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Abstract: Knock-out of genes of metabolic pathways is conventionally used in the metabolic engi-
neering of microorganisms, but it is not applicable for genes of essential pathways. In order to avoid
undesirable effects caused by gene deletion, it is attractive to develop riboswitches to dynamically
control the metabolic pathways of microbial cell factories. In this regard, the aim of this study is
to utilize the lysine riboswitch to control gene expressions of the biosynthetic pathways and by-
pathways and thus improve lysine production in Corynebacterium glutamicum. To achieve this, a
natural lysine riboswitch from Lactobacillus plantarum (LPRS) was first detected and then fused with
RFP to test its functionality. After that, engineered lysine-activated (Lys-A) and lysine-repressed
(Lys-R) riboswitches were successfully screened by dual genetic selection. Furthermore, the opti-
mized A263 and R152 were applied to control the expression of aspartate kinase III and homoserine
dehydrogenase in the lysine-producing strain C. glutamicum QW45, respectively. In contrast with
QW45, the growth of the resulting A263-lysC mutant QW48 was similar to that of QW45; however,
the growth of the resulting R357-hom mutant QW54 was slightly inhibited, indicating an inhibition
of threonine biosynthesis caused by the riboswitch upon binding of intracellular lysine. Importantly,
the lysine production of QW48 and QW54 was, respectively, 35% and 43% higher than that of the
parent strain QW45, implying more metabolic flux directed into the lysine synthesis pathway. Finally,
the engineered A263 and R357 were simultaneously applied to the same mutant QW55, which greatly
improved lysine production. Thus, the approach demonstrated in this work could be principally
used as a powerful tool to dynamically control any other undesired metabolic pathways.

Keywords: gene expression; lysine riboswitch; dynamic control; metabolic pathway; C. glutamicum

1. Introduction

Riboswitches have been discovered in nature and are widely applied for regulating
gene expression based on small-molecule-RNA interaction [1]. As is known, most natural
riboswitches are found in the 5′ untranslated region (UTR) of an mRNA and consist of a
sensor region (aptamer domain) and an expression platform. The aptamer domain could
sense the target metabolite with a high binding affinity. The structure of the expression
platform could be changed in response to ligand-induced conformational changes, which
resulted in varied gene expression [2]. Until now, there have been more than 50 riboswitches
validated by experiments. However, only three of them were involved in amino acid
biosynthesis: lysine riboswitch, glycine riboswitch, and glutamine riboswitch [3,4]. There
have been some successful evidence showing that engineering riboswitches is an effective
method to control gene expression [5–7].

L-lysine is widely used for food and chemicals nowadays and is typically fermen-
tatively produced with Corynebacterium glutamicum in the industry [8]. Considering the
increasing demand for L-lysine, a continuous optimization of lysine-producing strains such
as C. glutamicum has been made through various methods [9,10]. So far, there have been
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many successful-producing strains obtained by metabolic engineering. With these efforts,
lysine production could be, for example, improved by: (1) removing allosteric feedback
inhibition; (2) enhancing precursor supply; (3) enhancing cofactor (NADPH) generation;
(4) dynamic control of the byproduct pathway [11–13]. However, it was still a big challenge
to realize dynamic control of the biosynthesis of the enzymes. The toolbox for the control of
gene expression was limited, which included, e.g., allosteric enzyme regulation, promoter
replacement, and Shine-Dalgarno (SD) optimization. Thus, there were many significant
efforts to overcome the bottlenecks by using RNA as a novel type of tool [14,15].

In C. glutamicum, several different riboswitches had been predicted to be located in
the 5′-UTRs by using an improved RNAseq technique [16]. A flavin mononucleotide
(FMN) riboswitch was discovered to be present upstream of the ribM gene in C. glutam-
icum [17]. Recently, a ydaO/kimA-type cyclic di-adenosine monophosphate (c-di-AMP)
riboswitch was found to strictly regulate the expression of the cell wall peptidase gene nlpC
in C. glutamicum [18]. Although riboswitch-like sequences of 5′-UTRs might be contained in
some genes associated with the metabolism of amino acids (e.g., methionine, histidine) [16],
it was still unknown whether natural lysine riboswitch existed in C. glutamicum or not.
However, lysine riboswitches in E. coli and also Bacillus subtilis had been well studied,
which were able to directly control the translation initiation of the corresponding mRNA as
well as its stability simultaneously [19]. Interestingly, a similar phenomenon was found for
the FMN riboswitch of C. glutamicum, this indicated the two riboswitches from different
organisms function with the same mechanism [20].

In the aspartate metabolic pathway, aspartate kinase III (AK III, lysC) was considered
the key enzyme of lysine biosynthesis in C. glutamicum. Previous studies proved that the
expression and the activity of AK III could be regulated by lysine. Considering this, it
was attractive to overexpress a mutant lysC gene to improve lysine production. On the
other hand, the biosynthesis of threonine and methionine were both branch pathways of
lysine biosynthesis deriving from aspartate semialdehyde (Figure 1). In C. glutamicum,
homoserine dehydrogenase (HSD, hom), the key enzyme of threonine biosynthesis, could
be feedback inhibited by threonine. It had been demonstrated that the hom single mutant
HD-1 could get a yield of 10 g/L of lysine [21]. Furthermore, an allosteric homoserine
dehydrogenase (HSD) was rationally designed to be inhibited by lysine [22]. Considering
its importance to cell growth, it was also of great interest to improve lysine production by
dynamically controlling the expression of the hom gene.
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In previous work, a natural E. coli lysine riboswitch was applied to repress the expres-
sion of citrate synthase (gltA) in C. glutamicum, which resulted in a significant improvement
in lysine production [23]. Furthermore, an engineered E. coli lysine riboswitch was gener-
ated to promote the excretion of lysine in C. glutamicum [24]. These studies suggested that
riboswitches showed promise in metabolic engineering and synthetic biology. However,
E. coli was not considered a food-grade bacterium. To our interest, lysine riboswitches,
which were from safe bacteria, could be easy to accept and also apply in food fermentation.
Furthermore, it was also meaningful to investigate more lysine riboswitches as useful
tools for genetic regulatory circuits to simultaneously control several gene expressions.
To address those, a natural lysine riboswitch from Lactobacillus plantarum was first identi-
fied and characterized in this study. Then, several engineered lysine riboswitches were
screened and demonstrated. Finally, the selected lysine riboswitches were introduced into
the chromosome of C. glutamicum to improve lysine production via the dynamic control
of two different metabolic pathways. This work proved that more riboswitches could
be widely used in Corynebacterium species for molecular biotechnology and industrial
applications. Importantly, the results obtained in this study demonstrated that the aim of
applying a biologically safe lysine riboswitch to dynamically control metabolic pathways
was successfully achieved.

2. Materials and Methods
2.1. Bacterial Strains and Media

The bacterial strains and plasmids utilized in this study are listed in Table S1. E. coli
DH5α (Vazyme, Nanjing, China) was regularly used as the host for normal cloning and
plasmid construction [25]. C. glutamicum ATCC 13032 was used as the starting strain for
genetic modification. All E. coli strains were normally cultured at 37 ◦C in Luria-Bertani
(LB) broth or on LB agar plates. The chemical Rich Defined Medium (RDM) was used to
measure fluorescence [26]. Trypticase soy broth medium was used to culture C. glutamicum
strains at 30 ◦C. When necessary, the media contained 100 µg/mL Ampicillin for E. coli or
25 µg/mL Kanamycin for C. glutamicum. Other chemicals were purchased from Sinopharm
Chemical Reagent (Nanjing, China) or Nanjing Chemical Reagent (Jiangsu, China).

2.2. DNA Manipulation

The genomic DNA of C. glutamicum was extracted using standard protocols. DNA
polymerase chain reaction (PCR), digestion, and ligation were carried out according to
the manufacturer’s instructions (Takara, Dalian, China). The plasmid isolation and gel
purification kits were both obtained from Vazyme (Nanjing, China). Oligonucleotides were
synthesized by Genscript (Nanjing, China) and are listed in Table S2. DNA sequencing was
carried out by Genewiz (Suzhou, China). The transformation of E. coli or C. glutamicum was
performed as described before [27].

2.3. Identification of Lysine Riboswitches in Lb. plantarum

Previous studies have shown that the lysine riboswitch is normally located upstream
of the lysC gene [28,29]. To find out whether there were putative lysine riboswitches in
C. glutamicum and also Lb. plantarum, the web-application Riboswitch Scanner [30] was
used to detect lysine riboswitch from genomic sequences. Meanwhile, the coding sequences
of lysine riboswitch from Bacillus subtilis were blasted against the C. glutamicum 13032, and
also Lb. plantarum WCFS1 genome, respectively. Subsequently, the secondary structure
of the potential lysine riboswitch was predicted by RNAfold [31] and visualized using
RNAcanvas [32].

2.4. Construction of Plasmids

Standard protocols were carried out for the construction of plasmids according to the
standard methods. For the construction of lysine riboswitch-RFP, the lysine riboswitch
(LPRS) was amplified with primers LPRS-F and LPRS-R from Lb. plantarum WCFS1 genomic
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DNA (Table S2). Then this fragment was fused with a fragment amplified by BR-F and
BR-R from pJ-RFP harboring the synthetic promoter BBA_J23100 to generate pLPRS-RFP.
To insert the LPRS into the chromosome of C. glutamicum, plasmid pK-LPRSA-lysC was
constructed based on the suicide vector pK18mobsacB [27]. Four fragments (the upstream
of the lysC gene, including the native promoter of lysC, LPRS, the native lysC gene, and
the backbone of pK18mobsacB) were amplified by PCR, respectively (Table S2). Then,
pK-LPRSA-lysC was generated by fusing these fragments using the ClonExpress MultiS
One Step Cloning Kit (Vazyme, Nanjing, China). A similar procedure was performed to
construct the plasmid pK-LPRSR-hom.

2.5. Fluorescence Measurement

The pLPRS-mRFP was transformed into E. coli DH5α to test the functionality of the
lysine riboswitch. Single colonies were inoculated into 2 mL of RDM and grown overnight.
The overnight cultures were diluted 100 times in 1.5 mL of fresh RDM supplemented with
an appropriate lysine concentration. After being cultured for 8 h, 300 µL of cells were
harvested and washed using phosphate-buffered saline (PBS) and then resuspended in
300 µL of fresh PBS. To make three replicates, 100 µL of resuspension was transferred
into a 96-well microplate. RFP fluorescence (excitation 535 nm and emission 620 nm) was
measured using the SparkTM Multimode Microplate Reader (Tecan, Grödig, Austria). The
optical density of E. coli cells was detected at 600 nm. Background fluorescence obtained
from wells filled with PBS was subtracted for each measurement. Relative fluorescence
values were normalized by the corresponding cell density (OD600) values [33].

2.6. Screening Engineered Lb. plantarum Lysine Riboswitches

To obtain the engineered lysine riboswitches, the dual genetic selection procedure
was performed following previous work with minor modifications. First, a riboswitch
library was constructed using primers RSlib-F and RSlib-R with pLPRS-tetA-RFP as a
template. Then, the library cells were cultured in an RDM-Amp medium supplemented
with 100 µM lysine. After three rounds of the dual genetic selection, the colonies that could
grow on RDM-Amp plates supplemented with 30 µg/mL tetracycline with lysine (100 µM)
but not without lysine were considered to have engineered lysine-activated riboswitches.
On the other hand, after dual genetic selection, the cells that survived on RDM-Amp
plates supplemented with 0.3 mM NiCl2 with lysine (100 µM) but not without lysine were
considered to be engineered lysine-repressed riboswitches. The generated colonies were
randomly selected for sequencing. Finally, the sequenced cells were cultivated in an RDM-
Amp medium with an additional 100 µM lysine to measure the fluorescence of RFP. The
measurements were accomplished in biological triplicates.

2.7. Construction of C. glutamicum Lysine Riboswitch-Controlled Mutants

Lysine-producing C. glutamicum QW45, which carries mutations of lysC (Q298G), was
first constructed according to a previous report [34]. Plasmid pK-LPRSA-lysC, which was
expected to replace the chromosomal lysC gene with lysine-activated riboswitch-lysC, was
used to generate strain C. glutamicum QW48. Similarly, plasmid pK18-LPRSR-hom was
used to create strain C. glutamicum QW53, and an engineered lysine-repressed riboswitch
was inserted into the upstream of the hom gene in the genome. C. glutamicum electro-
transformation was carried out following a previous report [27]. After two rounds of
homologous recombination, the mutant C. glutamicum strains were obtained by screening
and finally verified by DNA sequencing (Genewiz, Suzhou, China). The same strategy was
further performed to generate mutant QW55, in which both lysC and hom were controlled
by engineered lysine riboswitches.

2.8. Enzyme Activity Assay

To measure the enzyme activity, C. glutamicum strains were cultivated in 30 mL of
Defined Minimal Medium (DMM) [11]. Cells were harvested at an OD of 4 by centrifugation
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(10,000 rpm, 4 ◦C, 10 min) and washed with 10 mL of 0.9% NaCl. Cell pellets were
resuspended in 1 mL of 100 mM Tris-HCl/100 mM KCl buffer (pH 8.0). The cells were then
disrupted by sonication for 8 min in an ice bath. Cell debris was removed by centrifugation
(12,000 rpm, 4 ◦C, 10 min), and the supernatant was immediately used for the enzyme assay.
Total protein concentrations were measured using the Bradford assay [35]. The specific
activity of aspartate kinase and homoserine dehydrogenase was measured separately, as
described previously [22,36].

2.9. Fermentation and Analytical Methods

Batch fermentations of C. glutamicum strains were carried out in DMM in a shake
flask as described before [11]. Seed cultures were prepared in 100-mL Erlenmeyer flasks
containing 20 mL of DMM and cultured at 30 ◦C with 230 rpm in a shaking incubator [34].
After reaching the exponential growth phase, the seed cells were harvested and washed
twice with PBS. The pre-prepared cells were transformed into fresh DMM to achieve an
initial optical density of 0.05. During the fermentation processes, the pH was detected and
controlled at 7.2 when necessary. Cell growth was determined by measuring the OD600
(E. coli) or OD660 (C. glutamicum) after dilution with 0.1 M HCl with a UV spectropho-
tometer or using a SparkTM Multimode Microplate Reader (Tecan, Grödig, Austria). The
concentration of glucose was measured using an SBA-40D biosensor analyzer (Institute of
Biology of Shandong Province Academy of Sciences, Shandong, China). The extracellular
lysine concentration was measured using the ninhydrin method and HPLC (Shimadzu,
Kyoto, Japan).

2.10. Statistics Analysis

All the measurements were performed in biological triplicates. Data were analyzed by
one-way analysis of variance and Dunnett’s multiple comparison test was performed to
determine the significant differences. A value of p < 0.05 was considered significant. The
results are presented as means ± standard deviation of triplicate measurements.

3. Results
3.1. A Putative Lactobacillus Lysine Riboswitch Controls a Lysine Transport Protein

Previous studies have shown that lysine riboswitch is always located in the upstream
region of the lysC gene in most microorganisms. To investigate whether a native lysine
riboswitch existed in C. glutamicum, the whole genome sequences were first analyzed by a
Riboswitch Scanner. Interestingly, some common riboswitches, such as FMN, TPP, and SAM
riboswitches, were all detected. However, no amino acid riboswitches were predicted in
C. glutamicum 13032 (Table S3). In order to confirm this result, the regulatory region (242 bp)
of the lysC gene between a hypothetical protein (cg0305) and the lysC gene (aspartate
kinase, cg0306) in C. glutamicum was uploaded onto Riboswitch Finder. Unfortunately,
the sequences did not match any discovered riboswitches. Importantly, previous work
indicated that the transcriptional start site (TSS) of the lysC gene was located 36 bp upstream
of the start codon (GTG) [37]. However, a typical aptamer of lysine riboswitch is as long
as 170 bp [3], thus no native lysine riboswitch could be located in this short region in
C. glutamicum. Therefore, the exogenous lysine riboswitch was considered to be introduced
into C. glutamicum in the following.

Next, the genome sequences of Lb. plantarum WCFS1 was predicted using a Riboswitch
Scanner to find out whether a native lysine riboswitch existed. As shown in Table S4,
only one lysine riboswitch located in the upstream region of the lysine transport protein
(lysP gene, lp1008) was detected. The secondary structure was predicted by uploading
the sequences of putative lysine riboswitch onto RNAcentral (https://rnacentral.org/,
accessed on 12 March 2022). As shown in Figure 2, a typical lysine-sensing-box motif was
determined. The secondary bonds were colored and labeled using RNAcanvas. Thus, the
newly found lysine riboswitch was designated as LPRS and amplified from Lb. plantarum
WCFS1 for the following experiments.

https://rnacentral.org/
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3.2. Construction of Lactobacillus Lysine Riboswitch-RFP Sensor

To determine the potential of the putative lysine riboswitch of Lb. plantarum WCFS1,
one biosensor with a fluorescent reporter gene (rfp) was constructed. First, the constitutive
promoter BBA_J23100 and LPRS were amplified and then fused with pJ-RFP to create
the vector pLPRS-RFP, in which the fluorescence protein was controlled by LPRS. To
estimate the efficiency of the riboswitch, plasmid pLPRS-RFP was transformed into DH5α
cells. Previous work demonstrated that lysine riboswitches were quite sensitive to lysine
concentration. To ensure that the lysine riboswitch-RFP sensor was strictly related to
lysine, the following experiments were performed at lysine concentrations of less than
100 µM. E. coli DH26 was cultured in RDM-Amp with various lysine concentrations (0,
5, 10, 20, 30, 40, 50, 60, 80, 100, and 150 µM). The pJ-RFP was used as a positive control
and the pAmp-Ori as a negative control. As depicted in Figure 3, the dose response of the
lysine riboswitch-based fluorescence sensor was characterized. As expected, the putative
lysine riboswitch of Lb. plantarum functioned as a repressor to reduce gene expression.
Importantly, the relative fluorescence of pLPRS-RFP was substantially repressed when the
lysine concentration was increased from 10 µM to 100 µM, suggesting that the efficiency
of LPRS was much higher than that of E. coli lysine riboswitch [23]. To confirm that the
repression was due to lysine binding, a mutation in the aptamer of Lb. plantarum lysine
riboswitch was introduced by using a site-directed mutagenesis kit (Vazyme). As expected,
a single-point mutation (pG14A-RFP), which could release the repression induced by lysine
binding in the aptamer region, resulted in a marked reduction of the relative repression
(Figure 3). Thus, this lysine-dependent repression proved that the lysine-binding in the
aptamer of Lb. plantarum lysine riboswitch was required for regulating gene expression.



Microorganisms 2024, 12, 606 7 of 14

Microorganisms 2024, 12, x FOR PEER REVIEW  7  of  14 
 

 

3.2. Construction of Lactobacillus Lysine Riboswitch‐RFP Sensor 

To determine the potential of the putative lysine riboswitch of Lb. plantarum WCFS1, 

one biosensor with a fluorescent reporter gene (rfp) was constructed. First, the constitutive 

promoter BBA_J23100 and LPRS were amplified and then fused with pJ‐RFP to create the 

vector pLPRS‐RFP, in which the fluorescence protein was controlled by LPRS. To estimate 

the efficiency of  the riboswitch, plasmid pLPRS‐RFP was  transformed  into DH5α cells. 

Previous work demonstrated that lysine riboswitches were quite sensitive to lysine con‐

centration. To ensure that the lysine riboswitch‐RFP sensor was strictly related to lysine, 

the following experiments were performed at lysine concentrations of less than 100 µM. 

E. coli DH26 was cultured in RDM‐Amp with various lysine concentrations (0, 5, 10, 20, 

30, 40, 50, 60, 80, 100, and 150 µM). The pJ‐RFP was used as a positive control and the 

pAmp‐Ori as a negative control. As depicted in Figure 3, the dose response of the lysine 

riboswitch‐based fluorescence sensor was characterized. As expected, the putative lysine 

riboswitch  of  Lb.  plantarum  functioned  as  a  repressor  to  reduce  gene  expression.  Im‐

portantly, the relative fluorescence of pLPRS‐RFP was substantially repressed when the 

lysine concentration was increased from 10 µM to 100 µM, suggesting that the efficiency 

of LPRS was much higher than that of E. coli lysine riboswitch [23]. To confirm that the 

repression was due to lysine binding, a mutation in the aptamer of Lb. plantarum lysine 

riboswitch was  introduced  by using  a  site‐directed mutagenesis  kit  (Vazyme). As  ex‐

pected, a single‐point mutation (pG14A‐RFP), which could release the repression induced 

by  lysine binding  in the aptamer region, resulted in a marked reduction of the relative 

repression (Figure 3). Thus, this lysine‐dependent repression proved that the lysine‐bind‐

ing  in  the aptamer of Lb. plantarum  lysine riboswitch was required  for regulating gene 

expression. 

 

Figure 3. Dose‐response curve of the RFP sensor over a wide range of lysine concentrations. Plasmid 

pJ‐RFP was used as the positive control and plasmid pAmp‐Ori as the negative control. Plasmid 

pLPRS‐RFP was  constructed  by  fusing  Lb.  plantarum wild‐type  lysine  riboswitch‐RFP.  Plasmid 

pG14A‐RFP was introduced as one point mutation in the lysine riboswitch. Error bars represent the 

standard deviation from three replicates. 

3.3. Selection of Engineered Lysine Riboswitches with Optimized Properties 

Although the natural Lb. plantarum lysine riboswitch could repress gene expression, 

but it was still attractive to develop more engineered lysine riboswitches, which would be 

used for the increasing demand for the regulation of gene expression. Regarding this, the 

construct  pLPRS‐tetA‐RFP  generated  from  pLPRS‐RFP was  applied  to  create  a  lysine 
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3.3. Selection of Engineered Lysine Riboswitches with Optimized Properties

Although the natural Lb. plantarum lysine riboswitch could repress gene expression,
but it was still attractive to develop more engineered lysine riboswitches, which would
be used for the increasing demand for the regulation of gene expression. Regarding this,
the construct pLPRS-tetA-RFP generated from pLPRS-RFP was applied to create a lysine
riboswitch library using degenerate primers. The degenerate random bases were inserted
into the region between the aptamer and the ribosome binding sites (RBS) by PCR. After the
E. coli transformation, the library was prepared for colony screening. After two rounds of
dual genetic selection, 31 colonies were activated by lysine (Lys-A). Meanwhile, 56 colonies
were repressed by lysine (Lys-R). Ten riboswitch colonies from each group were sent for
sequencing. The randomized sequences of each riboswitch colony are detailed in Table S5.

After being sequenced, the validated Lys-A riboswitches were first retransformed back
into E. coli DH5α cells and then cultivated in RDM-Amp supplemented with or without
100 µM lysine. As depicted in Figure 4A, the relative RFP fluorescence of the tested Lys-A
riboswitch colonies was promoted by the additional 100 µM lysine. Especially among all
the selected engineered riboswitches, the RFP expression of Lys-A263 activated by lysine
was the highest (>12-fold) compared to that of uninduced culture. On the other hand, RFP
expression of the tested Lys-R riboswitch colonies was repressed in the presence of lysine
(Figure 4B). Importantly, Lys-R152 was found to have the strongest repressive efficiency in
the presence of lysine (>28-fold). Thus, due to their relatively optimized properties, the
engineered Lys-A263 and Lys-R152 were chosen for the following work, respectively.
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3.4. Construction of a Riboswitch-Based Mutant in C. glutamicum

To test whether Lb. plantarum lysine riboswitches were functional in C. glutamicum,
the selected engineered riboswitches were first fused with RFP and then inserted into
expression vector pEC-XK99E to generate pEC-A263-RFP and pEC-R152-RFP, respectively.
After retransformed into C. glutamicum ATCC 13032, the cells were incubated with or with-
out lysine in DMM. After cultivation, the cells were observed by fluorescence microscopy
(Leica DM4 B Upright Microscopes, Leica, Wetzlar, Germany). As expected, the strain
QW36 harboring pEC-A263-RFP showed a strong level of RFP expression in the presence
of 100 µM lysine compared to the cells cultured in the absence of lysine (Figure 5A). This
suggested that Lys-A263 could be activated by lysine in C. glutamicum. On the other hand,
a substantial repression in fluorescence was observed when the strain QW37 harboring
pEC-R152-RFP was cultured with 100 µM lysine compared to the cells incubated without
lysine, implying R152 could repress gene expression in the presence of lysine (Figure 5B).
Altogether, these results proved that the selected engineered lysine-activated and repressed
riboswitches could be applied to regulate gene expression in C. glutamicum.
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The selected engineered lysine riboswitches were then introduced into lysine-producing
C. glutamicum QW45, in which endogenous lysine could be used as a signal to control gene
expression. First, the plasmid pA263-lysC was constructed by fusing Lys-A263 with the lysC
gene. After homologous recombination, Lys-A263 was expected to replace the regulatory
region between the native promoter of lysC and the ORF of the lysC gene. Then, the mutant
QW48 was screened by PCR and subsequently determined by sequencing. The same proce-
dure was also carried out on QW45 to generate the mutant QW53 by using pR152-hom [23],
in which the threonine biosynthesis was controlled by Lys-R#152.
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Interestingly, the growth of QW48 was similar to that of QW45 in DMM; however,
QW53 could not grow in DMM. Further, the specific activities of AKIII and HSD at the
early exponential phase were measured in DMM, respectively. It was found that the
specific activity of AKIII in QW48 was higher than that in the parent strain QW45 (Table 1).
Unexpectedly, the specific activity of HSD of QW53 was much lower, indicating that the
expression of the hom gene was greatly repressed by Lys-R152. This result suggested that
the up-regulated expression of the lysC gene would not have imbalanced the metabolic flux
of cell growth. Meanwhile, the downregulation of the hom gene reduced the biosynthesis
of the endogenous homoserine, resulting in the inhibition of cell growth at the beginning.
Importantly, it was speculated that the repression efficiency of Lys-R152 was significant,
indicating that the basal expression of the hom gene was not sufficient for supporting cell
growth. After carefully comparing the relative expression of wide-type LPRS and other
engineered lysine-repressed riboswitches (Figure 4B), another lysine-repressed riboswitch
Lys-R357 which exhibited both a higher basal expression and stronger repression was
selected as an alternative to repress hom gene expression. Therefore, a new mutant QW54
was constructed by using Lys-R357 to repress the hom gene. After being tested in DMM, it
was found that the cell growth of QW54 was slightly delayed compared to that of QW45.
Finally, an engineered dual-gene mutant QW55 was created, in which lysC and hom were
under the control of Lys-A263 and Lys-R357, respectively.

Table 1. Fermentation: L-lysine production by C. glutamicum QW45 and its riboswitch derivatives.

Strain Lysine Yield a Final Growth
(OD660)

Specific Activity of Enzyme (µmol min−1 mg−1)

Aspartate Kinase (AK III) Homoserine Dehydrogenase (HSD)

QW45 0.113 ± 0.009 25.32 ± 2.29 0.837 ± 0.064 0.915 ± 0.023
QW48 0.15 ± 0.012 23.07 ± 1.82 0.973 ± 0.004 /
QW54 0.159 ± 0.008 20.24 ± 1.66 / 0.782 ± 0.036
QW55 0.173 ± 0.011 19.86 ± 0.85 0.919 ± 0.015 0.803 ± 0.022

a Lysine yield: mol lysine per mol glucose consumed. The mean values were generated from three independent
experiments. /: No detection.

3.5. Lysine Production Enhanced by Riboswitch-Controlled Mutants

To assess the efficiency of engineered riboswitch mutants, lysine productions were
examined in batch processes. In batch fermentations, the cell growth of the A263-lysC
mutant QW48 was similar to that of the control strain QW45 in DMM, indicating that the
up-induced expression of AKIII would not disturb the cell growth. Meanwhile, the R357-
hom mutant QW54 and double-site mutant QW55 both showed slightly delayed growth,
indicating that although the biosynthesis of intracellular homoserine was repressed, it was
still sufficient for growth during the whole process (Figure 6). Furthermore, the glucose
consumption of the four strains was approximately identical in the end. In 24 h, the yield of
lysine in mutant QW45 was 0.113 ± 0.009 mol per mol of glucose. Additionally, the yield of
mutant QW48 was 0.15 ± 0.012 mol per mol of glucose, which was 35% higher than that of
the strain QW45. These results proved that the key gene expression of lysine biosynthesis
could be effectively activated by an engineered lysine riboswitch, resulting in increased
lysine production.

On the other hand, as shown in Figure 6, it could be seen that the growth of QW54
was delayed at the beginning due to the reduction of HSD. After 24 h, the OD values of
QW54 declined, indicating that the number of cultivated cells was restricted by the limited
intracellular homoserine. The final values of optical density of QW54 were lower than that
of QW45, suggesting that the serious reduction of growth in the mutant was due to the
inhibition of riboswitch-controlled HSD. Interestingly, the rate of glucose consumption
of QW54 was even slightly higher than that of QW45. The final yields of lysine in QW54
reached 0.159 mol per mol of glucose in 24 h (Table 1), which was 43% higher than that of
the strain QW45. The results proved that the increased lysine was apparently due to the
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inhibition of the biosynthesis of threonine. Thus, it could be strongly postulated that the
flux was mainly used for producing lysine by repressing the expression of the hom gene.
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After the single-gene mutant was tested, the dual-gene mutant QW55 was further
characterized by batch fermentation. From Figure 6, the growth of QW55 was identical to
that of QW54. However, the rate of glucose consumption of QW55 was even higher than
that of QW54, suggesting that the glucose utilization was more effective. Importantly, the
final yields of lysine in QW55 reached 0.173 mol per mol of glucose, which was 53% higher
than that of QW45 (Table 1). On the basis of these findings, it was concluded that the
engineered Lys-A and Lys-R riboswitches were both functional in the same mutant. These
results also indicated that the selected engineered lysine riboswitches could simultaneously
control two different metabolic pathways.

4. Discussion

There is an increasing interest in applying riboswitches for many different purposes [2].
Riboswitches have been commonly used as effective tools to regulate gene expression.
In this study, we demonstrated that Lb. plantarum lysine riboswitch could be used as a
powerful genetic tool to significantly enhance lysine production in C. glutamicum. Therefore,
riboswitches provide an alternative, feasible strategy for metabolic engineering.
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In this study, the functionality of the natural lysine riboswitch of Lb. plantarum was first
examined by constructing a riboswitch-RFP sensor. Previous studies have demonstrated
the attractive applications of riboswitch-based sensors. A natural coenzyme B12 riboswitch
was demonstrated to regulate vitamin B12 biosynthesis [38]. Furthermore, several artificial
riboswitches were used for detecting specific target molecules [39,40]. Synthetic RNA
devices, for example, lysine riboselectors could be used to facilitate strain improvement [41].
Here, natural lysine riboswitch of Lb. plantarum also showed a good relationship with
lysine concentration. However, the natural one still needed to be optimized to be suitable
for more bioprocesses, especially for industrial fermentation.

Here, the well-studied lysine riboswitch was integrated into the chromosome of
C. glutamicum to dynamically promote lysC expression and simultaneously repress hom
expression using intracellular lysine as the signal. However, the growth of the R152-hom
mutant QW53 was markedly repressed in DMM. Previous work also reported that the
growth of the E. coli lysine riboswitch-gltA mutant was accomplished but obviously slower
than that of the parent strain [23]. Considering the high sensitivity of engineered lysine
riboswitch, it was speculated that the different repression efficiencies might be the result of
original promoters of target genes. The specific enzyme activity assay demonstrated that
the biosynthesis of HSD had been repressed since the start of cell growth. The weaker con-
stitutive promoter Phom might result in less amount of mRNA of hom in the cell [42]. Due to
this, another Lys-R riboswitch which showed a higher basal expression of the downstream
gene was selected to partially restore the cell growth. This limitation might come from the
fact that the corresponding concentration of engineered lysine riboswitch was a bit narrow.
In the future, lysine riboswitch should be further optimized with other genetic elements of
metabolic engineering to make a balance between growth and production.

In this study, we introduced engineered lysine riboswitches to promote biosynthetic
pathways and also repress competitive by-pathways. As illustrated in Figure 6, higher
productivities of the riboswitch-controlled mutants were achieved in fermentations. Due
to the activation of AKIII and also the inhibition of HSD during the process, more flux
was predicted for lysine biosynthesis, resulting in higher lysine production. However, the
yield of lysine of LPECRS#16-lysE was even higher than that of QW55. The most likely
cause of this difference was the target genes which were under the control of riboswitches.
Further, it was still concluded that the riboswitches from different sources combined with
promoters might result in different efficiencies of lysine production.

A major advantage of lysine riboswitch-controlled enzyme is the mechanism of its
function. As known, cells have to go through from DNA to RNA to protein during the
whole growth in promoter exchange or protein engineering systems, which may be not
so economical for cell processes. Here, we used a riboswitch to control RNA translation.
The biosynthesis of protein is activated or repressed by an intracellular signal, which can
accelerate product production. In addition, the exogenous molecules may be drawn into
the cell to activate or inhibit the promoters, which may result in unexpected side effects.
In our study, lysine is not only the final product but also works as the signal molecule to
bind the lysine riboswitch to activate or repress gene expression. Protein engineering is
also a powerful tool in metabolic engineering [43]. However, the screening and optimizing
procedures have to be conducted again from the beginning if the target protein is changed.
This work has shown that both lysine and threonine biosynthesis could be simultaneously
controlled by the lysine riboswitch in the same mutant. It is believed that it is easier
to introduce lysine riboswitch to regulate other metabolic pathways to improve lysine
production in C. glutamicum.

However, there are still some challenges that remain. First of all, the corresponding
concentration to lysine riboswitch was at the micromolar level, which is a limitation for
further applications. Although there are successful artificial riboswitches reported, it is
still difficult to optimize natural riboswitches. Additionally, natural lysine riboswitch was
used to repress the expression of target genes and thus could not be more easily used
to up-regulate the expression of enzymes favored for lysine production. Therefore, it
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is of great interest to engineer more lysine riboswitches to facilitate the development of
lysine producers.

5. Conclusions

Overall, the successful research of this work achieves the objective of utilizing Lacto-
bacillus lysine riboswitch to dynamically control metabolic pathways for lysine production.
First, a natural Lb. plantarum lysine riboswitch (LPRS) was determined and demonstrated
to function as a repressor to down-regulate gene expression. Then, engineered lysine-
activated/repressed riboswitches were successfully generated and utilized to regulate the
key gene expressions of metabolic pathways in C. glutamicum. Importantly, the two-way
regulative combination of engineered riboswitches efficiently increased the production of
lysine from 0.113 mol/mol glucose to 0.173 mol/mol glucose in batch fermentation, about
a 53% improvement. Our work provides a theoretical basis for the application of Lb. plan-
tarum lysine riboswitches in metabolic engineering. Meanwhile, we anticipate that other
natural and also engineered riboswitches can be developed to improve the performance of
industrial microorganisms.
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