
combat infections. AMPs regulate the immune system by affecting the activation, migra-
tion, and function of immune cells, such as monocytes, macrophages, neutrophils, and T
cells. Particular AMPs promote wound healing by enhancing angiogenesis during tissue
regeneration and re-epithelialization. The immunomodulatory effects of AMPs help to
mitigate infection-related complications during healing. AMPs exhibit anticancer activity
by inducing apoptosis (programmed cell death) in cancer cells, inhibiting tumor growth,
and modulating the tumor microenvironment. These properties make AMPs potential
candidates for cancer therapy and drug development. AMPs exert selective control over
the growth of commensal microorganisms, thereby shaping the composition of the host’s
microbiota and contributing to the maintenance of a balanced microbial community. AMPs
also act as important components of the innate immune systems of insects and other inver-
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tebrates by protecting against microbial invaders. The multifaceted biological functions of
AMPs underscore their significance in host defense, immune regulation, and overall health
across a variety of biological contexts.

B. laterosporus produces a variety of AMPs and is thought to be responsible for produc-
ing short-sequence (<20 AAs) AMPs [10,62]. Seventeen AMPs produced by B. laterosporus
have been identified, but the nomenclature varies among discoverers [63], including Bo-
gorols [64], Brevibacillins [65,66], Brevilaterins [10], BT peptides [67], BL-A60 [25], Bacteri-
ocin DS-3 [68], and others. Bogorols, Brevibacillins, Brevilaterins, and BT peptides have
similar basic structures. They contain 13 amino acids and an N-terminal C6-fatty acid
chain (Hmp-Aba-Val-Orn-Val-Val-Val-Lys-Val-Leu-Lys-Tyr-Leu-Vol) [63], with a molecular
weight of 1.555–1.617 kDa, with amino acid substitutions at some positions. Therefore,
these similar AMPs should be named Brevilaterins, as shown in Figure 1. B. laterosporus
also synthesizes two other structurally different AMPs, which are BL-A60 and DS-3. Their
amino acid sequences are CH-Leu-Tyr-Lys-Leu-Val-Lys-Val-Val-Leu-Asn-Met-TA (1.602
kDa) and Leu-Asn-Thr-Leu-Glu-Thr-Glu-Glu-Trp-Phe-Phe-Lys (1.593 kDa).
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4.2. Mechanisms of Antimicrobial Actions of Brevilaterins

Brevilaterins (including Brevilaterin A-E and Brevibacillins) are antimicrobial lipopep-
tides isolated from B. laterosporus [10,65] that are natural antibacterial agents and cationic
bacitracins against drug-resistant bacteria [11,66,69–71]. This lipopeptide maintained good
stability at 121 ◦C and pH 2–12 [72]. The minimum inhibitory concentration of Brevilaterins
against Bacillus, Listeria, Streptococcus, Lactobacillus, and other bacteria ranged from 0.5 to
2 µg/mL [69]. The broad spectrum and potent antibacterial effects of these AMPs render
them promising candidates for antibiotic utilization.

The antibacterial mechanisms of Brevilaterins have been demonstrated at two distinct
levels. At the cellular level, the cationic peptide Brevibacillin V interacted with negatively
charged lipopolysaccharide (LPS) through electrostatic interactions. It replaced Mg2+ and
Ca2+ ions that maintained the LPS structure, resulting in partial release of LPS into the envi-
ronment [73]. The missing LPS was filled by phospholipids in the inner membrane, leading
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to increased permeability of the outer membrane. Subsequent investigations revealed
that Brevibacillin 2V bound to the Lipid II pentapeptide, which is a precursor involved in
bacterial cell wall synthesis, thereby changing the permeability of the bacterial cell mem-
brane and exhibiting bactericidal activity [11], as illustrated in Figure 2A. The expression of
the murC, murY, murE, and murG genes involved in cell wall synthesis were significantly
downregulated by Brevilaterin B, resulting in a pronounced inhibition of peptidoglycan
biosynthesis (p < 0.05). The expression levels of the plcB, cls-1, and cls-2 genes associated
with phosphatidylglycerol degradation and transformation were significantly upregu-
lated (p < 0.05). ATP synthesis was impaired, resulting in a significant downregulation
of transcriptional genes such as atpB (p < 0.05). Genes related to potassium ion transport
and the potassium-regulating two-component system, including kdpB, were significantly
upregulated (p < 0.05). Furthermore, expression of the stress response and of the cation
resistance-related gene dltA were significantly upregulated. Brevilaterin B modulates gene
expression in pathogen membrane-associated pathways. These pathways encompass acti-
vation of peptidoglycan biosynthesis, membrane transport (ATP-binding cassette transport
and ion transport), cellular metabolism (amino acid and lipid metabolism), ATP synthesis,
and the stress response (quorum sensing and bacterial chemotaxis) [74], as illustrated in
Figure 2B, to achieve the antibacterial effect.
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The AMPs produced by B. laterosporus exhibit extensive and potent antibacterial
activity. They have been found to be highly effective against a wide range of bacteria,
including both Gram-positive and Gram-negative species, making them a promising source
of potential antibiotics. Additionally, these AMPs demonstrate excellent thermal stability,
enabling them to withstand high temperatures without compromising their antimicrobial
activity. Despite these promising characteristics, the precise mechanisms underlying the
antibacterial effects of these AMPs remain incompletely understood. Further research and
investigation are necessary to elucidate their modes of action in order to optimize their
potential use as antibiotics and comprehend the broader implications of their activity in
relation to bacterial resistance and the development of new antimicrobial agents. As our
understanding of these AMPs continues to expand, we anticipate that future investigations
will unveil previously unknown insights into the characteristics and mechanisms of other
AMPs. Consequently, this will make a significant contribution to the ongoing endeavors in
developing novel and effective antimicrobial agents—an imperative pursuit considering
the escalating global challenge of antibiotic resistance. The more we acquire knowledge
about the intricate mechanisms by which bacteria interact with their environment and
other microorganisms, the better equipped we become in formulating targeted strategies
for combating bacterial infections while preserving the efficacy of existing antibiotics.

5. Prospects for Industrializing B. laterosporus

B. laterosporus has diverse applications in agriculture, such as biological control, re-
ducing reliance on chemical pesticides, and promoting crop growth [75]. B. laterosporus
produces a diverse array of compounds with insecticidal activity, effectively controlling a
wide range of pests including insects and nematodes. Utilizing biopesticides derived from
B. laterosporus enables efficient management of agricultural pests while reducing reliance
on chemical pesticides. Moreover, B. laterosporus is tolerant of abiotic stressors, aiding crops
in adapting to environmental challenges. For example, the strain enhances tolerance to
stress by regulating the synthesis and metabolism of endogenous hormones in response to
challenging conditions, such as drought and salinity. Additionally, B. laterosporus plays a
crucial role in the degradation of agricultural residues, as it possesses strong decomposition
abilities that effectively breakdown chemical pesticide residues into non-toxic or minimally-
toxic metabolites. This not only ensures food safety but alleviates pollution. The key
application of B. laterosporus in agriculture lies in its utilization as a biocontrol agent for the
management of pests and diseases during crop cultivation. However, due to its capacity for
enhancing intestinal barrier function, regulating immunity, and inhibiting the proliferation
of harmful bacteria, B. laterosporus has gradually been employed as a variety of animal feed
additives in the breeding industry, demonstrating significant potential within the realm of
animal production. Additionally, B. laterosporus facilitated the accelerated maturation of
compost by regulating physicochemical parameters and orchestrating bacterial commu-
nity succession, thereby providing valuable insights for the efficient utilization of manure
resources and the integration of cultivation practices with sustainable development [76].

The practical application of B. laterosporus faces several challenges, including lim-
ited productivity, the absence of highly potent strains, and restricted industrial scalability.
Firstly, one challenge lies in optimizing the production process for B. laterosporus on a larger
scale. This entails developing efficient fermentation techniques capable of accommodating
increased volumes while upholding high product quality and consistency. Secondly, strain
optimization plays a crucial role in enhancing the efficacy and stability of it across various
applications. This necessitates extensive research and development efforts focused on
identifying genetic variations within different strains and selecting those exhibiting supe-
rior characteristics such as heightened antimicrobial activity or improved environmental
adaptability. Further investigation is required to understand the genome and proteomics of
B. laterosporus. Advancements in genomics and proteomics can significantly contribute to its
practical application. Genomics can facilitate the identification of pivotal genes accountable
for desirable traits in B. laterosporus, such as antimicrobial activity or stress tolerance, which
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can be exploited to genetically engineer strains with augmented characteristics. By analyz-
ing the proteome of B. laterosporus, researchers can gain valuable insights into its metabolic
pathways and protein functions, which are crucial for optimizing production processes and
understanding how this bacterium interacts with its environment. Therefore, the following
actions should be considered for successfully developing agricultural probiotic products
based on B. laterosporus: (1) optimizing the formulation to enhance the stability and fermen-
tation level of live bacterial preparations for improved production efficiency; (2) exploring
highly active strains and enhancing the screening system; (3) utilizing mutation breeding
or genetic engineering techniques to improve strains and increase effective metabolite
yield; (4) continuously researching and developing new bioactive products with enhanced
functionality for product enhancement.
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