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Abstract: As a disease causing a global pandemic, the progression of symptoms to severe disease
in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of
COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral
blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1,
FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells
in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage
fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found
to be located at the end of cellular differentiation and tended to release neutrophil extracellular
traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a
high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils
through intercellular ligand–receptor pairs to promote neutrophil extracellular trap release. This study
provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19
severe disease, explores intracellular immune transitions of critical immune cells and pit-induced
intercellular communication of immune transitions, and provides new biomarkers and potential drug
targets for the treatment of patients with COVID-19 severe disease.

Keywords: COVID-19; SARS-CoV-2; WGCNA; neutrophil; NETs

1. Introduction

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-induced coron-
avirus disease 2019 (COVID-19) was newly discovered at the end of 2019, and presents as
a series of acute diseases, ranging from mild respiratory symptoms to severe respiratory
failure, which rapidly evolved into a global pandemic by 2020 [1]. As of 4 October 2023,
771,151,224 confirmed cases of SARS-CoV-2 infections, including 6,960,783 deaths, had been
reported to the World Health Organization (WHO). As a disease causing a global pandemic,
studies on the innate immunopathology of COVID-19 are still limited. Severe symptoms
in patients with COVID-19 are mostly characterized by respiratory failure requiring me-
chanical ventilation [2], which is also accompanied by multi-organ failure and systemic
thrombosis [3], predisposing them to poor prognosis and even death. A number of studies
have reported the presence of large numbers of neutrophils and neutrophil extracellular
traps (NETs) in the blood and lungs of COVID-19 severe patients [4–9]. Neutrophil infil-
tration and the formation of neutrophil extracellular traps may play an important role in
necrotizing inflammation in COVID-19 severe patients. NETs contribute to poor prognosis
by damaging endothelial cells, stimulating exogenous and endogenous coagulation, and
mediating microthrombosis and microvascular dysfunction, leading to immunothrom-
bosis [10,11]. Therefore, it is quite important to explore the immune indicators and the
immune transition from neutrophil activation to neutrophil extracellular trap formation in
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patients at high risk of COVID-19 severe disease to try to develop new therapeutic targets
and provide new therapeutic interventions for patients with COVID-19 severe disease to
reduce poor prognosis or death of patients with COVID-19 severe disease.

Bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analy-
ses provide adequate gene expression analyses to characterize COVID-19 and to explain
biological pathways and critical genes not yet targeted by current therapies. Using bulk
RNA-seq, Lai et al. identified M0 macrophages and neutrophils as important immune cells
for COVID-19 and constructed a three-gene marker recognizing COVID-19 as a potential
biomarker [12]. Wauters E et al. used bronchoalveolar lavage fluid (BALF) scRNA-seq
data for detected reads mapping of the nucleocapsid protein (N)-encoding gene mainly in
neutrophils and macrophages. Neutrophils might be heavily involved in viral clearance
of SARS-CoV-2 [13]. Schulte-Schrepping J et al. used PBMC scRNA-seq data and found
neutrophil dysfunction in patients with COVID-19, and this neutrophil dysfunction was
associated with multiple potentially harmful pathways of severe COVID-19 activation [14].
In this study, we explored characteristic immune genes, immune pathways, and immune
cells in COVID-19 severe patients by mRNA-seq data, along with neutrophil differentiation
and the immune transition that leads to the occurrence of NETs using BALF scRNA-seq
data. Finally, we also explored cellular communication between cells with a high expres-
sion of immune signature genes and neutrophils, providing new insights into the immune
transition that triggers neutrophil activation to neutrophil extracellular trap formation, and
providing new biomarkers and potential drug targets for COVID-19 severe patients. The
analytical flow of this study is shown in Figure 1.
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Figure 1. The overall analysis flow diagram of this study.

2. Materials and Methods
2.1. Bulk RNA Sequencing Data Collection

Bulk mRNA sequencing (mRNA-seq) data from this study contained healthy controls
(n = 10), the COVID-19 severe group (n = 17), and the COVID-19 mild group (n = 14),
which are available from the National Center for Biotechnology Information (NCBI) GEO
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database [15] under accession number GSE167930 [16]. Use the normalizeBetweenArrays
function of the limma R package (version 3.52.4) [17] to normalize the data.

2.2. Hierarchical Cluster Analysis and Principal Component Analysis

In order to study the relationship between the severity of patients, hierarchical cluster
analysis and principal component analysis were performed on all patients.

There were 41 patients in this step, including 14 patients with mild disease, 17 patients
with severe disease, and 10 healthy controls. In hierarchical cluster analysis and PCA,
patients with a similar expression of mRNAs tended to be close. We used the flashclust
function in the WGCNA R package (version 1.72.1) [18] for hierarchical cluster analysis
and the vegan R package (version 2.6.4) [19] for principal component analysis.

2.3. Weighted Gene Co-Expression Network Analysis

The “WGCNA” R package [18] was used to create a weighted gene co-expression
network to identify critical modules and genes in the COVID-19 dataset. First, the “pickSoft-
Threshold” function was used to select the optimal soft threshold with scale-free topological
fit index (R2) > 0.80 and good average network connectivity. The “blockwiseModules”
function was used to construct the weighted gene co-expression network in one step, with
a soft threshold of 12, a minModuleSize of 100, and a mergeCutHeight of 0.8. Correlations
between gene modules and COVID-19 disease types were calculated using the Pearson
correlation analysis method, and positively correlated modules with a p-value of less than
0.05 were considered to be critically associated with the phenotype and were included in
subsequent analyses. Finally, the genes within the critical modules were further screened
by calculating module membership (MM) and gene significance (GS) values to obtain the
most relevant genes for the traits in the critical modules.

2.4. Identification of Differentially Expressed Genes and Critical Genes

Significant differential genes for COVID-19 severe disease in mRNA-seq data were
identified using the limma R package (version 3.52.4) [17], with the criteria of a corrected
p-value < 0.05 and |logFC| > 1.0. To screen critical genes for COVID-19 severe disease,
we set up two gene clusters. Cluster 1 was the critical gene of COVID-19 severe identified
by WGCNA. Cluster 2 for COVID-19 mild patients compared with COVID-19 severe
patients in DEGs. Clusters 1 and 2 were intersected to find critical genes in COVID-19
severe patients.

2.5. Functional Enrichment Analysis

Gene Ontology (GO) (https://geneontology.org/, accessed on 28 July 2023) [20,21] is
a widely used tool for annotation of gene function, containing biological pathways (BP),
cellular components (CC), and molecular function (MF). KEGG (https://www.genome.jp/
kegg/, accessed on 28 July 2023) [22] enrichment analysis is a practical tool for analyzing
gene function and related high-level genomic functional information.

Genes were subjected to GO pathway analysis [23] using the R package org.hs.egg.db
(version 3.1.0) as a background. KEGG pathway gene annotations were obtained from
the Molecular Signatures Database before performing KEGG analysis. Gene enrichment
results were obtained using the R package clusterProfiler (version 3.14.3) [24]. GO and
KEGG pathways with p-values < 0.05 were considered to be significantly enriched, and the
pathways were ranked according to p-value from smallest to largest, and the results were
visualized using the ggplot2 R package (version 3.3.6) [25].

2.6. Protein–Protein Interaction Network Construction and Hub Gene Identification

Protein–protein interaction (PPI) network via STRING [26] (v12.0, https://cn.string-
db.org/, accessed on 31 July 2023), a web-based tool for detecting protein interactions
by uploading gene datasets. The critical genes obtained previously were imported into

https://geneontology.org/
https://www.genome.jp/kegg/
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STRING and the interaction score was set to 0.4. The PPI network results were exported to
Cytoscape [27] (version 3.9.1) for analysis and visualization.

The PPI network was computed using CytoHybba [28] (version 0.1), a plug-in for
Cytoscape software (version 3.9.1), through five algorithms: Degree, MCC, Closeness,
Betweenness, and MNC. The top 20 genes obtained from the above five algorithms were
taken to be intersected, and the common genes obtained were used as hub genes. The hub
genes were again KEGG, GO, and MGI Mammalian Phenotype enriched using the Enrichr-
KG [29] (https://maayanlab.cloud/enrichr-kg, accessed on 1 August 2023) function of the
Enrichr website (https://maayanlab.cloud/Enrichr/, accessed on 1 August 2023) to gain a
greater understanding of the physiopathological functions involved in these genes.

2.7. Construction of TF–Gene and Gene–miRNA Interaction Networks

Identification of TF–gene and gene–miRNA interaction networks of COVID-19 severe
hub genes was performed using the JASPAR database (https://jaspar2020.genereg.net/,
accessed on 1 August 2023) and TarBase (version 8.0) database on NetworkAnalyst [30]
(version 3.0, https://www.networkanalyst.ca, accessed on 1 August 2023). Subsequently,
the network was imported into Cytoscape for visualization and analysis.

2.8. Identification of Target Drugs

Drug Signatures Database (DSigDB) [31] (3 August 2023), an online gene set connect-
ing drugs and their target genes, contains 22,527 gene sets consisting of 17,389 unique
compounds covering 19,531 genes. The Enrichr website provides a link to access DSigDB.
In this study, the identified COVID-19 severe disease hub genes were uploaded to the
Enricher website to identify drugs associated with COVID-19 severe disease.

2.9. Immune Infiltration Analysis

In this study, we used CIBERSORTx [32] (https://cibersortx.stanford.edu/, accessed
on 30 May 2023) to identify immune cell subpopulations in mRNA-seq. CIBERSORTx
is based on a linear regression model that is trained to estimate the relative abundance
of individual immune cell subpopulations in a mixed cell sample from gene expression
profiles of known immune cell signatures, and the algorithm can calculate 22 immune cell
subpopulations. We manually merged similar cell types to generate a dataset containing 11
major cell types: B cells, dendritic cells, macrophages, mast cells, monocytes, neutrophils,
natural killer cells, plasma cells, CD4+ and CD8+ T cells, and Cytotoxic T cells (Table S7).
Associations between the two immune cells were compared using Pearson correlation
analysis. p < 0.05 was considered significant.

2.10. Analysis of Clinical and Laboratory Test Data

Clinical and laboratory testing data for COVID-19 patients were obtained from our
previous study [16]. Clinical information and laboratory test results including routine blood
tests, blood gas analysis, blood chemistry, D-dimer, prothrombin time (PT), international
normalized ratio (INR), and activated partial thromboplastin time (APTT) were collected.
Pearson correlation analysis was used to compare the correlation between two clinical
features. Independent sample t-test was used to compare the two groups of continuous
variables. One-way ANOVA and LSD post hoc tests were used to compare three or more
groups of continuous variables. p < 0.05 was considered significant.

2.11. Analysis of Single-Cell RNA Sequencing Data from Bronchoalveolar Lavage Fluid

Bronchoalveolar lavage fluid single-cell RNA sequencing (BALF scRNA-seq) data
were obtained from the GSE145926 [33] dataset of the GEO database, which contains a
total of 87,000 cells from three healthy controls, three COVID-19 mild patients, and six
COVID-19 severe patients. Data integration, quality control, data normalization, feature
selection, data scaling, linear downscaling, and UMAP clustering were performed using the
standard single-cell RNA sequencing data preprocessing workflow in Seurat [34]. Cell-type

https://maayanlab.cloud/enrichr-kg
https://maayanlab.cloud/Enrichr/
https://jaspar2020.genereg.net/
https://www.networkanalyst.ca
https://cibersortx.stanford.edu/
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annotation was performed using the marker provided with the corresponding article of the
dataset (Table S8).

2.12. Pseudotime Analysis

CytoTRACE is a computational framework that can be used to predict cell develop-
mental potential and differentiation status by calculating the transcriptional diversity of
each cell in scRNA-seq data [35]. CytoTRACE scores were calculated for all neutrophils
by applying the R package CytoTRACE (version 0.3.3). CytoTRACE scores range from
0 to 1, with higher scores indicating higher developmental potential (less differentiation)
and cells in a stem cell state. The R package Monocle 3 [36] (version 1.2.9) was used to
infer cell differentiation trajectories. The BALF scRNA-seq data of COVID-19 were used to
construct pseudotime trajectories of neutrophil cells in healthy controls, and COVID-19
mild and severe disease. For each analysis, PCA-based downscaling was performed using
differentially expressed genes for each phenotype, followed by 2D visualization using
UMAP clustering. Neutrophil subtypes with high developmental potential identified by
CytoTRACE were defined as pseudotime root states to characterize the differentiation
trajectories and immune changes in different subtypes of neutrophils.

2.13. Cell-to-Cell Communication

Cell-to-cell communication analysis of multiple cell types was performed using the
CellChat R package [37] (version 1.4.0). CellChat enables comparison of the number and
strength of interactions between different cell populations, calculation of afferent and
efferent signals for each cell population, as well as screening for critical ligand/receptor
pairs between different cells. This study focuses on the signals that other cell populations
afferent to neutrophils and the critical ligand/receptor pairs therein.

2.14. Statistical Analysis

All the data in this study were analyzed using software R (version 4.2) [38], and
the data were analyzed for significance using the statistical analysis methods that come
with the corresponding R package. Pearson correlation analysis was used to compare the
correlation between two characteristics. Independent sample t-test was used to compare
two groups of continuous variables. One-way ANOVA and LSD post hoc tests were used
to compare three or more groups of continuous variables. Significant differences were
generally considered to be significant at a p-value < 0.05.

3. Results
3.1. Hierarchical Cluster Analysis and Principal Component Analysis

We performed unsupervised hierarchical clustering to detect similarities in gene
expression profiles between severe, mild, and healthy control by the fashClust function of
the WGCNA package (Figure 2A). We observed an obvious separation between those three
groups, suggesting specific mRNA profile signatures for COVID-19 patients. Principal
component analysis (PCA) of variant genes re-marked such separation (Figure 2B). PCA
was able to distinguish severe patients and demonstrated that the severe patients were
separated from the healthy control and mild patients. These two results suggest that there
are differences in mRNA profiles between COVID-19 severe and mild patients.

3.2. Identification of Significant Modules and Genes of COVID-19 Severe by WGCNA

Next, we used the WGCNA package (version 1.7.1) to construct co-expression net-
works for bulk mRNA-seq normalized gene expression data. The soft threshold was set
to 12 to fit a scale-free network and the maximum mean connectivity (Figure 2C). Four
co-expression modules were identified, of which the blue module was positively correlated
with COVID-19 severe (r = 0.8, p = 4 × 10−10) and contained 2707 genes (Figure 2D,E). We
calculated the expression correlation of module feature vectors with genes to obtain module
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membership (MM) and gene significance (GS). Based on the cut-off criteria MM > 0.5 and
GS > 0.5, 882 genes with high connectivity in the blue module were identified (Figure 2F).
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Figure 2. Hierarchical Clustering Analysis and principal component analysis, as well as the use of
WGCNA to identify significant modules and genes of COVID-19 severe: (A) Hierarchical clustering of
normalized bulk RNA-seq data. Red, light red and white are ZA/A/C and indicate COVID-19 severe,
mild and healthy groups, respectively. These three groups can be clearly separated. (B) Principal
component analysis (PCA) showed a clear separation of the three groups. (C) Soft threshold in
Weighted Gene Co-Expression Network Analysis (WGCNA) of bulk RNA-seq. The red line is the soft
threshold equal to 0.85. (D) A cluster dendrogram of module-specific colors showed 4 co-expressed
gene modules, with different colors indicating that genes are grouped in different modules, each
containing more than 100 genes. (E) Correlation heatmap between disease groupings and gene
modules. (F) The scatter plot of Module membership vs. Gene significance in the blue co-expression
module. The red dashed line shows Module membership and Gene significance equal to 0.5.

3.3. Identification and Enrichment of Critical Genes for COVID-19 Severe Disease

This study focused on COVID-19 severe disease; therefore, the differentially expressed
genes were calculated by comparing the expressed genes of COVID-19 severe and mild
disease. Under Padj < 0.05 and |logFC| > 1 screening criteria, 1248 DEGs were obtained,
including 787 up-regulated and 395 down-regulated genes (Table S1, Figure 3A). Table 1
demonstrates the top 10 differentially expressed genes that were up-regulated.
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Figure 3. Differential gene expression analysis, identification, and enrichment of critical genes in
COVID-19 severe: (A) Volcano plot of differentially expressed genes (DEGs) between COVID-19
severe and mild. (B) The 787 DEGs of COVID-19 severe disease and the 882 high connectivity genes
of the blue module were taken to be intersected, and 395 critical genes were obtained. (C) Heatmap
of 395 critical genes expression in different disease types. (D) GO enrichment analysis of 395 critical
genes in COVID-19 severe. (E) KEGG enrichment analysis of 395 critical genes in COVID-19 severe.
Bolded font emphasizes neutrophil-associated biological processes and pathways.

Intersecting the up-regulated genes (787 differentially expressed genes in COVID-19
severe) with the 882 highly connected genes in the blue module identified by WGCNA as
being positively correlated with COVID-19 severe resulted in 395 critical genes (Table S2,
Figure 3B). A heatmap showing the expression of these 395 critical genes in different disease
types is seen in Figure 3C.
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Table 1. The top ten differentially expressed genes (DEGs) in COVID-19 severe.

Gene logFC Pval FDR Regulate

EGLN1 2.02491 1.72 × 10−10 2.12 × 10−6 UP
MANSC1 3.00036 1.10 × 10−9 2.31 × 10−6 UP

PDK3 1.18087 1.24 × 10−9 2.31 × 10−6 UP
HIST2H2BE 1.21761 1.26 × 10−9 2.31 × 10−6 UP

KCNJ2 3.12549 1.61 × 10−9 2.31 × 10−6 UP
TGFA 2.78342 1.71 × 10−9 2.31 × 10−6 UP

SULT1B1 2.6309 1.75 × 10−9 2.31 × 10−6 UP
CMTM1 2.31296 1.77 × 10−9 2.31 × 10−6 UP

PPP1R3D 1.93043 2.15 × 10−9 2.31 × 10−6 UP
KBTBD7 1.96831 2.20 × 10−9 2.31 × 10−6 UP

GO and KEGG enrichment analysis was performed on 395 critical genes of COVID-19
severe to understand their biological pathways (Tables S3 and S4). The top ten GO terms for
biological process, cellular component, and molecular function are shown in Figure 3D. The
biological processes of GO are mainly enriched in neutrophil degranulation, inflammatory
response, defense response to bacterium, acute-phase response, and antimicrobial humoral
response, which are all acute inflammation-related pathways. The cellular components of
GO are mainly enriched in neutrophil granules, such as specific granule lumen, tertiary
granule lumen, ficolin-1-rich granule membrane, specific granule, and specific granule
membrane. The molecular functions of GO are mainly enriched in transmembrane signaling
receptor activity, proximal promoter sequence-specific DNA binding, G-protein coupled
receptor activity, lipopolysaccharide binding, and transferase activity, transferring glycosyl
groups. Figure 3E shows the top 15 KEGG-enriched pathways. KEGG analysis found that
critical genes were mainly enriched in Staphylococcus aureus infection, amoebiasis, starch
and sucrose metabolism, bile secretion, legionellosis, nicotine addiction, neuroactive ligand–
receptor interaction, nitrogen metabolism, and neutrophil extracellular trap formation.
Both GO and KEGG were enriched to neutrophil-associated pathways, suggesting that
neutrophils may play an important role in COVID-19 severe.

3.4. Construction of PPI Network and Identification of Hub Gene

Protein–protein interaction networks (251 nodes and 751 edges) for these critical genes
were constructed using STRING (v12.0; https://cn.string-db.org, accessed on 31 July 2023).
Thereafter, the network was imported into the Cytoscape version 3.9.1 for analysis and
visualization (Figure 4A). Based on the Degree, MCC, Closeness, Betweenness, and MNC
algorithms of the CytoHubba plug-in, six genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1,
and LTF) were confirmed as hub genes related to COVID-19 severe (Figure 4B, Table S5).
All topological features of hub genes are shown in Table 2. A heatmap shows the expression
of six hub genes in mild and severe of COVID-19 (Figure 4C). These six hub genes may
be the characteristic immune genes of COVID-19 severe, which can be used as potential
biomarkers for the diagnosis and treatment of COVID-19 severe.

Hub genes were enriched using the online enrichment tool Enrichr-KG, which is
enriched in neutrophil degranulation, neutrophil activation involved in immune response,
neutrophil-mediated immunity, antimicrobial humoral immune response mediated by
antimicrobial peptide, positive regulation of NF-kappaB transcription factor activity, neu-
trophil extracellular trap formation, impaired neutrophil chemotaxis, decreased suscepti-
bility to induced arthritis, legionellosis, leishmaniasis, rheumatoid arthritis, Staphylococ-
cus aureus infection, increased susceptibility to bacterial infection, abnormal pulmonary
alveolar duct morphology, and abnormal muscle cell glucose uptake (Figure 4D,E). The
enrichment results contained five neutrophil-related pathways, suggesting that the im-
munopathological effects of hub genes are closely related to neutrophils; it further suggests
that neutrophils may play an important role in COVID-19 severe.

https://cn.string-db.org
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Figure 4. Identifying the key genes for COVID-19 and identifying their associated TFs and miRNA:
(A) Protein–protein interaction network was created using STRING and visualized in Cytoscape.
The larger the degree, the larger the node, the darker the color, and the more centered the position.
(B) Cytohubba plugin further screens for hub genes in the network. The Venn diagram shows the
number of hub genes and the algorithm used. (C) Heatmap of hub genes expression in COVID-
19 mild and severe. (D,E) GO, KEGG, and MGI enrichment results for hub genes. (F) TF–gene
interaction network. Herein, the circle nodes are genes (red); the diamond nodes are TFs (Blue).
(G) Gene–miRNA interaction network. Herein, the circle nodes are genes (red); the square nodes are
miRNA (pink).

3.5. Construction of TF–Gene and Gene–miRNA Interaction Networks and Drug Identification

NetworkAnalyst was used to identify the TF–gene and gene–miRNA interaction
networks for hub genes. The TF–gene network consists of 31 TF genes and 6 hub genes
(Figure 4F). LTF was regulated by 15 TF genes and CXCL1 was regulated by 10 TF genes. In
addition, we found that FOXC1 had high connectivity in the TF–gene interaction network,



Microorganisms 2024, 12, 737 10 of 20

regulating six hub genes simultaneously. The gene–miRNA network has 59 nodes and
78 edges, where 6 of the nodes are hub genes and 53 are miRNAs (Figure 4G). Among
these miRNAs, hsa-mir-129-2-3p was connected with CXCL1, TLR4, FPR1, and FCGR2A;
hsa-mir-20a-5p and hsa-mir-671-5p were associated with CXCL1, LTF, S100A12, and FPR1;
and hsa-mir-27a-3p was connected with CXCL1, TLR4, S100A12, and FCGR2A. These four
miRNAs are also recognized as the critical miRNAs.

Based on hub genes, a total of 409 drug compounds were identified through the
DSigDB database on the Enrichr website, which identifies drugs associated with severe
illness in COVID-19 (Table S6). The top ten drug compounds were screened according to
the p-value (Table 2).

Table 2. The top ten gene-targeted drugs in the COVID-19 severe.

Term p-Value Combined Score Genes

trimethoprim BOSS 1.68 × 10−5 1158.315235 CXCL1; TLR4; LTF
Muramyl Dipeptide CTD 00005307 1.73 × 10−5 5475.88964 CXCL1; TLR4

Adenylyl sulfate BOSS 2.06 × 10−5 4896.915145 TLR4; LTF
6-Deoxy-D-galactose BOSS 3.94 × 10−5 3265.179181 TLR4; LTF

N-Formyl-Met-Leu-Phe BOSS 6.42 × 10−5 2407.70308 FPR1; TLR4
Lysergide BOSS 7.06 × 10−5 2270.521513 TLR4; LTF

methacholine BOSS 9.13 × 10−5 1932.575689 CXCL1; TLR4
SODIUM SULFATE BOSS 1.55 × 10−4 1387.901255 CXCL1; TLR4

Heparitin BOSS 2.97 × 10−4 918.6400252 CXCL1; TLR4
Hydroxyzine dihydrochloride BOSS 3.66 × 10−4 803.1179907 TLR4; LTF

3.6. Immune Infiltration for Diverse Disease Severity in COVID-19

We used the online database CIBERSORTx for immune cell infiltration analysis of
bulk mRNA-seq data. Figure 5A demonstrates the relative abundance of various immune
cells, with a significant increase in neutrophils and a significant decrease in monocytes,
CD4+ T, and CD8+ T cells in severe patients compared with mild patients (Figure 5B,D).
A comparison of the association between each hub gene and immune cells using Pear-
son correlation analysis showed that the hub genes were all positively correlated with
neutrophils and negatively correlated with both CD4+ T and total T cells (Figure 5C). In
addition, monocytes, NK cells, CD4+ T cells, CD8+ T cells, and total T cells were signifi-
cantly negatively correlated with neutrophils (Figure 5C,D). Combined with the previous
enrichment results, it suggests that neutrophils play a non-negligible role in COVID-19
severe, and that targeting neutrophils for the treatment of patients with COVID-19 severe
may have promising results.

3.7. Clinical Metrics and Laboratory Test Results in Patients with COVID-19

To better understand the immune characteristics of COVID-19 severe patients, we
analyzed the clinical and laboratory test results of the COVID-19 patients. The heatmap
demonstrates the correlation between clinical tests and laboratory test results (Figure 6A).
Three of the five indicators of the coagulation routine were positively correlated with
severity, suggesting a risk of endogenous coagulation in COVID-19 severe patients. In-
terestingly, the concentration of D-dimer, a critical indicator of coagulation in COVID-19
patients, was positively correlated with neutrophil counts and negatively correlated with
lymphocyte, total T, CD4+ T, and cytotoxic CD8+ T cell counts (Figure 6B). Figure 6C shows
that COVID-19 severe patients had significantly higher D-dimer concentrations, neutrophil
counts, and significantly lower total T, CD4+ T, and cytotoxic CD8+ T cell counts compared
to COVID-19 mild patients. The changes in immune cells were consistent with the results
of the immune infiltration analysis of bulk mRNA-seq data.
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Figure 5. Immune infiltration for diverse disease severity in COVID-19: (A) Relative abundance of a
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severity based on RNA-seq. (C) Heatmap of correlation between hub genes and immune cells.
(D) Box plots and correlation scatter plots of neutrophils, monocytes, and total T cells. (* p < 0.05,
** p < 0.01, *** p < 0.001.).
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Figure 6. Clinical metrics and laboratory test results in patients with COVID-19: (A) Heatmap of
correlation between clinical and laboratory test results. (B) Scatter plot of D-dimer correlation with
neutrophils, lymphocytes, total T cells, CD4+ T cells, and Cytotoxic CD8+ T cells. (C) Box plots of
D-dimer, neutrophil, total T cells, CD4+ T cells, and Cytotoxic CD8+ T cells in COVID-19 mild and
severe. (* p < 0.05, ** p < 0.01, *** p < 0.001.).
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3.8. BALF Single-Cell Sequencing Reveals Internal Immune Shifts in Neutrophils from
COVID-19 Patients

To investigate the role of neutrophils in COVID-19 patients, we obtained single-cell
sequencing data of bronchoalveolar lavage fluid (BALF scRNA-seq) from the GSE145926
dataset in the GEO database for three healthy controls, three COVID-19 mild cases, and
six COVID-19 severe cases. Using these data, we identified 12 major cell types, extracted
their neutrophil, and further identified six subsets of neutrophils (Figures 7A and S1). The
distribution of neutrophils across disease states was consistent with the results of bulk
mRNA-seq data on immune infiltration, with Neutrophil CD63+ and Neutrophil S100+
being increased in COVID-19 severe compared to healthy controls. The differentiation
potential of the six neutrophil subgroups was estimated using CytoTRACE (version 0.3.3),
and the three neutrophil subtypes, Neutrophil CD74+, Neutrophil MT, and Neutrophil
CD63+, had high differentiation potential and were in the early stage of differentiation,
while Neutrophil HSP+, Neutrophil CCL4+, and Neutrophil S100+ had low differentiation
potential and were in the late stage of differentiation (Figure 7B). Analysis of neutrophils
using the R package Monocle 3 (version 1.2.9) further demonstrated the differentiation
trends of these six neutrophils (Figure 7C). We performed an enrichment analysis of
differentially expressed genes in each subset of neutrophils to see how these genes are
enriched in neutrophil-related pathways (Table S9). We found that Neutrophil S100+ at
a late stage of differentiation was significantly enriched for neutrophil extracellular trap
formation (Figure 7D). These results suggest that there may be a gradual intracellular
process of gradual change in neutrophils from activation to the occurrence of extracellular
trap formation in COVID-19 severe disease, and that the inhibition of this process of change
to minimize the occurrence of NETs may be a potential therapeutic approach to improve
the symptoms and prognosis of COVID-19 severe patients.
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health controls and COVID-19 patents. A considerably large number of neutrophils was observed
in COVID-19 severe patients. cDC, conventional dendritic cell. pDC, plasmacytoid dendritic cell.
(B) UMAP plots depicting the distribution of CytoTRACE scores among subgroup of neutrophils
(left). Dark green indicates lower scores (low stemness) while dark red indicates higher scores (high
stemness). CytoTRACE predicted the cell differentiation potential of subgroup of neutrophils (Mid-
dle). Genes correlated with more differentiated and less differentiated cells predicted by CytoTRACE
(Right). (C) Pseudotime of neutrophil subgroup. (D) Enrichment results of neutrophil-associated
pathways in neutrophil subgroup.

3.9. Identification of the Distribution and Cellular Communication of Hub Genes in Immune Cells
from Patients with COVID-19

We used BALF scRNA-seq data to assess the specific expression of hub genes in
different immune cells and in different disease types. TLR4 was expressed in alveolar
macrophages, macrophages, and monocytes; S100A12 was highly expressed in macrophages;
FCGR2A and FPR1 were highly expressed in alveolar macrophages, cDCs, macrophages,
and monocytes versus neutrophils; CXCL1 was expressed in epithelial cells and neutrophils;
and LTFs were not significantly expressed (Figure 8A,C). In addition, consistent with that
of bulk mRNA-seq, hub genes in BALF scRNA-seq had the highest average expression in
COVID-19 severe patients (Figure 8B).
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Figure 8. Single-cell sequencing explores the expression of hub genes and cellular communication
in immune cells: (A,C) Expression of hub genes in immune cells in BALF scRNA-seq. (B) Average
expression of hub genes in different disease groups in BALF scRNA-seq. (D) Cell–cell communi-
cations analysis and vital ligand–receptor interactions in immune cells, with numbers on the lines
representing the number of interactions. (E) Diagram of the cell–cell interactions of Monocytes,
Alveolar macrophages, Macrophages, and Neutrophils.

Using the CellChat package to explore the cellular communication network between
neutrophils and other immune cells, we found that alveolar macrophages, macrophages,
and monocytes with generally high expressions of hub genes had more cell-to-cell com-
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munication toward neutrophils (Figure 8D). Combined with the results of neutrophil
differentiation and enrichment analyses, we hypothesized that alveolar macrophages,
macrophages, and monocytes may be present in the immunopathology of COVID-19 se-
vere, influencing neutrophils through intercellular ligand–receptor pairs to promote the
occurrence of extracellular trapping of neutrophils (Figure 8E).

4. Discussion

COVID-19 is a highly infectious disease that has spread to many countries and regions
around the globe and has affected the social and economic well-being of many countries and
regions [39,40]. Severe SARS-CoV-2 infection induces an intense inflammatory response
that triggers the recruitment and infiltration of neutrophils in different organs and the
formation of neutrophil extracellular traps (NETs), which leads to a variety of serious
consequences of SARS-CoV-2 infection, such as acute respiratory failure (ALI), acute
respiratory distress (ARDS), cytokine storm (CS), pulmonary thrombosis, and multiple
organ damage (MOD) [41]. Therefore, it is important to explore the immune characteristic
genes of COVID-19 severe and the immune transformation of neutrophils for the treatment
of COVID-19 severe, reducing death and improving prognosis. We performed a study
using peripheral blood mRNA-seq data from 41 COVID-19 patients to obtain the immune-
characterized genes of COVID-19 severe disease, namely, the hub genes (FPR1, FCGR2A,
TLR4, S100A12, CXCL1, and LTF).

FPR1 is a pattern recognition receptor, mainly expressed in myeloid cells, which
mediates phagocytic responses to microbial invasion of the host and plays an important
role in host defense and inflammatory responses [42]. FPR1 was found to induce blood
neutrophil activation in COVID-19 patients, triggering neutrophil-mediated inflammation
and end-organ damage [43]. It has also been found that T cells and myeloid cells from
COVID-19 patients may trigger an inflammatory storm in the lungs through intercellular
communication via the ANXA1/FPR1 receptor–ligand signaling pathway [44] The study by
Lee H et al. [45] also concluded that FPR1 is a suitable target for appropriate assessment of
COVID-19 severity and provision of therapeutic agents. FCGR2A is a member of the family
of genes encoding immunoglobulin Fc receptors present on the surface of many immune-
responsive cells. The protein it encodes is a cell surface receptor for phagocytic cells such
as macrophages and neutrophils, and is involved in the phagocytosis and clearance of im-
mune complexes [46]. Thromboembolic events are an important cause of death in critically
ill patients with COVID-19, and platelet-mediated immune thrombosis within the plasma
of COVID-19 patients can be reversed by blocking FCGR2A-Syk pathway signaling on
platelets [47]. It has also been found that immune thrombocytopenia was induced after vac-
cination with the COVID-19 vaccine Vaxzevria, and that the resulting antibodies directed
against platelet factor-4 (PF4)/heparin complex induced platelet activation by binding to
the FCGR2A receptor on the surface of platelets, triggering thromboembolism and even
death [48]. The protein encoded by TLR4 is a member of the Toll-like receptor (TLR) family,
which acts as a type I transmembrane protein that recognizes lipopolysaccharides and initi-
ates intracellular signaling through the NF-κB or JNK/SAPK signaling pathways, playing
an important role in pathogen recognition and activation of innate immunity [49]. It was
found that the SARS-CoV-2 spike protein may trigger an inflammatory response through
TLR4 signaling [50]. Obese patients with severe COVID-19 induced inflammation through
saturated fatty acid activation of the TLR4 pathway, and additionally pro-inflammatory
cytokines may promote hypertensive responses in the hypothalamus by triggering activa-
tion of the TLR4/MyD88/NF-κB pathway; therefore, activation of the TLR4 pathway in
COVID-19 patients may be associated with the poor prognosis of patients, and inhibition
of the TLR4/NF-κB pathway reduces the immune response to pathogen-associated molec-
ular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in COVID-19
patients, thereby improving the condition and prognosis of COVID-19 patients [51,52].
The protein encoded by S100A12 is a member of the S100 family of proteins containing 2
EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and nucleus
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of a wide range of cells and are involved in the regulation of various cellular processes such
as cell cycle progression and differentiation. S100A12 is highly abundant in neutrophils
during acute inflammation and is associated with immune regulation [53]. The study by
Lei et al. found a strong correlation between S100A12 expression and indicators of disease
severity and prognosis in COVID-19 patients, which is a valuable marker of COVID-19
severity and assessment of prognosis [54]. S100A12, the gene encoding EN-RAGE, was
analyzed in COVID-19 proteomic analysis of lung tissue from patients who had died,
and it revealed a positive correlation between EN-RAGE abundance and inflammation
severity [55]. EN-RAGE was also found to be a marker of inflammation in severe sepsis in
the analysis of scRNA-seq data, and S100A12 was highly expressed by classical monocytes
and myeloid cells from COVID-19 severe patients [56]. CXCL1 is a member of the CXC
subfamily of chemokines. The encoded protein is a cytokine that signals through the G
protein-coupled receptor CXCR2. This protein plays a role in inflammation and acts as a
chemoattractant for neutrophils, causing migration and infiltration of neutrophils to sites of
high expression. CXCL1 is also one of the components of the SARS-CoV-2-induced cytokine
storm and is elevated in the blood of patients with severe COVID-19, mobilizing bone
marrow neutrophils, resulting in increased blood neutrophilia and recruiting to the lungs,
releasing neutrophils outside the neutrophil packet traps, which causes damage to the
respiratory and circulatory systems [57,58]. LTF (Lactoferrin) is a member of the transferrin
gene family and its protein product is found in the secondary granules of neutrophils. This
protein is the major iron-binding protein in milk and human secretions, has antimicrobial
activity, and is an important component of the non-specific immune system. The protein
has a wide range of properties including regulation of iron homeostasis, host defense
against a wide range of microbial infections, anti-inflammatory activity, regulation of cell
growth and differentiation, and prevention of cancer development and metastasis. The
protein and its peptides have been found to possess antibacterial, antiviral, antifungal, and
antiparasitic activities [59]. Lactoferrin is currently receiving widespread attention as an
antiviral agent for the treatment of new crowns; it works by inhibiting viral entry into
cells at the source through the inhibition of heparan sulfate proteoglycans (HSPGs), which
promotes viral cell attachment [60]. LTF acts as an antiviral substance and is produced after
coronavirus contact with airway epithelial cells and produces cytokines and chemokines
that recruit inflammatory cells and influence adaptive immunity [61].

Gene pathway enrichment analysis of hub genes. GO biological processes are en-
riched in neutrophil-associated pathways such as neutrophil degranulation, and neutrophil
activation involved in immune response and neutrophil-mediated immunity. KEGG is
enriched in inflammatory response pathways triggered by infections such as neutrophil
extracellular trap formation, legionellosis, and leishmaniasis. The immune signature genes
of COVID-19 severe disease are highly enriched in the neutrophil-associated pathway,
suggesting that neutrophils may be involved in the progression of COVID-19 patients.
The immune system defends against invading pathogens, but it can also trigger a severe
inflammatory response. Analysis of immune infiltration by mRNA-seq revealed that
neutrophils were highly infiltrated in COVID-19 severe disease and that the expression
of COVID-19 severe disease immune signature genes was positively correlated with the
proportion of neutrophil infiltration. Clinically detected neutrophil counts in COVID-19
patients were consistent with the results of mRNA-seq immune infiltration analysis. This
further emphasizes the important role of immune-characterized genes and neutrophils
in regulating the immune microenvironment in COVID-19 severe patients. It has been
demonstrated that circulating and lung neutrophil counts and activation correlate with the
severity of COVID-19 [62] and that the neutrophil-to-lymphocyte ratio (NLR) is an impor-
tant predictor of disease severity in patients with COVID-19 [63]. Neutrophil extracellular
traps (NETs) were demonstrated in the blood of many COVID-19 hospitalized patients [64].
Histopathologic studies also revealed the presence of neutrophil infiltration in the lungs of
patients who died of COVID-19 [5]. Neutrophil infiltration and formation of neutrophil
extracellular traps may play an important role in necrotizing inflammation in COVID-19
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severe patients, where NETs mediate microthrombosis and microvascular dysfunction by
damaging endothelial cells and stimulating exogenous and endogenous coagulation [10,11].
Therefore, neutrophils not only have predictive value, but also moderate inhibition of
their proliferative infiltration, and NETs are potentially important therapeutic strategies to
alleviate COVID-19 [65,66].

Finally, to further understand the role of neutrophils in COVID-19 severe disease, we
used scRNA-seq data to identify neutrophil subtypes, and explored the immune transfor-
mation of neutrophils and the intercellular communication between immune cells with a
high expression of immune-characterized genes and neutrophils. Our finding that the per-
centage of neutrophil numbers in BALF scRNA-seq for different disease levels is consistent
with the results of peripheral blood mRNA-seq immune infiltration further emphasizes the
potential role of neutrophils in COVID-19 severe disease. The six neutrophil subtypes we
identified have distinct-role phenotypes and the phenotypes correspond to the order of
differentiation. The neutrophil subtypes characterized by the high expression of the S100
family at the end of differentiation have a pro-inflammatory phenotype that is enriched in
neutrophil extracellular trap formation pathways, and it is suggested that there is a series
of immune-related changes in COVID-19 patients who have a large number of neutrophils,
with NETs being ultimately released. NET formation is a key link between inflammation
and thrombosis [67], and defective NET degradation in COVID-19 severe patients fur-
ther promotes the accumulation of NETs [68], which leads to immune thrombosis after
adhesion to platelets [69]. During COVID-19 virus infection, the sustained activation of
monocytes, macrophages, and neutrophils is closely associated with excessive release of
NETs [68] Monocytes or macrophages may be the trigger for inducing immunothrombosis
in COVID-19 patients [70]. Our study also found that monocytes, macrophages, and alveo-
lar macrophages with a high expression of COVID-19 severe disease immune-characterized
genes may be involved in the immune transformation of neutrophils through intercellular
ligand-receptor pairs.

Overall, we identified immune-characterized genes and key immune cells in COVID-
19 severe disease by bulk RNA-seq, explored the immune transition of key immune cells
using single-cell RNA-seq, and identified ligand–receptor pairs for cell-to-cell communi-
cation between immune cells with a high expression of immune characterized genes and
key immune cells. These results provide new insights into the immune transformation of
neutrophils in COVID-19 patients and offer new biomarkers and potential drug targets for
the treatment and improved prognosis of COVID-19 severe patients. These new biomarkers
and drug targets may also provide some hints for future studies of other COVID-19 virus
variants to further minimize the impact of the COVID-19 pandemic on human health.

5. Conclusions

In this study, we focused on the differences between COVID-19 severe and mild
disease, and identified six hub genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and LTF)
for COVID-19 severe disease based on mRNA-seq data, explored the immune pathways
involved in COVID-19 severe disease, and found that neutrophils and neutrophil extracel-
lular traps (NETs) may play important roles in COVID-19 severe disease. BALF scRNA-seq
data were utilized to explore the internal immune transition of neutrophils to NETs, and
the cellular communication between cells with high hub gene expression and neutrophils.
These studies provide new insights into the immune transition that triggers neutrophil
activation to neutrophil extracellular trap formation, providing new biomarkers and po-
tential drug targets for treatment and improved prognosis in patients with COVID-19
severe disease.

6. Limitations

This study also has many limitations. Firstly, although multiple data were used in
this study, the sample size used was limited and could not cover all COVID-19 patients,
and there may be individual differences. Secondly, the immune characteristic genes and
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drugs screened in this study were predicted using bioinformatics analysis, and their specific
effects need to be verified experimentally. Finally, the immunological transformation of
neutrophils and the specific mechanism of other immune cells involved in the immunolog-
ical transformation of COVID-19 severe neutrophils need to be further investigated and
verified by in vivo experiments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12040737/s1, Figure S1: BAL scRNA-seq cell-type
definition and disease-type distribution; Table S1: DEGs associated with COVID-19 in GSE167930;
Table S2: The intersection of DEGs and blue module genes in GSE167930; Table S3: GO pathways
analysis results; Table S4: KEGG pathways analysis results; Table S5: The top 20 genes in the PPI
network were calculated using five algorithms; Table S6: COVID-19 severe gene-targeted drugs;
Table S7: Relative abundance of major immune cell types; Table S8: List of marker genes for cell types;
Table S9: GO and KEGG pathways in neutrophil subtypes.

Author Contributions: Conceived and designed, Z.Z., X.Z., J.L., Y.W. and M.Z.; Analyzed data and
prepared figures, Z.Z., X.Z., J.L., X.D. and Y.D.; Drafted manuscript, Z.Z., X.Z. and J.L.; Revised
manuscript, Y.W. and M.Z.; Funding acquisition and project administration, Z.Z., Y.W. and M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 82103785 and 82273582; the Science and Technology Program of Guangzhou, grant num-
ber 202102020649; and the Natural Science Foundation of Guangdong Province, grant numbers
2020A1515110543, 2021A1515011055, and 2022A1515012593.

Data Availability Statement: The datasets GSE167930 and GSE145926 presented in this study can be
found in NCBI Gene Expression Omnibus.

Acknowledgments: We are grateful to the public databases mentioned above for providing us with
data and analytical tools.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dong, E.; Du, H.; Gardner, L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect. Dis. 2020, 20,

533–534. [CrossRef] [PubMed]
2. Marini, J.J.; Gattinoni, L. Management of COVID-19 Respiratory Distress. JAMA 2020, 323, 2329–2330. [CrossRef] [PubMed]
3. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for

Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062.
[CrossRef] [PubMed]

4. Guan, J.; Wei, X.; Qin, S.; Liu, X.; Jiang, Y.; Chen, Y.; Chen, Y.; Lu, H.; Qian, J.; Wang, Z.; et al. Continuous Tracking of COVID-19
Patients’ Immune Status. Int. Immunopharmacol. 2020, 89, 107034. [CrossRef]

5. Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka,
F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [CrossRef] [PubMed]

6. Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-Lymphocyte Ratio
Predicts Critical Illness Patients with 2019 Coronavirus Disease in the Early Stage. J. Transl. Med. 2020, 18, 206. [CrossRef]
[PubMed]

7. Buja, L.M.; Wolf, D.A.; Zhao, B.; Akkanti, B.; McDonald, M.; Lelenwa, L.; Reilly, N.; Ottaviani, G.; Elghetany, M.T.; Trujillo,
D.O.; et al. The Emerging Spectrum of Cardiopulmonary Pathology of the Coronavirus Disease 2019 (COVID-19): Report of 3
Autopsies from Houston, Texas, and Review of Autopsy Findings from Other United States Cities. Cardiovasc. Pathol. 2020, 48,
107233. [CrossRef] [PubMed]

8. Middleton, E.A.; He, X.-Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk,
A.C.; Loda, M.; et al. Neutrophil Extracellular Traps Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress
Syndrome. Blood 2020, 136, 1169–1179. [CrossRef] [PubMed]

9. Leppkes, M.; Knopf, J.; Naschberger, E.; Lindemann, A.; Singh, J.; Herrmann, I.; Stürzl, M.; Staats, L.; Mahajan, A.; Schauer, C.;
et al. Vascular Occlusion by Neutrophil Extracellular Traps in COVID-19. EBioMedicine 2020, 58, 102925. [CrossRef] [PubMed]

10. Dou, Q.; Wei, X.; Zhou, K.; Yang, S.; Jia, P. Cardiovascular Manifestations and Mechanisms in Patients with COVID-19. Trends
Endocrinol. Metab. 2020, 31, 893–904. [CrossRef] [PubMed]

11. Tomar, B.; Anders, H.-J.; Desai, J.; Mulay, S.R. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in
COVID-19. Cells 2020, 9, 1383. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/microorganisms12040737/s1
https://www.mdpi.com/article/10.3390/microorganisms12040737/s1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://www.ncbi.nlm.nih.gov/pubmed/32087114
https://doi.org/10.1001/jama.2020.6825
https://www.ncbi.nlm.nih.gov/pubmed/32329799
https://doi.org/10.1016/S0140-6736(20)30566-3
https://www.ncbi.nlm.nih.gov/pubmed/32171076
https://doi.org/10.1016/j.intimp.2020.107034
https://doi.org/10.1016/S0140-6736(20)30937-5
https://www.ncbi.nlm.nih.gov/pubmed/32325026
https://doi.org/10.1186/s12967-020-02374-0
https://www.ncbi.nlm.nih.gov/pubmed/32434518
https://doi.org/10.1016/j.carpath.2020.107233
https://www.ncbi.nlm.nih.gov/pubmed/32434133
https://doi.org/10.1182/blood.2020007008
https://www.ncbi.nlm.nih.gov/pubmed/32597954
https://doi.org/10.1016/j.ebiom.2020.102925
https://www.ncbi.nlm.nih.gov/pubmed/32745993
https://doi.org/10.1016/j.tem.2020.10.001
https://www.ncbi.nlm.nih.gov/pubmed/33172748
https://doi.org/10.3390/cells9061383
https://www.ncbi.nlm.nih.gov/pubmed/32498376


Microorganisms 2024, 12, 737 18 of 20

12. Lai, G.; Liu, H.; Deng, J.; Li, K.; Xie, B. A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and
Machine Learning. Genes 2022, 13, 1602. [CrossRef] [PubMed]

13. Wauters, E.; Van Mol, P.; Garg, A.D.; Jansen, S.; Van Herck, Y.; Vanderbeke, L.; Bassez, A.; Boeckx, B.; Malengier-Devlies, B.;
Timmerman, A.; et al. Discriminating Mild from Critical COVID-19 by Innate and Adaptive Immune Single-Cell Profiling of
Bronchoalveolar Lavages. Cell Res. 2021, 31, 272–290. [CrossRef] [PubMed]

14. Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.;
Bonaguro, L.; et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020, 182, 1419–1440.e23.
[CrossRef] [PubMed]

15. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef] [PubMed]

16. Zhou, Z.; Zhou, X.; Cheng, L.; Wen, L.; An, T.; Gao, H.; Deng, H.; Yan, Q.; Zhang, X.; Li, Y.; et al. Machine Learning Algorithms
Utilizing Blood Parameters Enable Early Detection of Immunethrombotic Dysregulation in COVID-19. Clin. Transl. Med. 2021, 11,
e523. [CrossRef]

17. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for
RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef] [PubMed]

18. Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

19. Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H.
Vegan: Community Ecology Package. R Package, Version 2.2-1; R Core Team: Vienna, Austria, 2015.

20. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [CrossRef]
[PubMed]

21. Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.;
Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [CrossRef] [PubMed]

22. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
23. Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.-P.; Mi, H. PANTHER: Making Genome-Scale Phylogenetics

Accessible to All. Protein Sci. 2022, 31, 8–22. [CrossRef] [PubMed]
24. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters.

OMICS 2012, 16, 284–287. [CrossRef] [PubMed]
25. Ggplot2: Elegant Graphics for Data Analysis (3e). Available online: https://ggplot2-book.org/ (accessed on 24 March 2024).
26. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo,

S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any
Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [CrossRef] [PubMed]

27. Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics
Data. J. Proteome Res. 2019, 18, 623–632. [CrossRef]

28. Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying Hub Objects and Sub-Networks from
Complex Interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [CrossRef] [PubMed]

29. Evangelista, J.E.; Xie, Z.; Marino, G.B.; Nguyen, N.; Clarke, D.J.B.; Ma’ayan, A. Enrichr-KG: Bridging Enrichment Analysis across
Multiple Libraries. Nucleic Acids Res. 2023, 51, W168–W179. [CrossRef] [PubMed]

30. Xia, J.; Gill, E.E.; Hancock, R.E.W. NetworkAnalyst for Statistical, Visual and Network-Based Meta-Analysis of Gene Expression
Data. Nat. Protoc. 2015, 10, 823–844. [CrossRef] [PubMed]

31. Yoo, M.; Shin, J.; Kim, J.; Ryall, K.A.; Lee, K.; Lee, S.; Jeon, M.; Kang, J.; Tan, A.C. DSigDB: Drug Signatures Database for Gene Set
Analysis. Bioinformatics 2015, 31, 3069–3071. [CrossRef] [PubMed]

32. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust Enumeration
of Cell Subsets from Tissue Expression Profiles. Nat. Methods 2015, 12, 453–457. [CrossRef] [PubMed]

33. Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-Cell Landscape of
Bronchoalveolar Immune Cells in Patients with COVID-19. Nat. Med. 2020, 26, 842–844. [CrossRef] [PubMed]

34. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.
Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [CrossRef] [PubMed]

35. Gulati, G.S.; Sikandar, S.S.; Wesche, D.J.; Manjunath, A.; Bharadwaj, A.; Berger, M.J.; Ilagan, F.; Kuo, A.H.; Hsieh, R.W.; Cai, S.;
et al. Single-Cell Transcriptional Diversity Is a Hallmark of Developmental Potential. Science 2020, 367, 405–411. [CrossRef]
[PubMed]

36. Cao, J.; Spielmann, M.; Qiu, X.; Huang, X.; Ibrahim, D.M.; Hill, A.J.; Zhang, F.; Mundlos, S.; Christiansen, L.; Steemers, F.J.; et al.
The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature 2019, 566, 496–502. [CrossRef]

37. Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.-H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis
of Cell-Cell Communication Using CellChat. Nat. Commun. 2021, 12, 1088. [CrossRef] [PubMed]

38. R: A Language and Environment for Statistical Computing. Available online: https://www.semanticscholar.org/paper/R:
-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b (accessed on 24 March 2024).

https://doi.org/10.3390/genes13091602
https://www.ncbi.nlm.nih.gov/pubmed/36140771
https://doi.org/10.1038/s41422-020-00455-9
https://www.ncbi.nlm.nih.gov/pubmed/33473155
https://doi.org/10.1016/j.cell.2020.08.001
https://www.ncbi.nlm.nih.gov/pubmed/32810438
https://doi.org/10.1093/nar/30.1.207
https://www.ncbi.nlm.nih.gov/pubmed/11752295
https://doi.org/10.1002/ctm2.523
https://doi.org/10.1093/nar/gkv007
https://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1038/75556
https://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1093/genetics/iyad031
https://www.ncbi.nlm.nih.gov/pubmed/36866529
https://doi.org/10.1093/nar/28.1.27
https://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1002/pro.4218
https://www.ncbi.nlm.nih.gov/pubmed/34717010
https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463
https://ggplot2-book.org/
https://doi.org/10.1093/nar/gkac1000
https://www.ncbi.nlm.nih.gov/pubmed/36370105
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1186/1752-0509-8-S4-S11
https://www.ncbi.nlm.nih.gov/pubmed/25521941
https://doi.org/10.1093/nar/gkad393
https://www.ncbi.nlm.nih.gov/pubmed/37166973
https://doi.org/10.1038/nprot.2015.052
https://www.ncbi.nlm.nih.gov/pubmed/25950236
https://doi.org/10.1093/bioinformatics/btv313
https://www.ncbi.nlm.nih.gov/pubmed/25990557
https://doi.org/10.1038/nmeth.3337
https://www.ncbi.nlm.nih.gov/pubmed/25822800
https://doi.org/10.1038/s41591-020-0901-9
https://www.ncbi.nlm.nih.gov/pubmed/32398875
https://doi.org/10.1016/j.cell.2019.05.031
https://www.ncbi.nlm.nih.gov/pubmed/31178118
https://doi.org/10.1126/science.aax0249
https://www.ncbi.nlm.nih.gov/pubmed/31974247
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41467-021-21246-9
https://www.ncbi.nlm.nih.gov/pubmed/33597522
https://www.semanticscholar.org/paper/R:-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b
https://www.semanticscholar.org/paper/R:-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b


Microorganisms 2024, 12, 737 19 of 20

39. Pullano, G.; Di Domenico, L.; Sabbatini, C.E.; Valdano, E.; Turbelin, C.; Debin, M.; Guerrisi, C.; Kengne-Kuetche, C.; Souty,
C.; Hanslik, T.; et al. Underdetection of Cases of COVID-19 in France Threatens Epidemic Control. Nature 2021, 590, 134–139.
[CrossRef] [PubMed]

40. Shin, H.-Y. A Multi-Stage SEIR(D) Model of the COVID-19 Epidemic in Korea. Ann. Med. 2021, 53, 1159–1169. [CrossRef]
[PubMed]

41. Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.-S. Neutrophil Extracellular
Traps (NETs) and Covid-19: A New Frontiers for Therapeutic Modality. Int. Immunopharmacol. 2022, 104, 108516. [CrossRef]
[PubMed]

42. Petrazzuolo, A.; Le Naour, J.; Vacchelli, E.; Gaussem, P.; Ellouze, S.; Jourdi, G.; Solary, E.; Fontenay, M.; Smadja, D.M.; Kroemer, G.
No Impact of Cancer and Plague-Relevant FPR1 Polymorphisms on COVID-19. Oncoimmunology 2020, 9, 1857112. [CrossRef]
[PubMed]

43. Kuley, R.; Duvvuri, B.; Wallin, J.J.; Bui, N.; Adona, M.V.; O’Connor, N.G.; Sahi, S.K.; Stanaway, I.B.; Wurfel, M.M.; Morrell, E.D.;
et al. Mitochondrial N-Formyl Methionine Peptides Contribute to Exaggerated Neutrophil Activation in Patients with COVID-19.
Virulence 2023, 14, 2218077. [CrossRef] [PubMed]

44. Qin, S.; Yao, X.; Li, W.; Wang, C.; Xu, W.; Gan, Z.; Yang, Y.; Zhong, A.; Wang, B.; He, Z.; et al. Novel Insight into the Underlying
Dysregulation Mechanisms of Immune Cell-to-Cell Communication by Analyzing Multitissue Single-Cell Atlas of Two COVID-19
Patients. Cell Death Dis. 2023, 14, 286. [CrossRef] [PubMed]

45. Lee, H.; Park, J.; Im, H.-J.; Na, K.J.; Choi, H. Discovery of Potential Imaging and Therapeutic Targets for Severe Inflammation in
COVID-19 Patients. Sci. Rep. 2021, 11, 14151. [CrossRef] [PubMed]

46. Li, Y.; Liu, Y.; Duo, M.; Wu, R.; Jiang, T.; Li, P.; Wang, Y.; Cheng, Z. Bioinformatic Analysis and Preliminary Validation of Potential
Therapeutic Targets for COVID-19 Infection in Asthma Patients. Cell Commun. Signal 2022, 20, 201. [CrossRef] [PubMed]

47. Apostolidis, S.A.; Sarkar, A.; Giannini, H.M.; Goel, R.R.; Mathew, D.; Suzuki, A.; Baxter, A.E.; Greenplate, A.R.; Alanio, C.;
Abdel-Hakeem, M.; et al. Signaling Through FcγRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19.
Front. Immunol. 2022, 13, 834988. [CrossRef] [PubMed]

48. Von Hundelshausen, P.; Lorenz, R.; Siess, W.; Weber, C. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT):
Targeting Pathomechanisms with Bruton Tyrosine Kinase Inhibitors. Thromb. Haemost. 2021, 121, 1395–1399. [CrossRef] [PubMed]

49. Zusso, M.; Lunardi, V.; Franceschini, D.; Pagetta, A.; Lo, R.; Stifani, S.; Frigo, A.C.; Giusti, P.; Moro, S. Ciprofloxacin and
Levofloxacin Attenuate Microglia Inflammatory Response via TLR4/NF-kB Pathway. J. Neuroinflammation 2019, 16, 148. [CrossRef]
[PubMed]

50. Frank, M.G.; Nguyen, K.H.; Ball, J.B.; Hopkins, S.; Kelley, T.; Baratta, M.V.; Fleshner, M.; Maier, S.F. SARS-CoV-2 Spike S1 Subunit
Induces Neuroinflammatory, Microglial and Behavioral Sickness Responses: Evidence of PAMP-like Properties. Brain Behav.
Immun. 2022, 100, 267–277. [CrossRef] [PubMed]

51. Alves, H.R.; Lomba, G.S.B.; Gonçalves-de-Albuquerque, C.F.; Burth, P. Irisin, Exercise, and COVID-19. Front. Endocrinol. 2022, 13,
879066. [CrossRef] [PubMed]

52. Liu, Z.-M.; Yang, M.-H.; Yu, K.; Lian, Z.-X.; Deng, S.-L. Toll-like Receptor (TLRs) Agonists and Antagonists for COVID-19
Treatments. Front. Pharmacol. 2022, 13, 989664. [CrossRef] [PubMed]

53. Carvalho, A.; Lu, J.; Francis, J.D.; Moore, R.E.; Haley, K.P.; Doster, R.S.; Townsend, S.D.; Johnson, J.G.; Damo, S.M.; Gaddy, J.A.
S100A12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol. Res. Pract. 2020, 2020, 2868373. [CrossRef]

54. Lei, H. A Single Transcript for the Prognosis of Disease Severity in COVID-19 Patients. Sci. Rep. 2021, 11, 12174. [CrossRef]
[PubMed]

55. Russell, C.D.; Valanciute, A.; Gachanja, N.N.; Stephen, J.; Penrice-Randal, R.; Armstrong, S.D.; Clohisey, S.; Wang, B.; Al Qsous,
W.; Wallace, W.A.; et al. Tissue Proteomic Analysis Identifies Mechanisms and Stages of Immunopathology in Fatal COVID-19.
Am. J. Respir. Cell Mol. Biol. 2022, 66, 196–205. [CrossRef] [PubMed]

56. Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang,
O.; et al. Systems Biological Assessment of Immunity to Mild versus Severe COVID-19 Infection in Humans. Science 2020, 369,
1210–1220. [CrossRef] [PubMed]

57. Korbecki, J.; Maruszewska, A.; Bosiacki, M.; Chlubek, D.; Baranowska-Bosiacka, I. The Potential Importance of CXCL1 in the
Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int. J. Mol. Sci. 2022,
24, 205. [CrossRef] [PubMed]

58. Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurth, F.; Völker, M.T.;
et al. COVID-19 Severity Correlates with Airway Epithelium-Immune Cell Interactions Identified by Single-Cell Analysis. Nat.
Biotechnol. 2020, 38, 970–979. [CrossRef]

59. Mohamed, Y.; El-Maradny, Y.A.; Saleh, A.K.; Nayl, A.A.; El-Gendi, H.; El-Fakharany, E.M. A Comprehensive Insight into Current
Control of COVID-19: Immunogenicity, Vaccination, and Treatment. Biomed. Pharmacother. 2022, 153, 113499. [CrossRef] [PubMed]
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